Weekly national Influenza and
 COVID-19 surveillance report

Week 40 report (up to week 39 data)
7 October 2021

Contents

Executive summary 4
Laboratory surveillance 6
Confirmed COVID-19 cases (England) 6
Possible SARS-CoV-2 reinfection in England 18
Respiratory DataMart system (England) 21
Community surveillance 24
Acute respiratory infection incidents 24
COVID-19 cases by type of residence 32
FluSurvey 33
Google search queries 35
NHS 111 37
Primary care surveillance 40
RCGP (England) 40
UK 42
GP In Hours, Syndromic Surveillance 43
GP Out of Hours, Syndromic Surveillance 45
Sentinel swabbing scheme in the UK 47
Secondary care surveillance 49
SARI Watch 49
Hospitalisations, SARI Watch 50
ICU or HDU admissions, SARI Watch 54
ECMO, SARI Watch 58
RSV admissions, SARI Watch 59
Emergency Department attendances, Syndromic surveillance 61
Mortality surveillance 65
Cumulative COVID-19 deaths 65
Daily excess all-cause mortality (England) 70
Microbiological surveillance 74
SARS-CoV-2 variants 74
Antimicrobial susceptibility 74
COVID-19 sero-prevalence surveillance 76
Seroprevalence in Adults aged 17 years and older (Blood Donors) 76
COVID-19 vaccination 81
COVID-19 vaccine uptake in England 81
International update 85
Global COVID-19 update 85
Global influenza update 87
Other respiratory viruses 89
Related links 90
About the UK Health Security Agency 91

Executive summary

From Friday 1st October 2021, the UK Health Security Agency (UKHSA) became fully operational. UKHSA takes on the health protection responsibilities of Public Health England (PHE) and incorporates NHS Test \& Trace and the Joint Biosecurity Centre (JBC). UKHSA is an executive agency of the Department of Health and Social Care. It is responsible for planning, preventing and responding to public health threats, and providing intellectual, scientific and operational leadership at national and local level, as well as on the global stage.

This report summarises the information from the surveillance systems which are used to monitor coronavirus (COVID-19), influenza, and other seasonal respiratory viruses in England. References to COVID-19 represent the disease name and SARS-CoV-2 represent the virus name. The report is based on data from week 39 (between 27 September and 3 October 2021) and for some indicators daily data up to 5 October 2021.

Surveillance indicators suggest that at a national level COVID-19 activity decreased in some indicators, while remaining stable in others in week 39 of 2021. Laboratory indicators suggest that influenza activity is very low.

Overall COVID-19 case rates remained stable in week 39. Case rates remained stable or decreased in all regions, remained stable in all ethnic groups and remained stable in most age groups, while decreasing in those aged 10 to 19. Overall Pillar 1 remained stable and Pillar 2 positivity decreased slightly compared to the previous week.

The overall number of reported acute respiratory incidents in the past week decreased compared to the previous week. SARS-CoV-2 was identified in the majority of these.

COVID-19 hospitalisations remained stable in week 39. Deaths with COVID-19 decreased slightly in the most recent week.

COVID-19 vaccine coverage was 65.3% for dose 1 at the end of week 39. COVID-19 vaccine coverage was 60.1% for dose 2 at the end of week 39 , reaching over 90% in all cohorts over the age of 65 years and over 80% in all cohorts over 50 years.

Seroprevalence data indicates that approximately 98.0% of blood donors aged 17 and over have antibodies to SARS-CoV-2 from either infection or vaccination.

Through Respiratory Datamart, there were 8 influenza positive samples detected in week 39. Other indicators for influenza such as hospital admissions and GP influenza-like illness consultation rates remain very low. Respiratory syncytial virus positivity increased slightly to 8.1% in week 39 , while rhinovirus positivity increased slightly to 19.8% in week 39.

Weekly National Influenza and COVID-19 Report: week 40 report (up to week 39 data)

Parainfluenza, adenovirus and human metapneumovirus (hMPV) positivity remained low at $1.3 \%, 1.7 \%$ and 2.9% respectively in week 39.

Laboratory surveillance

Confirmed COVID-19 cases (England)

As of 9 am on 5 October 2021, a total of $6,780,567$ first positive cases have been confirmed for COVID-19 in England under Pillars 1 and 2, since the beginning of the pandemic.

Overall COVID-19 case rates remained stable in week 39. Case rates remained stable or decreased in all regions, remained stable in all ethnic groups and remained stable in most age groups, while decreasing in those aged 10 to 19 . Overall Pillar 1 remained stable and Pillar 2 positivity decreased slightly compared to the previous week.

From the week 32 report onwards, case rates have been updated to use the latest ONS population estimates for mid-2020. Previously case rates were calculated using the mid-2019 population estimates. Rates by ethnicity and IMD quantile will continue to be presented using the mid-2019 estimates, until the mid-2020 estimates become available.

Please note that positivity is presented as positivity by Polymerase Chain Reaction (PCR) testing only, unless otherwise stated (for example figure 2).
Changes to testing policies over time may impact on positivity rates.

Figure 1: Confirmed COVID-19 cases tested under Pillar 1 and Pillar 2, based on sample week with overall weekly PCR positivity for Pillars 1 and 2 (\%)

* The data are shown by the week the specimen was taken from the person being tested. This gives the most accurate analysis of this time progression, however, for the most recent week results for more samples are expected therefore this should be interpreted with caution
* Positivity (excluding Figure 2) is calculated as the number of individuals testing positive during the week divided by the number of individuals tested during the week through Polymerase Chain Reaction (PCR) testing
* Data source: Second Generation Surveillance System (SGSS)

Figure 2: Weekly positivity (\%) of confirmed COVID-19 and number of individuals tested by type of test, under Pillar 1 and 2

* For Figure 2 positivity is calculated as the number of individuals testing positive using a specific test type during the week, divided by the number of individuals tested using that specific test type during the week
* Please note that an individual may appear under both PCR and LFD tests if they have been tested using both test types in a given week

Weekly National Influenza and COVID-19 Report: week 40 report (up to week 39 data)

Age and sex

Figure 3: Age-sex pyramids for confirmed COVID-19 cases tested under Pillars 1 and 2 in weeks 38 and 39 ($n=374,847$)

No. of cases

Figure 4: Weekly confirmed COVID-19 case rates per 100,000, tested under Pillar 1 and Pillar 2, by sex

Figure 5: Weekly confirmed COVID-19 case rates per 100,000, tested under Pillar 1 and Pillar 2, by age group

Figure 6: Weekly PCR positivity (\%) of confirmed COVID-19 cases tested overall and by sex under (a) Pillar 1 and (b) Pillar 2
(a)

(b)

Figure 7: Weekly PCR positivity (\%) of confirmed COVID-19 cases tested under Pillar 1, (a) by male and age group and (b) by female and age group and; under Pillar 2, (c) by male and age group and (d) by female and age group
(a) Pillar 1 - Male

(b) Pillar 1 - Female

Weekly National Influenza and COVID-19 Report: week 40 report (up to week 39 data)
(c) Pillar 2 - Male

(d) Pillar 2 - Female

Geography

Figure 8: Weekly confirmed COVID-19 case rates per 100,000 population (Pillar 1 and Pillar 2), by UKHSA Centres and sample week

Figure 9: Weekly PCR positivity of confirmed COVID-19 cases tested under (a) Pillar 1 (\%) and (b) Pillar 2 (\%), by UKHSA Centres and sample week
(a)

(b)

Figure 10: Weekly rate of COVID-19 cases per 100,000 population (Pillar 1 and 2), by upper-tier local authority, England (box shows enlarged map of London area)

Ethnicity

Figure 11: Weekly incidence per 100,000 population by ethnicity, England

*the incidence rates on Figure 11 have been calculated using the mid-2019 ONS population estimates

Positivity by symptoms

Figure 12: Weekly PCR positivity (\%) of confirmed COVID-19 cases by symptoms reported on Pillar 2 test request

Possible SARS-CoV-2 reinfection in England

Please note that this section will be updated monthly. Last update was published 16 September 2021.

