Skip to main content

Advertisement

Log in

Neutrophil Extracellular Traps: A Walk on the Wild Side of Exercise Immunology

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Intense exercise evokes a rapid and transient increase in circulating cell-free DNA (cf-DNA), a phenomenon that is commonly observed in a variety of acute and chronic inflammatory conditions. While the potential value of cf-DNA for the prediction of disease outcome and therapeutic response is well documented, the release mechanisms and biological relevance of cf-DNA have long remained enigmatic. The discovery of neutrophil extracellular traps (NETs) provided a novel mechanistic explanation for increased cf-DNA levels. Now there is increasing evidence that NETs may contribute to cf-DNA in diverse infectious, non-infectious and autoinflammatory conditions, as well as in response to acute exercise. NETs have now been firmly established as a fundamental immune mechanism used by neutrophils to respond to infection and tissue injury. On the other side, aberrant formation of NETs appears to be a driving force in the pathogenesis of autoimmunity and cardiovascular disease. Thus, the emergence of NETs in the ‘exercising vasculature’ raises important questions considering beneficial effects, as well as occasional adverse effects, of exercise on immune homeostasis. This review gives an overview of the current state of research into the mechanisms of how NETs are released, contribute to host defence and participate in inflammatory disorders. We discuss the impact of exercise-induced NETs, considering a potentially beneficial role in the prevention of lifestyle-related diseases, as well as putative detrimental effects that may arise in elite sports. Finally, we propose that exercise-induced cf-DNA responses could be exploited for diagnostic/prognostic purposes to identify individuals who are at increased risk of cardiovascular events or autoimmunity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Buttar HS, Li T, Ravi N. Prevention of cardiovascular diseases: role of exercise, dietary interventions, obesity and smoking cessation. Exp Clin Cardiol. 2005;10:229–49.

    PubMed Central  CAS  PubMed  Google Scholar 

  2. Hunter DJ, Reddy KS. Noncommunicable diseases. N Engl J Med. 2013;369:1336–43.

    CAS  PubMed  Google Scholar 

  3. Lee IM, Shiroma EJ, Lobelo F, et al. Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy. Lancet. 2012;380:219–29.

    PubMed Central  PubMed  Google Scholar 

  4. Naci H, Ioannidis JP. Comparative effectiveness of exercise and drug interventions on mortality outcomes: metaepidemiological study. BMJ. 2013;347:f5577.

    PubMed Central  PubMed  Google Scholar 

  5. Pedersen BK, Saltin B. Evidence for prescribing exercise as therapy in chronic disease. Scand J Med Sci Sports. 2006;16(Suppl 1):3–63.

    PubMed  Google Scholar 

  6. Slade SC, Keating JL. Exercise prescription: a case for standardised reporting. Br J Sports Med. 2012;46:1110–3.

    PubMed  Google Scholar 

  7. Walsh NP, Gleeson M, Pyne DB, et al. Position statement. Part two: maintaining immune health. Exerc Immunol Rev. 2011;17:64–103.

    PubMed  Google Scholar 

  8. Walsh NP, Gleeson M, Shephard RJ, et al. Position statement. Part one: immune function and exercise. Exerc Immunol Rev. 2011;17:6–63.

    PubMed  Google Scholar 

  9. Niess AM, Sommer M, Schneider M, et al. Physical exercise-induced expression of inducible nitric oxide synthase and heme oxygenase-1 in human leukocytes: effects of RRR-alpha-tocopherol supplementation. Antioxid Redox Signal. 2000;2:113–26.

    CAS  PubMed  Google Scholar 

  10. Fehrenbach E, Schneider ME. Trauma-induced systemic inflammatory response versus exercise-induced immunomodulatory effects. Sports Med. 2006;36:373–84.

    PubMed  Google Scholar 

  11. Breitbach S, Tug S, Simon P. Circulating cell-free DNA: an up-coming molecular marker in exercise physiology. Sports Med. 2012;42:565–86.

    PubMed  Google Scholar 

  12. Holdenrieder S, Stieber P. Clinical use of circulating nucleosomes. Crit Rev Clin Lab Sci. 2009;46:1–24.

    CAS  PubMed  Google Scholar 

  13. Swarup V, Rajeswari MR. Circulating (cell-free) nucleic acids—a promising, non-invasive tool for early detection of several human diseases. FEBS Lett. 2007;581:795–9.

    CAS  PubMed  Google Scholar 

  14. Atamaniuk J, Vidotto C, Tschan H, et al. Increased concentrations of cell-free plasma DNA after exhaustive exercise. Clin Chem. 2004;50:1668–70.