The following figures present population data based on the first time that individuals tested positive for SARS-CoV-2 through PCR and/or lateral flow device testing in England together with those who have tested positive for SARS-CoV-2 through PCR and/or lateral flow testing with an interval of at least 90 days between two consecutive positive tests. To the end of week 34 in 2021 (to 29 August 2021) 45,119 possible reinfections have been identified, of which 259 have been confirmed by identification of genetically distinct specimens from each illness episode to end August 2021 (see Table 1).
For a possible reinfection to be categorised as confirmed it requires sequencing of a specimen at each episode and for the later specimen to be genetically distinct from that sequenced from the earlier episode. Availability of such dual sequencing is currently very low for several reasons; sequencing was not widely undertaken early in the pandemic; LFD test results do not allow sequencing and some PCR samples have a low viral load where sequencing cannot be undertaken. To meet the definition of a probable reinfection requires sequencing at the later episode that identifies a variant that was not circulating at the time of the earlier episode. Further details on the methodology, as well as additional data on reinfections are available in the graph set published alongside this report.

It is important to consider reinfections in the context of first infections and there is a 90-day delay before people with a first infection can become eligible for reinfection.

Table 1 summarises the definitions of different categories of COVID-19 infection accompanied by totals generated to 29 August 2021 (end week 34 2021) and review of 5,014 possible reinfections with sequencing data available to end August 2021. These data are skewed by the limited availability of sequencing data, particularly in the early months of the pandemic. More recently, widespread routine testing of asymptomatic individuals has taken place and this, together with surge testing, will lead to an increased number of asymptomatic reinfections being identified.

Figure 13 shows the weekly rates of possible reinfections per 1000 first infections based on a cumulative denominator derived from total individuals with a first SARS-CoV-2 positive test result at a point 13 weeks (91 days) before the second positive test result together with the cumulative total of first infections (secondary Y -axis) and total first infections (secondary Y -axis) by week of onset.

Table 1: Different categories of COVID-19 infection with current totals generated by ongoing analysis in England to 29 August 2021 (end week 34 2021)

Infection type	Definition	Current totals
Primary infection/ first positive	the first positive PCR/ LFD test result for an individual	$\mathbf{5 . 9}$ million first positives
Possible reinfection	identified based on two sequential positive test results (PCR or LFD) at least 90 days apart	$\mathbf{4 5 , 1 1 9}$ possible reinfections
Probable reinfection	where only reinfection sample is available, and this is congruent with contemporaneous phylogeny OR the second event identifies a variant which was not in circulation at the time of first infection	2,981 classified as probable*
Confirmed	sequencing of a specimen at each episode of a possible reinfection with the later specimen genetically distinct from that sequenced at first episode	259 confirmed reinfections*
Persistent infection	Nominally repeat test positives at between 14 and <90-day intervals (likely associated with immunosuppression)	Unquantified

*This is out of 5,014 samples with sequencing data available to end August 2021

Figure 13: The weekly rate of possible COVID-19 reinfections with cumulation of first infections becoming eligible for reinfection and weekly total of first infection* (England only to week 34 2021)

*These data have been derived independently based on Pillar 1 and Pillar 2 datasets and may therefore differ to previously published data

Respiratory DataMart system (England)

The Respiratory Datamart system was initiated during the 2009 influenza pandemic to collate all laboratory testing information in England. It is now used as a sentinel laboratory surveillance tool, monitoring all major respiratory viruses in England. Sixteen laboratories in England will be reporting data for this season. As this is based on a sample of labs - SARS-CoV-2 positivity figures quoted here will differ from those quoted in the Confirmed COVID-19 cases section, however, they are included to facilitate comparison with data on other respiratory viruses.

In week 39 2021, out of the 110,437 respiratory specimens reported through the Respiratory DataMart System (based on data received from 14 out of 16 laboratories), 1,861 samples were positive for SARS-CoV-2 with an overall positivity of 1.7%. The highest positivity was noted in the 5 to 14-year olds at 7.9% in week 39.

The overall influenza positivity remained very low at 0.3% in week 39 , with 8 of the 2,630 samples testing positive for influenza (including 3 influenza $A(H 3), 2$ influenza A(not subtyped) and 3 influenza B).

Respiratory syncytial virus (RSV) positivity increased slightly to 8.1% in week 39 , with the highest positivity in the under 5 -year olds at 14.6%. Rhinovirus positivity increased from 19.1% in week 38 to 19.8% in week 39. Parainfluenza, adenovirus and human metapneumovirus (hMPV) positivity remained low at $1.3 \%, 1.7 \%$ and 2.9% respectively in week 39 (Figure 16).

Figure 14: DataMart samples positive for influenza and weekly positivity (\%) for influenza, England

Figure 15: DataMart weekly positivity (\%) for SARS-CoV-2, England

Figure 16: DataMart weekly positivity (\%) for other respiratory viruses, England

Figure 17: DataMart weekly positivity (\%) for rhinovirus by age, England

Figure 18: DataMart weekly positivity (\%) for RSV by age, England

Community surveillance

Acute respiratory infection incidents

Here we present data on acute respiratory infection (ARI) incidents in different settings that are reported to UKHSA Health Protection Teams (HPTs) and entered onto an online web-based platform called HPZone. Incidents are suspected outbreaks of acute respiratory infections linked to a particular setting. All suspected outbreaks are further investigated by the HPT in liaison with local partners. A subset of these will meet the criteria of a confirmed outbreak, that is, where 2 or more laboratory confirmed cases (SARS-CoV-2, influenza or other respiratory pathogens) are linked to a particular setting. Incidents where suspected cases test negative for COVID-19 or other respiratory pathogens, or cases are subsequently found not to have direct links to the setting are discarded.
The number of ARI incidents in each setting with at least one laboratory confirmed case of COVID-19 (or other respiratory pathogen) are reported below. As outlined above, only a subset of these will go on to be confirmed as outbreaks.
Data for England, Scotland and Northern Ireland are included in the UK figures.

Data caveats:

1. The incidents captured on HPZone represent a subset of all ongoing ARI clusters and outbreaks in England rather than an exhaustive listing. A variety of arrangements are in place across UKHSA Centres, with local authorities and other stakeholders supporting HPTs in outbreak investigation in some areas without HPZone reporting. As a result, the number of outbreaks reported for some of the regions are underestimates.
2. For this academic year (2021 to 2022) the thresholds for reporting an outbreak in an educational setting have been revised. Clusters and outbreaks are now reported to the Health protection Team if either of the two following criteria are met:

- 5 cases or 10% test-confirmed cases of COVID-19 within 10 days (whichever is reached first), among students or staff
- Evidence of severe illness e.g. students or staff members admitted to hospital or a death as a result of a COVID-19 infection
- For special education needs schools, residential schools and settings that operate with 20 or fewer children, pupils, students and staff at any one time, clusters and outbreaks are reported if the following criteria is met:
- 2 children, pupils, students and staff, who are likely to have mixed closely, test positive for COVID-19 within a 10-day period

For more information on managing COVID-19 in educational settings please refer to the framework. This should be taken into consideration when comparing 2021-2022 season data against 2020-2021 season data.

Weekly National Influenza and COVID-19 Report: week 40 report (up to week 39 data)
3. It should be noted that the denominator for the different settings will vary significantly. For example, there are fewer hospitals than workplaces. In addition, the propensity to report incidents to UKHSA also varies significantly by setting. This needs to be taken into account when interpreting the weekly number of reported incidents by setting and caution should be used when making comparisons between settings.
4. In light of the above, comparisons between Regions and settings are not advised as they may be misleading.