    CAS  PubMed  Google Scholar 

  15. Beiter T, Fragasso A, Hudemann J, et al. Short-term treadmill running as a model for studying cell-free DNA kinetics in vivo. Clin Chem. 2011;57:633–6.

    CAS  PubMed  Google Scholar 

  16. Fatouros IG, Destouni A, Margonis K, et al. Cell-free plasma DNA as a novel marker of aseptic inflammation severity related to exercise overtraining. Clin Chem. 2006;52:1820–4.

    CAS  PubMed  Google Scholar 

  17. Brinkmann V, Reichard U, Goosmann C, et al. Neutrophil extracellular traps kill bacteria. Science. 2004;303:1532–5.

    CAS  PubMed  Google Scholar 

  18. Brinkmann V, Zychlinsky A. Neutrophil extracellular traps: is immunity the second function of chromatin? J Cell Biol. 2012;198:773–83.

    PubMed Central  CAS  PubMed  Google Scholar 

  19. Kaplan MJ, Radic M. Neutrophil extracellular traps: double-edged swords of innate immunity. J Immunol. 2012;189:2689–95.

    PubMed Central  CAS  PubMed  Google Scholar 

  20. Demers M, Wagner DD. Neutrophil extracellular traps: a new link to cancer-associated thrombosis and potential implications for tumor progression. Oncoimmunology. 2013;2:e22946.

    PubMed Central  PubMed  Google Scholar 

  21. Beiter T, Fragasso A, Hudemann J, et al. Neutrophils release extracellular DNA traps in response to exercise. J Appl Physiol. 1985;2014(117):325–33.

    Google Scholar 

  22. Mandel P, Metais P. Les acides nucleiques du plasma sanguin chez l’homme. Acad Sci Paris. 1948;142:241–3.

    CAS  Google Scholar 

  23. Beck J, Urnovitz HB, Riggert J, et al. Profile of the circulating DNA in apparently healthy individuals. Clin Chem. 2009;55:730–8.

    CAS  PubMed  Google Scholar 

  24. Chan KC, Hui AB, Wong N, et al. Investigation of the genomic representation of plasma DNA in pregnant women by comparative genomic hybridization analysis: a feasibility study. Clin Chem. 2005;51:2398–401.

    CAS  PubMed  Google Scholar 

  25. Leon SA, Shapiro B, Sklaroff DM, et al. Free DNA in the serum of cancer patients and the effect of therapy. Cancer Res. 1977;37:646–50.

    CAS  PubMed  Google Scholar 

  26. Fleischhacker M, Schmidt B. Circulating nucleic acids (CNAs) and cancer—a survey. Biochim Biophys Acta. 2007;1775:181–232.

    CAS  PubMed  Google Scholar 

  27. Holdenrieder S, Nagel D, Schalhorn A, et al. Clinical relevance of circulating nucleosomes in cancer. Ann NY Acad Sci. 2008;1137:180–9.

    CAS  PubMed  Google Scholar 

  28. Johnson PJ, Lo YM. Plasma nucleic acids in the diagnosis and management of malignant disease. Clin Chem. 2002;48:1186–93.

    CAS  PubMed  Google Scholar 

  29. Tan EM, Schur PH, Carr RI, et al. Deoxybonucleic acid (DNA) and antibodies to DNA in the serum of patients with systemic lupus erythematosus. J Clin Invest. 1966;45:1732–40.

    PubMed Central  CAS  PubMed  Google Scholar 

  30. Butt AN, Swaminathan R. Overview of circulating nucleic acids in plasma/serum. Ann NY Acad Sci. 2008;1137:236–42.

    CAS  PubMed  Google Scholar 

  31. Atamaniuk J, Stuhlmeier KM, Vidotto C, et al. Effects of ultra-marathon on circulating DNA and mRNA expression of pro- and anti-apoptotic genes in mononuclear cells. Eur J Appl Physiol. 2008;104:711–7.

    CAS  PubMed  Google Scholar 

  32. Fatouros IG, Jamurtas AZ, Nikolaidis MG, et al. Time of sampling is crucial for measurement of cell-free plasma DNA following acute aseptic inflammation induced by exercise. Clin Biochem. 2010;43:1368–70.

    CAS  PubMed  Google Scholar 

  33. Breitbach S, Sterzing B, Magallanes C, et al. Direct measurement of cell-free DNA from serially collected capillary plasma during incremental exercise. J Appl Physiol. 1985;2014(117):119–30.

    Google Scholar 

  34. Atamaniuk J, Vidotto C, Kinzlbauer M, et al. Cell-free plasma DNA and purine nucleotide degradation markers following weightlifting exercise. Eur J Appl Physiol. 2010;110:695–701.