681 new ARI incidents have been reported in week 39 in the UK (Figure 19):

- 238 incidents were from care homes where 185 had at least one linked case that tested positive for SARS-CoV-2
- 304 incidents were from educational settings where 231 had at least one linked case that tested positive for SARS-CoV-2, and 1 tested positive for Influenza A(not subtyped)
- 12 incidents were from hospitals, where 8 had at least one linked case that tested positive for SARS-CoV-2
- 21 incidents were from workplace settings where 18 had at least one linked case that tested positive for SARS-CoV-2
- 6 incidents were from food outlets or restaurants where 5 had at least one linked case testing positive for SARS-CoV-2
- 9 incidents were from prisons where 8 had at least one linked case testing positive for SARS-CoV-2
- 91 incidents were from other settings where 69 had at least one linked case that tested positive for SARS-CoV-2

Figure 19: Number of acute respiratory infection (ARI) incidents by setting, UK

[^0]Figure 20: Number of acute respiratory infection (ARI) incidents by setting, England

Figure 21: Number of acute respiratory infection (ARI) incidents in care homes by virus type, England

Figure 22: Number of acute respiratory infection (ARI) incidents in hospitals by virus type, England

Figure 23: Number of acute respiratory infection (ARI) incidents in educational settings by virus type, England

Figure 24: Number of acute respiratory infection (ARI) incidents in prisons by virus type, England

Figure 25: Number of acute respiratory infection (ARI) incidents in workplace settings by virus type, England

Figure 26: Number of acute respiratory infection (ARI) incidents in food outlet or restaurant settings by virus type, England

Figure 27: Number of acute respiratory infection (ARI) incidents in other settings by virus type from, England

Other settings

Table 2: Total number of situations and incidents by institution and UKHSA Centres over the past 4 weeks with the total number in the last week in brackets

UKHSA Centres	Care home	Hospital	Educational settings	Prisons	Workplace settings	Food outlet/ restaurant settings	Other settings	Total
East of England	$82(20)$	$7(2)$	$14(5)$	$2(1)$	$1(1)$	$0(0)$	$25(9)$	$131(38)$
East Midlands	$90(29)$	$9(1)$	$99(23)$	$2(0)$	$9(3)$	$1(0)$	$29(8)$	$239(64)$
London	$42(9)$	$30(7)$	$306(80)$	$1(1)$	$1(0)$	$0(0)$	$19(5)$	$399(102)$
North East	$70(14)$	$1(0)$	$4(1)$	$0(0)$	$1(1)$	$0(0)$	$16(4)$	$92(20)$
North West	$79(16)$	$5(2)$	$63(12)$	$0(0)$	$40(5)$	$1(0)$	$38(11)$	$226(46)$
South East	$103(21)$	$9(0)$	$302(57)$	$7(2)$	$4(2)$	$0(0)$	$26(7)$	$451(89)$
South West	$160(43)$	$1(0)$	$117(41)$	$0(0)$	$0(0)$	$0(0)$	$34(6)$	$312(90)$
West Midlands	$45(12)$	$12(0)$	$107(21)$	$1(1)$	$7(0)$	$2(0)$	$24(3)$	$198(37)$
Yorkshire and Humber	$99(27)$	$1(0)$	$65(16)$	$2(2)$	$4(1)$	$0(0)$	$31(11)$	$202(57)$
Total	$770(191)$	$75(12)$	$1077(256)$	$15(7)$	$67(13)$	$4(0)$	$242(64)$	$2250(543)$

Weekly National Influenza and COVID-19 Report: week 40 report (up to week 39 data)

COVID-19 cases by type of residence

Table 3 shows the proportion of confirmed COVID-19 cases according to their type of residence. Property classifications are derived from Ordnance Survey AddressBase and are matched to address details within the laboratory data. Properties are identified by unique property reference number (UPRN) and basic land property unit (BLPU). Cases with poor or no address data which failed the address matching and are classed as 'undetermined'. No fixed abode and overseas addresses identified by recording in the laboratory data.
In week 39, the highest percentage of confirmed COVID-19 cases by type of residence was seen in residential dwellings (Table 3).
Table 3: Type of residence of confirmed COVID-19 cases by percentage of total weekly cases

\quad Type of residence	Week 34	Week 35	Week 36	Week 37	Week 38	Week $\mathbf{3 9}$
Residential dwelling (including houses, flats, sheltered accommodation)						
Undetermined	93.9	95.3	95.3	95.6	96.0	96.3
Care/Nursing home	2.9	2.5	2.5	2.3	2.0	1.9
Residential institution (including residential education)	0.6	0.6	0.6	0.5	0.5	0.4
Other property classifications	0.2	0.2	0.2	0.2	0.1	0.1
House in multiple occupancy (HMO)	0.7	0.6	0.6	0.6	0.5	0.4
Medical facilities (including hospitals and hospices, and mental health)	0.4	0.3	0.3	0.3	0.2	0.2
Prisons, detention centres, secure units	1.2	0.5	0.4	0.5	0.6	0.6
Overseas address	0.1	0.1	0.1	0.1	0.1	0.0
No fixed abode	0.0	0.0	0.0	0.0	0.0	0.0

FluSurvey

An internet-based surveillance system has been developed based on FluSurvey. FluSurvey is a web tool survey designed to monitor trends of influenza-like illness (ILI) in the community using self-reported respiratory symptoms from registered participants. The platform has been adapted to capture respiratory symptoms, exposure risk and healthcare seeking behaviours among registered participants to contribute to national surveillance of COVID-19 activity as well as influenza activity since week 44.

Note: ILI is defined as sudden onset of symptoms with at least one of fever (chills); malaise; headache; muscle pain and at least one of cough; sore throat; shortness of breath.
A total of 2,694 participants completed the weekly surveillance survey in week 39, of which 151 (5.6\%) reported fever or cough and 49 (12.2\%) reported influenza-like illness (ILI). The most commonly used healthcare services reported by respondents remains telephoning a GP practice (Figure 28).

Figure 28: FluSurvey participants self-reporting fever or cough and ILI symptoms, and trends in healthcare seeking behaviour among these participants, England

	Visited GP/GP Nurse
Telephoned GP Services	Visited Hospital(including A\&E, Admissions)
$\ldots-$ Fever or Cough	Telephoned NHS 111
	ILI

Google search queries

This is a web-based syndromic surveillance system which uses daily search query frequency statistics obtained from the Google Health Trends API. This model focuses on search queries about COVID-19 symptoms as well as generic queries about 'coronavirus' (for example 'COVID-19'). The search query frequency time series has been weighted based on symptom frequency as reported in other data sources. Frequency of searches for symptoms is compared with a baseline calculated from historical daily data. Further information on this model is available here.

During week 39, the overall and media-debiasing weighted Google search scores remained stable (Figure 29).

Figure 29: Normalised Google search score for COVID-19 symptoms, with weighted score for media-debiasing and historical trend, England

NHS 111

Please note that different syndromic surveillance indictors (NHS 111, GP in hours, GP out of hours and emergency department attendances) are presented here than have been included in previous versions of this report. All indictors previously presented will continue to be published in the Syndromic Surveillance bulletins.

The NHS 111 service monitors daily trends in phone calls made to the service in England, to capture trends in infectious diseases such as influenza and norovirus.

Up to 3 October, NHS 111 calls for cold/flu and cough increased but were levelling off in children aged 5 to 14 (Figure 30 and 31).

Please note that NHS 111 callers (from 11 May 2020) who are assessed as having probable COVID-19 symptoms are now triaged using symptom specific pathways such as cold or flu, which are included in routine syndromic indicators.

Further information about these caveats is available from the Remote Health Advice Syndromic Surveillance bulletin.

Figure 30: NHS 111 telephony indicators (and 7-day moving average) for number of daily cold/flu calls, England (a) nationally and (b) by age group
(a)

Cold or flu 04/10/2020-03/10/2021

Black dotted line is baseline. Grey columns show weekends and bank holidays.
(b)

Cold or flu by age group (years) 04/10/2020-03/10/2021

Figure 31: NHS 111 telephony indicators (and 7-day moving average) for number of daily cough calls, England (a) nationally and (b) by age group
(a)

Cough 04/10/2020-03/10/2021

Black line is 7 day moving average adjusted for bank holidays. Black dotted line is baseline. Grey columns show weekends and bank holidays.
(b)

Cough by age group (years) 04/10/2020-03/10/2021
under 1

15 to 44
訔

1 to 4

45 to 64

5 to 14

over 65

E TREND COMPARISON.
Black line is 7 day moving average adjusted for bank holidays.

Primary care surveillance

RCGP (England)

The weekly ILI consultation rate through the RCGP surveillance was 2.4 per 100,000 registered population in participating GP practices in week 39 compared to 1.7 per 100,000 in the previous week. This is below the baseline threshold (12.2 per 100,000) (Figure 32). By age group, the highest rates were seen in the 45 to 64 year olds and over (3.3 per 100,000). The Lower Respiratory Tract Infections (LRTI) consultation rate was at 54.0 per 100,000 in week 39, compared to the rate of 46.6 per 100,000 in the previous week. The COVID-19-like indicator consultation rate was at 227.4 per 100,000 in week 39 compared to a rate of 207.2 per 100,000 in the previous week (Figure 33).

Figure 32: RCGP ILI consultation rates, all ages, England

Weekly National Influenza and COVID-19 Report: week 40 report (up to week 39 data)

Figure 33: RCGP ILI, LRTI and COVID-19-like indicator consultation rates, England

UK

Overall, weekly ILI consultations rates were below baseline levels in all UK schemes (Table 4).
By age group, the highest rates were seen in the 75 -year olds and over in Scotland (1.9 per 100,000) and the 1 to 4 year olds and over in Northern Ireland (3.8 per 100,000).

Table 4: GP ILI consultations in the UK for all ages with MEM thresholds applied

GP ILI consultation rates (all ages)	Week number																			
	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39
England (RCGP)	0.9	0.7	0.5	0.7	0.3	1.0	0.9	0.7	0.7	0.7	0.7	0.6	0.6	1.0	1.0	0.8	1.1	1.2	1.7	2.4
Wales	0.5	0.0	0.5	0.7	0.3	0.3	0.3	0.5	1.5	0.8	0.3	1.0	0.6	0.9	0.8	2.7	2.3	1.0	2.0	
Scotland	0.2	0.2	0.3	0.2	0.5	0.4	0.6	0.4	0.3	0.4	0.4	0.3	0.4	0.4	0.5	0.7	0.8	0.7	0.9	0.8
Northern Ireland	0.5	0.4	0.4	0.6	0.6	0.6	1.0	0.9	0.9	0.8	0.9	0.7	1.0	1.1	0.7	0.7	1.2	0.9	0.5	0.8

The Moving Epidemic Method (MEM) has been adopted by the European Centre for Disease Prevention and Control to calculate thresholds for GP ILI consultations for the start of influenza activity (based on 10 seasons excluding 2009 to 2010), in a standardised approach across Europe. For MEM threshold values for each country, please visit the webpage Sources of UK flu data: influenza surveillance in the UK.

GP In Hours, Syndromic Surveillance

The GP In Hours (GPIH) syndromic surveillance system monitors the number of GP visits during regular hours of known clinical indicators.

Up to 3 October, GP in-hours consultations for influenza-like illness increased (Figure 34).
Further indicators and information about caveats are available from the GP In Hours Syndromic Surveillance bulletin.

Figure 34: GPIH clinical indicators for influenza-like illness GP consultations, England (a) nationally, (b) by age group and (c) by UKHSA Centre
(a)

Influenza-like illness 04/10/2020-03/10/2021

(b)

Influenza-like illness by age group (years) 04/10/2020-03/10/2021

NOTE: SCALES MAY VARY IN EACH GRAPH TO ENABLE TREND COMPARISON.
Black line is 7 day moving average adjusted for bank holidays.
(c)

Influenza-like illness by centre 04/10/2020-03/10/2021

Black line is 7 day moving average adjusted for bank holidays.
Black dotted line is baseline.

GPIH Baselines are modelled from historical data to give current seasonally expected levels. GP consultations rates decreased during 2020 due to changes in guidance on accessing health care, therefore separate modelled estimates are provided to show seasonally expected levels pre-covid-19.

GP Out of Hours, Syndromic Surveillance

The GP Out of Hours (GPOOH) syndromic surveillance system monitors the numbers of daily unscheduled visits and calls to GPs during evenings, overnight, on weekends and on public holidays. This system covers around 55\% of England's out of hour activity.

Up to 3 October, GP out-of-hours and unscheduled care consultations for ILI remained stable and for ARI increased, with ARI increasing primarily young children (Figure 35 and 36).

Figure 35: GPOOH number of daily contacts for all ages for influenza-like illness, England

Influenza-like illness 04/10/2020-03/10/2021

Black dotted line is baseline. Grey columns show weekends and bank holidays.

Figure 36: GPOOH number of daily contacts for acute respiratory infections, England (a) nationally and (b) by age group
(a)

Acute respiratory infection 04/10/2020-03/10/2021

Black line is 7 day moving average adjusted for bank holidays.
Black dotted line is baseline. Grey columns show weekends and bank holidays.
(b)

Acute respiratory infection by age group (years) 04/10/2020-03/10/2021

Sentinel swabbing scheme in the UK

In week 39 2021,11 samples tested positive for SARS-CoV-2 with an overall positivity of 9.4% 11 out of 117) compared to 13.4% (11 out of 82) in the previous week, through the UK GP sentinel swabbing schemes (Figure 37).

In week 39, 7 samples tested positive for RSV, with an overall positivity of 8.4% (7 out of 83) compared to 14.0% (7 out of 50) in the previous week.

A graph for influenza will be included when a positive specimen is identified through the scheme.

Samples up to week 412020 were only tested for SARS-CoV-2.
Figure 37: Number of positive samples and weekly positivity (\%) for (a) COVID-19 and (b) RSV, UK GP sentinel swabbing scheme
(a)

Weekly National Influenza and COVID-19 Report: week 40 report (up to week 39 data)
(b)

*For the most recent week, more samples are expected to be tested therefore the graph in Figure 37 should be interpreted with caution
*Positivity (\%) is not calculated when the total number tested is less than 10

Secondary care surveillance

SARI Watch

The Severe Acute Respiratory Infection (SARI) Watch surveillance system was established in 2020 to report the number of laboratory-confirmed influenza and COVID-19 cases admitted to hospital and critical care units (ICU and HDU) in NHS acute trusts across England. This has replaced the USISS Mandatory and Sentinel data collections for influenza surveillance used in previous seasons, and the COVID-19 hospitalisations in England surveillance system (CHESS) collections for COVID-19 surveillance.

The weekly rate of new admissions of COVID-19, influenza and RSV cases is based on the trust catchment population of those NHS Trusts who made a new return. This may differ from other published figures such as the total number of people currently in hospital with COVID-19.
Trends in hospital and critical care admission rates need to be interpreted in the context of testing recommendations.

Hospitalisations, SARI Watch

In week 39, the overall weekly hospital admission rate for COVID-19 remained stable. There were 9 new hospital admissions to sentinel Trusts for influenza (6 influenza A(not subtyped) and 3 influenza B) in week 39.

The hospitalisation rate for COVID-19 was at 5.60 per 100,000 in week 39 compared to 5.44 per 100,000 in the previous week.

By UKHSA centre, the highest hospital admission rate for COVID-19 was observed in the North East. By age groups, the highest hospital admission rate for confirmed COVID-19 was in the 85year olds and over.

Figure 38: Weekly overall hospital admission rates of new COVID-19 and influenza positive cases per 100,000 population reported through SARI Watch, England

* influenza hospital admission rate is reported from week 402020 onwards
* influenza hospital admission rate based on 28 sentinel NHS trusts for week 39
* COVID-19 hospital admission rate based on 109 NHS trusts for week 39
* SARI Watch data are provisional

Figure 39: Weekly overall influenza hospital admission rates per 100,000 trust catchment population with MEM thresholds, SARI Watch, England

* the MEM thresholds used are those from the 2019 to 2020 season due to the pandemic

Figure 40: Weekly influenza hospital admissions by influenza type, SARI Watch, England

Figure 41: Weekly hospital admission rate by UKHSA Centre for new (a) COVID-19 positive cases and (b) influenza reported through SARI Watch
(a)

(b)

Figure 42: Weekly hospital admission rate by age group for new (a) COVID-19 positive cases and (b) influenza reported through SARI Watch
(a)

(b)

ICU or HDU admissions, SARI Watch

In week 39, the overall weekly ICU or HDU admission rates for COVID-19 decreased. There were two new ICU or HDU admissions for influenza in week 39, both influenza A(not subtyped).
The ICU or HDU rate for COVID-19 was at 0.37 per 100,000 in week 39 compared to 0.40 per 100,000 in the previous week.
By UKHSA Centre, the highest ICU or HDU admission rates for COVID-19 were observed in the London. By age groups, the highest ICU or HDU admission rates for COVID-19 were observed in the 65 to 74 year olds and over.

Figure 43: Weekly overall ICU or HDU admission rates of new COVID-19 and influenza positive cases per 100,000 population reported through SARI Watch, England

* influenza ICU or HDU admission rate is reported from week 402020 onwards
* influenza ICU or HDU admission rate based on 86 NHS trusts for week 39
* COVID-19 ICU or HDU admission rate based on 102 NHS trusts for week 39
* SARI Watch data are provisional

Figure 44: Weekly overall influenza ICU or HDU admission rates per 100,000 trust catchment population with MEM thresholds, SARI Watch, England

<0.11	Baseline threshold	0.11 to <0.32 Low	0.32 to <0.64 Medium
0.64 to <0.88	High	$0.88+$	Very high

Figure 45: Weekly influenza ICU or HDU admissions by influenza type, SARI Watch, England

Figure 46: Weekly ICU or HDU admission rate by UKHSA Centre for new (a) COVID-19 positive cases and (b) influenza, reported through SARI Watch
(a)

(b)

Figure 47: Weekly ICU or HDU admission rate by age group for new (a) COVID-19 positive cases and (b) influenza, reported through SARI Watch
(a)

(b)

ECMO, SARI Watch

From week 40 2020, a total of 373 laboratory confirmed COVID-19 admissions have been reported from the 6 Severe Respiratory Failure (SRF) centres in the UK.