    CAS  PubMed  Google Scholar 

  35. Sorenson GD, Pribish DM, Valone FH, et al. Soluble normal and mutated DNA sequences from single-copy genes in human blood. Cancer Epidemiol Biomarkers Prev. 1994;3:67–71.

    CAS  PubMed  Google Scholar 

  36. Leary RJ, Sausen M, Kinde I, et al. Detection of chromosomal alterations in the circulation of cancer patients with whole-genome sequencing. Sci Transl Med. 2012;4:162ra154.

    PubMed Central  PubMed  Google Scholar 

  37. Narayan A, Carriero NJ, Gettinger SN, et al. Ultrasensitive measurement of hotspot mutations in tumor DNA in blood using error-suppressed multiplexed deep sequencing. Cancer Res. 2012;72:3492–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  38. Diehl F, Li M, Dressman D, et al. Detection and quantification of mutations in the plasma of patients with colorectal tumors. Proc Natl Acad Sci USA. 2005;102:16368–73.

    PubMed Central  CAS  PubMed  Google Scholar 

  39. Jahr S, Hentze H, Englisch S, et al. DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res. 2001;61:1659–65.

    CAS  PubMed  Google Scholar 

  40. Mouliere F, El MS, Gongora C, et al. Circulating cell-free DNA from colorectal cancer patients may reveal high KRAS or BRAF mutation load. Transl Oncol. 2013;6:319–28.

    PubMed Central  PubMed  Google Scholar 

  41. Garcia-Olmo DC, Picazo MG, Toboso I, et al. Quantitation of cell-free DNA and RNA in plasma during tumor progression in rats. Mol Cancer. 2013;12:8.

    PubMed Central  CAS  PubMed  Google Scholar 

  42. Thierry AR, Mouliere F, Gongora C, et al. Origin and quantification of circulating DNA in mice with human colorectal cancer xenografts. Nucleic Acids Res. 2010;38:6159–75.

    PubMed Central  CAS  PubMed  Google Scholar 

  43. Lui YY, Chik KW, Chiu RW, et al. Predominant hematopoietic origin of cell-free DNA in plasma and serum after sex-mismatched bone marrow transplantation. Clin Chem. 2002;48:421–7.

    CAS  PubMed  Google Scholar 

  44. Zheng YW, Chan KC, Sun H, et al. Nonhematopoietically derived DNA is shorter than hematopoietically derived DNA in plasma: a transplantation model. Clin Chem. 2012;58:549–58.

    CAS  PubMed  Google Scholar 

  45. Baker VS, Imade GE, Molta NB, et al. Cytokine-associated neutrophil extracellular traps and antinuclear antibodies in Plasmodium falciparum infected children under six years of age. Malar J. 2008;7:41.

    PubMed Central  PubMed  Google Scholar 

  46. Hamaguchi S, Hirose T, Akeda Y, et al. Identification of neutrophil extracellular traps in the blood of patients with systemic inflammatory response syndrome. J Int Med Res. 2013;41:162–8.

    PubMed  Google Scholar 

  47. Fuchs TA, Alvarez JJ, Martinod K, et al. Neutrophils release extracellular DNA traps during storage of red blood cell units. Transfusion. 2013;53(12):3210–6.

  48. Urban CF, Ermert D, Schmid M, et al. Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albicans. PLoS Pathog. 2009;5:e1000639.

    PubMed Central  PubMed  Google Scholar 

  49. Fuchs TA, Kremer Hovinga JA, Schatzberg D, et al. Circulating DNA and myeloperoxidase indicate disease activity in patients with thrombotic microangiopathies. Blood. 2012;120:1157–64.

    PubMed Central  CAS  PubMed  Google Scholar 

  50. Diaz JA, Fuchs TA, Jackson TO, et al. Plasma DNA is elevated in patients with deep vein thrombosis. J Vasc Surg Venous Lymphat Disord. 2013;. doi:10.1016/j.jvsv.2012.12.002.

    PubMed Central  PubMed  Google Scholar 

  51. Kessenbrock K, Krumbholz M, Schonermarck U, et al. Netting neutrophils in autoimmune small-vessel vasculitis. Nat Med. 2009;15:623–5.

    PubMed Central  CAS  PubMed  Google Scholar 

  52. Borissoff JI, Joosen IA, Versteylen MO, et al. Elevated levels of circulating DNA and chromatin are independently associated with severe coronary atherosclerosis and a prothrombotic state. Arterioscler Thromb Vasc Biol. 2013;33:2032–40.

    PubMed Central  CAS  PubMed  Google Scholar 

  53. Clark SR, Ma AC, Tavener SA, et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat Med. 2007;13:463–9.

    CAS  PubMed  Google Scholar 

  54. McDonald B, Urrutia R, Yipp BG, et al. Intravascular neutrophil extracellular traps capture bacteria from the bloodstream during sepsis. Cell Host Microbe. 2012;12:324–33.