There were no new laboratory confirmed COVID-19 admission reported in week 39 (Figure 48).
Figure 48: Laboratory confirmed ECMO admissions (COVID-19, influenza and non-COVID-19 confirmed) to Severe Respiratory Failure centres in the UK

[^1]
RSV admissions, SARI Watch

Data on hospitalisations, including ICU/HDU admissions, with Respiratory Syncytial Virus (RSV) are shown below. RSV SARI Watch surveillance is sentinel.

Figure 49: Weekly overall hospital admission rates (including ICU/HDU) of RSV positive cases per 100,000 population reported through SARI Watch, England

[^2]Figure 50: Weekly hospitalisation (including ICU/HDU) admission rates by age group for new RSV cases reported through SARI Watch in 2020 to 2021, England

* Please note that rates are based on the number of hospitalised cases divided by the Trust catchment population, multiplied by 100,000
* SARI Watch data are provisional

Emergency Department attendances, Syndromic surveillance

The Emergency Department Syndromic Surveillance System (EDSSS) monitors the daily visits in a network of emergency departments across England.

Up to 3 October 2021, the daily number of ED attendances as reported by 102 EDs for COVID-19-like infection increased slightly, and for acute respiratory infection increased in children under the age of 14 (Figure 51).

Please note: the COVID-19-like ED indicator is an underestimation of the number of COVID-19 attendances as it only includes attendances with a COVID-19-like diagnosis as their primary diagnosis. The EDSSS COVID-19-like indicator should therefore be used to monitor trends in ED attendances and not to estimate actual numbers of COVID19 ED attendances. Further information about these caveats is available from the Emergency Department Syndromic Surveillance bulletin.

Figure 51: Daily ED attendances for COVID-19-like infections, England (a) nationally, (b) by age group and (c) by UKHSA Centre
(a)

Covid-19-like 04/10/2020-03/10/2021

Black line is 7 day moving average adjusted for bank holidays. Grey columns show weekends and bank holidays.

Weekly National Influenza and COVID-19 Report: week 40 report (up to week 39 data)
(b)

Covid-19-like by age group (years) 04/10/2020-03/10/2021

(c)

Covid-19-like by centre 04/10/2020-03/10/2021

Figure 52: Daily ED attendances for acute respiratory infections, England (a) nationally, (b) by age group and (c) by UKHSA Centre
(a)

Acute respiratory infection 04/10/2020-03/10/2021

(b)

Acute respiratory infection by age group (years) 04/10/2020-03/10/2021
under 1
1 to 4
5 to 14

45 to 64
over 65
15 to 44

NOTE: SCALES MAY VARY IN EACH GRAPH TO ENABLE TREND COMPARISON.
Black line is 7 day moving average adjusted for bank holidays.

Weekly National Influenza and COVID-19 Report: week 40 report (up to week 39 data)
(c)

Acute respiratory infection by centre 04/10/2020-03/10/2021

NOTE: SCALES MAY VARY IN EACH GRAPH TO ENABLE TREND COMPARISON.
Black line is 7 day moving average adjusted for bank holidays.
Black dotted line is baseline.

Mortality surveillance

Cumulative COVID-19 deaths

Changes to the definitions of COVID-19 related deaths in England are described in more detail in an accompanying technical summary.
The current definitions used for mortality surveillance of COVID-19 in England are:
(a) 28 day definition: A death in a person with a laboratory-confirmed positive COVID-19 test and died within (equal to or less than) 28 days of the first positive specimen date
(b) 60 day definition: A death in a person with a laboratory-confirmed positive COVID-19 test and either: died within 60 days of the first specimen date OR died more than 60 days after the first specimen date only if COVID-19 is mentioned on the death certificate

The introduction of these definitions will affect the numbers which have been presented in past reports and therefore Figure 53 represents these differences by definition.

Figure 53: Number of deaths since by week of death and time since laboratory confirmation of COVID-19, England

[^3]Figure 54: Age-sex pyramid of laboratory confirmed COVID-19 deaths, for the past year

Table 5: Ethnic group (\%) of COVID-19 deaths and time since laboratory confirmation of COVID-19, England, for the past year

Ethnicity	28 day definition	60 day definition
White	88.8	88.8
Asian / Asian British	7.3	7.3
Black / African / Caribbean / Black British	2.9	2.9
Mixed / Multiple ethnic groups	0.5	0.5
Other ethnic group	0.5	0.5

Table 6: Cumulative number of COVID-19 deaths since and time since laboratory confirmation of COVID-19 by UKHSA Centres, for the past year

UKHSA Centres	28 day definition	60 day definition
North East	4,347	5,175
North West	12,849	15,337
Yorkshire and Humber	8,297	9,831
West Midlands	9,763	11,684
East Midlands	7,827	9,292
East of England	10,268	12,133
London	10,190	12,282
South East	12,612	14,969
South West	5,508	6,438

Figure 55: Cumulative mortality rate of COVID-19 cases per 100,000 population tested under Pillars 1 and 2 for the past 4 weeks by (a) 28 day definition and (b) 60 day definition
(a)

Weekly National Influenza and COVID-19 Report: week 40 report (up to week 39 data)
(b)

Daily excess all-cause mortality (England)

Deaths occurring from 1 January 2020 to 29 September 2021 were assessed to calculate the daily excess above a baseline using age-group and region specific all cause deaths as provided daily by the General Register Office (GRO). The deaths were corrected to allow for delay to registration based on past data on these delays and the baseline was from the same day of the year in the previous 5 years plus or minus 7 days with an extrapolated time trend, and with 2 and 3 standard deviation (SD) limits shown (Figure 56).

Weeks in which at least 2 days exceeded the 3SD threshold are shown in Table 7 and the daily difference from the baseline by age and region is given in Figure 56.

Note that as these data are by date of death with delay corrections, numbers are subject to change each week, particularly for more recent days.

The current week's model supersedes models presented in previous week.

No excess all-cause mortality was observed in week 38, overall, by age or sub-nationally. Week 362021 included a heatwave period of three days with high temperatures (mean Central England Temperature >20c) which may have contributed to the excess seen in this week. The excess mortality noted in week 332020 and week 292021 coincide with heat waves (Figure 56, 57 and Table 7).

Figure 56: Daily excess all-cause deaths in all ages, England, 1 January 2020 to 29 September 2021

${ }^{\wedge}$ Baseline calculation:
January to November 2020: same day in previous 5 years plus or minus 1 week with a linear trend.
December 2020 to February 2021: past 3 low flu years plus or minus 2 weeks, no trend.
March 2021 onwards: same baseline as 2020

* corrected for delay to registration from death

Other measures of excess mortality published by UKHSA are the Fingertips excess mortality in England report, which uses ONS death registration data; and the all-cause mortality surveillance report, which uses the EuroMOMO model to measure excess deaths.

Table 7: Excess all-cause deaths by (a) age group and (b) UKHSA centres, England
(a)

Age Group	Excess detected in week 38 2021?	Weeks in excess from week $\mathbf{1 0}$ to 53		
$\mathbf{2 0 2 0}$				Weeks in excess from week 01 to 38 2021
:---:				
All				
under 25				

(b)

UKHSA Centres	Excess detected in week 38 2021?	Weeks in excess from week $\mathbf{1 0}$ to $\mathbf{5 3} \mathbf{2 0 2 0}$	Weeks in excess from week 01 to 38 2021
East of England	x	14 to $19,52,53$	01 to 07
East Midlands	x	13 to 19,48	01 to 07
London	x	12 to $19,33,52$ to 53	01 to 06,36
North East	x	14 to 21	02 to 04
North West	x	13 to $19,33,42$ to 47	01 to $07,32,35$ to 36
South East	x	13 to $21,33,50$ to 53	01 to 07,36
South West	x	13 to 19,33	01 to $07,29,36$
West Midlands	x	13 to $20,45,48$	01 to $07,29,36$
Yorkshire and Humber	x	14 to $21,23,43,45$ to 50	02 to $04,32,35$ to 36

Figure 57: Daily excess all-cause deaths by (a) age group and (b) UKHSA centres, England, 1 March 2020 to 29 September 2021
(a)

(b)

Microbiological surveillance

SARS-CoV-2 variants

UKHSA conducts surveillance of SARS-CoV-2 variants. Further information including an overview of variants, information on new variants and detailed surveillance of particular variants of concern can be found on GOV.UK and in the latest technical briefing.

Antimicrobial susceptibility

Table 8 shows in the 12 weeks up to week 39 2021, the proportion of all lower respiratory tract isolates of Streptococcus pneumoniae, Haemophilus influenza, Staphylococcus aureus, MRSA and MSSA tested and susceptible to antibiotics. These organisms are the key causes of community-acquired pneumonia (CAP) and the choice of antibiotics reflects the British Thoracic Society empirical guidelines for management of CAP in adults.

Table 8: Antimicrobial susceptibility surveillance in lower respiratory tract

Organism	Antibiotic	Specimens tested (N)	Specimens susceptible (\%)
	Penicillin	1,259	83
	Macrolides	1,397	80
	Tetracycline	1,360	81
H. influenzae	Amoxicillin/ampicillin	5,555	57
	Co-amoxiclav	6,209	63
	Macrolides	1,680	6
	Tetracycline	6,313	97
S. aureus	Methicillin	4,396	93
	Macrolides	5,029	71
	Clindamycin	249	51
MSSA	Tetracycline	286	70
	Clindamycin	3,155	77
	Tetracycline	3,830	93

[^4]Data source: UKHSA's SGSS AMR module, please note that this is different to the data source used in the reports published between weeks 412020 to 052021 inclusive of the 2020 to 2021 influenza season when the SGSS CDR module was used instead due to a UKHSA SGSS AMR data infrastructure issue which has now been resolved. Therefore, the above results are not directly comparable to the results reported between weeks 412020 and 05 2021. The AMR module of SGSS was used during the 2019 to 2020 influenza season. There has been a reduction in the total number of bacterial positive lower respiratory tract clinical samples reported to UKHSA since mid-March 2020

COVID-19 sero-prevalence surveillance

The results from testing samples provided by healthy adult blood donors aged 17 years and older, supplied by the NHS Blood and Transplant (NHS BT collection) between weeks 352020 and week 382021 are summarised. This programme has previously involved testing approximately 1,000 donor samples from 2 different NHS regions each week. As of week 44 2020, approximately 250 samples from each geographic NHS region are tested each week. The COVID-19 vaccination campaign began on the 8 December 2020 (week 50) with a phased roll out by age and risk group.

In week 40, errors were identified and corrected in some historical sample records within week 30, first reported week 32. These records had resulted in some artificially high Roche N estimates being reported for the Midlands region between report weeks 32 and 39. There were also some minor variations to age estimates although these were unlikely to alter the interpretation of any trends. Data reported in this week's report have been corrected and the updated historical Roche N seropositivity for the Midlands can be seen in figure 59.

Seroprevalence in Adults aged 17 years and older (Blood Donors)

The results presented here are based on testing blood donor samples with Roche nucleoprotein (N) and Roche spike (S) antibody assays.

Nucleoprotein (Roche N) assays only detect post-infection antibodies, whereas spike (Roche S) assays will detect both post-infection antibodies and vaccine-induced antibodies. Thus, changes in seropositivity for the Roche N assay will reflect the effect of natural infection. Increases in seropositivity as measured by S antibody will reflect both infection and vaccination. Antibody responses to both targets will reflect infection or vaccination occurring at least 2 to 3 weeks previously given the time taken to generate a COVID-19 antibody response. Donors have been asked to defer donations for at least 7 full days post vaccination.

This report presents Roche N and Roche S seropositivity estimates on the same set of samples, using a 4-week rolling prevalence for national and age group estimates and a 12-week rolling prevalence for regional estimates. Seroprevalence estimates reported are based on seropositivity which are unadjusted for the sensitivity and specificity of the assays used.

National prevalence

Overall population weighted (by age group, sex and NHS region) antibody prevalence among blood donors aged 17 years and older in England was 19.0\% (95\% CI 17.9\%-20.1\%) using the Roche N assay and 98.0% ($95 \% \mathrm{Cl} 97.5 \%-98.4 \%$) using the Roche S assay for the period 30 August to 24 September (weeks 35 to 38 2021). 1,176 out of 5,351 were Roche N positive and

6,284 out of 6,391 samples were Roche S positive. This compares with 18.6% ($95 \% \mathrm{Cl} 17.7 \%$ 19.6%) Roche N seropositivity and 97.8% ($95 \% \mathrm{CI} 97.4 \%-98.1 \%$) Roche S seropositivity for the period of 2 August to 29 August 2021 (weeks 31 to 34 2021).

Seropositivity (weighted by region, age group and sex) varies over time. Figure 1 shows the overall 4-weekly rolling proportion seropositive over time for the Roche N and Roche S assays. Seropositivity estimates are plotted weekly using the mid-point of a rolling 4 -weekly period.

Regional prevalence of infection over time

Seropositivity (weighted by age group and sex) using the Roche N assay which detects infection only, varies by region (Figure 59).

Regional seropositivity estimates are plotted using the mid-point of a 12-weekly rolling period that reduces to 8 weekly in the most recent weeks to allow for a more representative current estimate of seropositivity. Previously, regional Roche N seropositivity was reported using a 4week rolling period; however, this was changed due to the difficulty interpreting regional trends when using a 4-weekly window, given the fluctuation in sampling locations each week for some regions.

In London, the 12-weekly rolling seropositivity increased from 24.4% ($95 \% \mathrm{Cl} 22.9 \%-25.9 \%$) in weeks 19 to 302021 to 25.9% (95% Cl $23.9 \%-28.0 \%$) in weeks 31 to 382021.
Data from the Midlands show the proportion seropositive increased from 15.5% ($95 \% \mathrm{Cl} 14.3 \%$ - 16.8\%) in weeks 19 to 302021 to 17.7% (95% CI 15.9\% - 19.8\%) in weeks 31 to 382021.

Seropositivity in the North East and Yorkshire region increased from 14.7\% (95\% CI 13.4\% 16.1%) in weeks 19 to 302021 to 19.9% (95% CI 18.2\% - 21.8\%) in weeks 31 to 382021.
Data from the North West show that seropositivity has increased from 21.1\% (95\% CI 19.5\% 22.7\%) in weeks 19 to 302021 to 22.3% (95% Cl 20.4\% - 24.4\%) in weeks 31 to 382021.

Seropositivity increased in the South East region from 11.8% ($95 \% \mathrm{Cl} 10.6 \%-13.1 \%$) in weeks 19 to 302021 to 14.5% (95% Cl 13.0\% - 16.1\%) in weeks 31 to 382021.

In the South West region, seropositivity increased from 8.8\% (95\% CI 7.7\%-10.0\%) in weeks 19 to 302021 to 12.5\% (95\% CI 11.1\% - 14.1\%) in weeks 31 to 382021.

In the East of England, seropositivity increased from 13.8\% (95\% CI 12.6\%-15.1\%) in weeks 19 to 302021 to 16.0% (95% CI 14.3\% - 17.8\%) in weeks 31 to 382021.

London has consistently seen the highest Roche N seropositivity with the lowest observed in the South West.

Prevalence by age group

Seropositivity estimates by age group using the Roche N and Roche S assays are presented below. Prevalence for all age groups for weeks 41 to 44 has been excluded due to a change in sampling strategy from week 44 which resulted in a small number of samples from older age groups in some regions which makes interpretation of trends for this period difficult.

Based on testing samples using the Roche N assay (Figure 60) as a marker of infection, the highest seropositivity has consistently been observed in those aged 17 to 29 and the lowest in those aged 70 to 84.

Increases in Roche N seropositivity have recently been observed in 30 to 39-year olds from 20.9% ($95 \% \mathrm{Cl} 18.8 \%-23.3 \%$) in weeks 31 to 34 to 24.5% ($95 \% \mathrm{Cl} 21.9 \%-27.3 \%$) in weeks 35 to 38 with small increases in individuals aged 60 to 69 from 11.3% ($95 \% \mathrm{Cl} 9.6 \%-13.2 \%$) in weeks 31 to 34 to 12.3% ($95 \% \mathrm{Cl} 10.4 \%-14.3 \%$) in weeks 35 to 38 . Prevalence in those aged 40 to 49 years old has decreased from $19.4 \%(95 \% \mathrm{Cl} 17.3 \%-21.7 \%)$ in weeks 31 to 34 to $18.4 \% ~(95 \%$ CI 16.3\% - 20.8\%) in weeks 35 to 38 . Similarly, decreases were also observed in 50 to 59 year olds from $19.1 \% ~(95 \% \mathrm{Cl} 17.3 \%-21.0 \%$) in weeks 31 to 34 to 17.7% ($95 \% \mathrm{Cl}$ $15.8 \%-19.8 \%$) in weeks 35 to 38 . Prevalence in individuals aged 17 to 29 has remained stable at $28.0 \% ~(95 \% \mathrm{Cl} 25.1 \%-31.0 \%$) in weeks 31 to 34 and $27.9 \% ~(95 \% \mathrm{Cl} 24.6 \%-31.4 \%$) in weeks 35 to 38 as well as in individuals aged 70 to 84 between $7.6 \% ~(95 \% \mathrm{CI} 5.6 \%-10.2 \%$) in weeks 31 to 34 and 7.5% (95% CI $5.4 \%-10.4 \%$) in weeks 35 to 38 . Decreases in Roche N seropositivity may be due to waning of the N antibody response over time; however it's important to note that confidence intervals overlap.

The sharp increases in seropositivity across all age groups using the Roche S assay reflect the presence of antibodies induced by vaccination (Figure 60).

Roche S seropositivity increased earliest in those aged 70 to 84 and since week 13 plateaued, reaching $99.2 \% ~(95 \% \mathrm{Cl} 97.3 \%-99.8 \%$) in weeks 35 to 382021 . Seropositivity in those aged 60 to 69 has also plateaued since week 16 reaching 98.7% ($95 \% \mathrm{Cl} 97.6 \%-99.3 \%$) in weeks 35 to 38 2021. A plateauing in Roche S seropositivity since week 19 has been observed in those aged 50 to 59 reaching $98.8 \% ~(95 \% ~ C I ~ 98.0 \% ~-~ 99.3 \%) ~ i n ~ w e e k s ~ 35 ~ t o ~ 38 ~ 2021 . ~ A ~$ plateauing in seropositivity has been observed in the 40 to 49 -year olds since week 23 reaching $98.6 \% ~(95 \% \mathrm{Cl} 97.7 \%-99.1 \%$) in weeks 35 to 38 . Plateauing has been observed in the 30 to $39-y e a r$ olds from week 28 reaching $97.4 \% ~(95 \% ~ C I ~ 96.1 \%-98.2 \%) ~ i n ~ w e e k s ~ 35 ~ t o ~ 38 . ~ A ~$ plateauing in seropositivity has recently been observed in the 17 to 29-year olds reaching 96.3\% (95\% CI 94.4\% - 97.5\%) in weeks 35 to 382021.

Seropositivity estimates for S antibody in blood donors are likely to be higher than would be expected in the general population and this probably reflects the fact that donors are more likely to be vaccinated. Seropositivity estimates for N antibody will underestimate the proportion of the population previously infected due to (i) blood donors are potentially less likely to be exposed to natural infection than age matched individuals in the general population (ii) waning of the N antibody response over time and (iii) recent observations from UKHSA surveillance data that N antibody titres appear to be lower in individuals who acquire infection following two doses of vaccination.

Vaccination has made an important contribution to the overall Roche S increases observed since the roll out of the vaccination programme, initially amongst individuals aged 50 years and above who were prioritised for vaccination as part of the phase 1 programme and more recently in younger adults as part of phase 2 of the vaccination programme. Roche S seropositivity is now $>95 \%$ across all adult age groups.

Figure 58: Overall 4-weekly rolling SARS-CoV-2 antibody seroprevalence (\% seropositive) in blood donors

Figure 59: 12-weekly rolling SARS-CoV-2 antibody seroprevalence (\% seropositive) in blood donors by region, using Roche \mathbf{N} test; error bars show 95\% confidence intervals

Figure 60: Population weighted 4-weekly rolling SARS-CoV-2 antibody seroprevalence (\% seropositive) in blood donors from the Roche S and Roche \mathbf{N} assays by a) age groups 17 to 29,30 to 39 and 40 to 49, b) age group 50 to 59,60 to 69 and 70 to 84
(a)

(b)

COVID-19 vaccination

COVID-19 vaccine uptake in England

COVID-19 vaccinations began in England on 8 December 2020 during week 502020 (week ending 13 December 2020). Cumulative data up to week 392021 (week ending 03 October 2021) was extracted from the National Immunisation Management Service (NIMS). The data presented this week is the provisional proportion of people in England who had received one dose and two doses of a COVID-19 vaccination by age group. The overall vaccine uptake in the population for dose 1 was 65.3% and 60.1% for dose 2. The breakdown by sex showed vaccine uptake in males was 62.8% and 67.6% in females for dose 1 . For dose 2 total uptake was 57.7% in males and 62.7% in females. The vaccine uptake rate in adults aged 18 and over was $80.0 \%(39,687,599 / 49,624,807)$ for dose 1 and $75.2 \%(37,303,465 / 49,624,807)$ for dose 2.

Table 9: Provisional cumulative COVID-19 vaccine uptake by age in England

NATIONAL	Vaccinated with at least 1 dose			Vaccinated with 2 doses		
	People in NIMS cohort	Number vaccinated	\% vaccine uptake	People in NIMS cohort	Number vaccinated	
Over 80	2,735,464	2,609,333	95.4	2,735,464	2,569,383	93.9
75 to under 80	2,064,780	1,973,333	95.6	2,064,780	1,953,439	94.6
70 to under 75	2,862,948	2,708,085	94.6	2,862,948	2,678,972	93.6
65 to under 70	2,887,467	2,670,380	92.5	2,887,467	2,630,993	91.1
60 to under 65	3,451,427	3,128,421	90.6	3,451,427	3,051,335	88.4
55 to under 60	4,081,331	3,627,915	88.9	4,081,331	3,523,129	86.3
50 to under 55	4,234,494	3,664,324	86.5	4,234,494	3,548,528	83.8
45 to under 50	4,013,822	3,295,108	82.1	4,013,822	3,150,649	78.5
40 to under 45	4,144,068	3,173,007	76.6	4,144,068	2,984,625	72.0
35 to under 40	4,536,755	3,225,887	71.1	4,536,755	2,963,984	65.3
30 to under 35	4,789,249	3,195,244	66.7	4,789,249	2,849,359	59.5
25 to under 30	4,499,303	2,893,922	64.3	4,499,303	2,497,264	55.5
20 to under 25	3,967,738	2,593,952	65.4	3,967,738	2,151,925	54.2
18 to under 20	1,355,961	928,688	68.5	1,355,961	749,880	55.3
16 to under 18	1,359,843	752,857	55.4	1,359,843	211,890	15.6
12 to under 16	2,851,400	257,442	9.0	2,851,400	6,495	0.2
Under 12	8,549,198	12,728	0.1	8,549,198	75	0.0
Total ${ }^{*}$	62,385,248	40,711,072	65.3	62,385,248	37,522,310	60.1

*Caution should be exercised when summing the regional or age figures as the sum of the regions will not equal the England total. This is due to individuals vaccinated in England who have a registered address in Scotland or Wales or where their address is unknown. There were also vaccinations where the individual had an unknown region and age group.

Data are provisional and subject to change following further validation checks. Any changes to historic figures will be reflected in the most recent publication. Please note that numbers published by UKHSA are for public health surveillance purposes only.

Figure 61: Cumulative weekly COVID-19 vaccine uptake by age in England for (a) Dose 1 and (b) Dose 2
(a)

(b)

Figure 62: Age-Sex pyramid for COVID-19 vaccine uptake by age in England for Dose 1

\square Male	\square Female
\square Change from previous week	■Change from previous week

Figure 63: Age-Sex pyramid for COVID-19 vaccine uptake by age in England for Dose 2

Figure 64: Cumulative weekly COVID-19 vaccine uptake by ethnicity in England in those aged 50 and over

From the 6 January 2021 (week 1 2021), the JCVI advises initially prioritising delivery of the first vaccine dose to maximise the public health impact in the short term and reduce the number of preventable deaths from COVID-19. See statement.

For UK COVID-19 daily counts of vaccinations, please see the Vaccinations' section of the UK COVID-19 dashboard.

For COVID-19 management information on the number of COVID-19 vaccinations provided by the NHS in England, please see the COVID-19 vaccinations webpage.

International update

Global COVID-19 update

Globally, up to 21 September 2021, a total of 235,165,681 cases of COVID-19 infection have been reported worldwide, including 4,806,585 COVID-19 related deaths.

For further information on the global COVID-19 situation please see the WHO COVID-19 situation reports.

Figure 65: Global map of cumulative COVID-19 cases

Weekly National Influenza and COVID-19 Report: week 40 report (up to week 39 data)

Figure 66: Global map of change in weekly COVID-19 case incidence rate per 100,000 population compared to the previous week

Global influenza update

Updated on 27 September 2021 (based on data up to 12 September 2021) (WHO website).

In the temperate zones of the northern hemisphere, influenza activity remained below baseline overall. In the temperate zone of the southern hemisphere, influenza activity was reported at inter-seasonal levels. Worldwide, influenza A and B viruses were detected in similar proportions.

In the Caribbean and Central American countries, sporadic influenza B virus detections were reported in some countries.

In tropical South America, one influenza A detection was reported in Peru this period.

In Western Africa, a few influenza A(H1N1)pdm09 virus detections were reported in Burkina Faso, Ghana and Mali. Ghana also reported influenza $A(H 3 N 2)$ detections. Senegal reported detections of influenza A viruses. SARI activity was high in Togo but no influenza detections were reported.

In Middle Africa, Cameroon reported a few influenza A(H1N1)pdm09 and one influenza $B /$ Victoria lineage detection.

In Eastern Africa, influenza $\mathrm{A}(\mathrm{H} 1 \mathrm{~N} 1) \mathrm{pdm09}$ detections were reported in Tanzania. Influenza A(H3N2) viruses were reported in Ethiopia, Kenya and Tanzania. Influenza B viruses (Victoria lineage for those where lineage was determined) were reported in Kenya and Mozambique. ILI rates remained elevated in Zambia.

In Southern Asia, influenza detections of predominantly $A(H 3 N 2)$ and influenza B/Victoria lineage viruses continued to be reported in India and Nepal, though showing a decreasing trend. In addition, a few influenza $\mathrm{A}(\mathrm{H} 1 \mathrm{~N} 1)$ pdm09 detections were reported in India. Sporadic detections of influenza A(H3N2) viruses were reported in Pakistan.

In South East Asia, a few influenza A(H3N2) virus detections were reported in the Philippines in recent weeks. In Lao People's Democratic Republic, ILI and SARI levels remained below the average of the previous three years.

In the countries of North America, influenza activity indicators, including the percent of tests positive for influenza and influenza like illness (ILI) activity, were at low levels with sporadic detections of influenza A and B viruses.

In Europe, influenza activity remained at inter-seasonal levels with detections of influenza A (predominated $A(H 3 N 2)$ for those specimens that were subtyped) and B viruses reported in some countries.

In Central Asia, no influenza detections were reported across reporting countries in this period.

In Northern Africa, no reports were received for this reporting period.
In Western Asia, Lebanon, Oman and Qatar reported influenza A(H3N2) virus detections.

In East Asia, influenza illness indicators and influenza activity remained low.

The WHO GISRS laboratories tested more than 275,940 specimens during the period 30 August to 12 September 2021. A total of 1884 specimens were positive for influenza viruses, of which 808 (42.9\%) were typed as influenza A and 1076 (57.1\%) as influenza B. Of the sub-typed influenza A viruses, 54 (7.3%) were influenza $\mathrm{A}(\mathrm{H} 1 \mathrm{~N} 1) \mathrm{pdm} 09$ and 686 (92.7\%) were influenza A(H3N2). Of the characterized B viruses, 973 (99.8\%) belonged to the B-Victoria lineage and $2(0.2 \%)$ to the $B-Y a m a g a t a$ lineage.

Influenza in Europe

Updated on 23 September 2021 (Joint ECDC-WHO Europe Influenza weekly update)

For weeks 33 to 36 of 2021, influenza activity remained at inter-seasonal levels throughout Europe.

For week 36 2021, of 424 sentinel specimens tested for influenza viruses, none were positive. Since the start of the 2020 to 2021 season, of 50,578 sentinel-source specimens tested for influenza viruses, 47 were positive.

Influenza in the Northern Hemisphere

For further information on influenza in the United States of America please see the Centre for Disease Control weekly influenza surveillance report.

For further information on influenza in Canada please see the Public Health Agency weekly influenza report.

Other respiratory viruses

Avian influenza

Latest update on 08 August 2021 (WHO website).
Since the previous update on 22 June 2021, one human case of infection with an avian influenza $\mathrm{A}(\mathrm{H} 5 \mathrm{~N} 1)$ virus and six human cases of infection with avian influenza A(H5N6) viruses were reported officially.

Influenza A(H5) viruses:
According to reports received by the World Organisation for Animal Health (OIE), various influenza $\mathrm{A}(\mathrm{H} 5)$ subtypes continue to be detected in birds in Africa, Europe and Asia.

Influenza A(H7N9) viruses:
There have been no publicly available reports from animal health authorities in China or other countries on influenza $A(H 7 N 9)$ virus detections in animals in recent months.
Overall, the risk assessments have not changed.

Middle East respiratory syndrome coronavirus (MERS-CoV)

Latest update on 17 August 2021 (WHO website).
Up to 17 August 2021, a total of 5 cases of Middle East respiratory syndrome coronavirus, MERS-CoV, (three imported and 2 linked cases) have been confirmed in the UK through the on-going surveillance since September 2012.

On 2 February 2021, the National IHR Focal Point of the United Arab Emirates (UAE) notified WHO of one laboratory-confirmed case of MERS-CoV (WHO website).

Between 12 March and 31 July 2021, the National IHR Focal Point of Saudi Arabia reported four additional cases of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) infection, including one associated death. (WHO website).

From 2012 through 31 July 2021, a total of 2,578 laboratory-confirmed cases of MERSCoV and 888 associated deaths were reported globally to WHO under the International Health Regulations (IHR 2005).

Further information on management and guidance of possible cases is available online. The latest ECDC MERS-CoV risk assessment can be found here, where it is highlighted that risk of widespread transmission of MERS-CoV remains very low.

Related links

Previous national COVID-19 reports
Previous weekly influenza reports
Annual influenza reports
COVID-19 vaccine surveillance reports
Previous COVID-19 vaccine surveillance reports
PHE monitoring of the effectiveness of COVID-19 vaccination
Investigation of SARS-CoV-2 variants of concern: technical briefings

UKHSA has delegated authority, on behalf of the Secretary of State, to process Patient Confidential Data under Regulation 3 The Health Service (Control of Patient Information) Regulations 2002

Regulation 3 makes provision for the processing of patient information for the recognition, control and prevention of communicable disease and other risks to public health.

About the UK Health Security Agency

The UK Health Security Agency is an executive agency, sponsored by the Department of Health and Social Care.
www.UKHSA.gov.uk
© Crown copyright 2021
Prepared by: The Immunisation and Countermeasures Division
For queries relating to this document, please contact: respscidsc@phe.gov.uk
Published: 7 October 2021

OGL

You may re-use this information (excluding logos) free of charge in any format or medium, under the terms of the Open Government Licence v3.0. To view this licence, visit OGL. Where we have identified any third party copyright information you will need to obtain permission from the copyright holders concerned.

Corporate member of Plain English Campaign Committed to cleare communication

339

UKHSA supports the UN
Sustainable Development Goals
SUSTAINABLE
DEVELOPMENT

[^0]: *Excludes data from Wales

[^1]: * SARI Watch data are provisional

[^2]: * Please note that in previous seasons, RSV SARI Watch surveillance has run from week 40 to week 20. In the 2020 to 2021 season this was extended to run throughout the year, to allow for surveillance of out-of-season trends

[^3]: *The data are shown by the week of death. This gives the most accurate analysis of this time progression, however, for the most recent weeks' numbers more deaths are expected to be registered therefore this should be interpreted with caution

[^4]: * Macrolides = erythromycin, azithromycin and clarithromycin