    CAS  PubMed  Google Scholar 

  55. de Boer OJ, Li X, Teeling P, et al. Neutrophils, neutrophil extracellular traps and interleukin-17 associate with the organisation of thrombi in acute myocardial infarction. Thromb Haemost. 2013;109:290–7.

    PubMed  Google Scholar 

  56. Gupta A, Hasler P, Gebhardt S, et al. Occurrence of neutrophil extracellular DNA traps (NETs) in pre-eclampsia: a link with elevated levels of cell-free DNA? Ann NY Acad Sci. 2006;1075:118–22.

    CAS  PubMed  Google Scholar 

  57. Dworski R, Simon HU, Hoskins A, et al. Eosinophil and neutrophil extracellular DNA traps in human allergic asthmatic airways. J Allergy Clin Immunol. 2011;127:1260–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  58. Dwyer M, Shan Q, D’Ortona S, et al. Cystic fibrosis sputum DNA has NETosis characteristics and neutrophil extracellular trap release is regulated by macrophage migration-inhibitory factor. J Innate Immun. 2014;6(6):765–79. doi:10.1159/000363242.

  59. Demers M, Krause DS, Schatzberg D, et al. Cancers predispose neutrophils to release extracellular DNA traps that contribute to cancer-associated thrombosis. Proc Natl Acad Sci USA. 2012;109:13076–81.

    PubMed Central  CAS  PubMed  Google Scholar 

  60. Villanueva E, Yalavarthi S, Berthier CC, et al. Netting neutrophils induce endothelial damage, infiltrate tissues, and expose immunostimulatory molecules in systemic lupus erythematosus. J Immunol. 2011;187:538–52.

    PubMed Central  CAS  PubMed  Google Scholar 

  61. Lin AM, Rubin CJ, Khandpur R, et al. Mast cells and neutrophils release IL-17 through extracellular trap formation in psoriasis. J Immunol. 2011;187:490–500.

    PubMed Central  CAS  PubMed  Google Scholar 

  62. Pisetsky DS, Gauley J, Ullal AJ. Microparticles as a source of extracellular DNA. Immunol Res. 2011;49:227–34.

    PubMed Central  CAS  PubMed  Google Scholar 

  63. Thakur BK, Zhang H, Becker A, et al. Double-stranded DNA in exosomes: a novel biomarker in cancer detection. Cell Res. 2014;24:766–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  64. Mocsai A. Diverse novel functions of neutrophils in immunity, inflammation, and beyond. J Exp Med. 2013;210:1283–99.

    PubMed Central  CAS  PubMed  Google Scholar 

  65. Nathan C. Neutrophils and immunity: challenges and opportunities. Nat Rev Immunol. 2006;6:173–82.

    CAS  PubMed  Google Scholar 

  66. Lockhart NC, Brooks SV. Neutrophil accumulation following passive stretches contributes to adaptations that reduce contraction-induced skeletal muscle injury in mice. J Appl Physiol. 1985;2008(104):1109–15.

    Google Scholar 

  67. Nunes-Silva A, Bernardes PT, Rezende BM, et al. Treadmill exercise induces neutrophil recruitment into muscle tissue in a reactive oxygen species-dependent manner. An intravital microscopy study. PLoS One. 2014;9:e96464.

    PubMed Central  PubMed  Google Scholar 

  68. Schneider BS, Tiidus PM. Neutrophil infiltration in exercise-injured skeletal muscle: how do we resolve the controversy? Sports Med. 2007;37:837–56.

    PubMed  Google Scholar 

  69. Pizza FX, Peterson JM, Baas JH, et al. Neutrophils contribute to muscle injury and impair its resolution after lengthening contractions in mice. J Physiol. 2005;562:899–913.

    PubMed Central  CAS  PubMed  Google Scholar 

  70. Morton J, Coles B, Wright K, et al. Circulating neutrophils maintain physiological blood pressure by suppressing bacteria and IFNgamma-dependent iNOS expression in the vasculature of healthy mice. Blood. 2008;111:5187–94.

    PubMed Central  CAS  PubMed  Google Scholar 

  71. Scapini P, Cassatella MA. Social networking of human neutrophils within the immune system. Blood. 2014;124:710–9.

    CAS  PubMed  Google Scholar 

  72. Fuchs TA, Abed U, Goosmann C, et al. Novel cell death program leads to neutrophil extracellular traps. J Cell Biol. 2007;176:231–41.

    PubMed Central  CAS  PubMed  Google Scholar 

  73. Hakkim A, Fuchs TA, Martinez NE, et al. Activation of the Raf-MEK-ERK pathway is required for neutrophil extracellular trap formation. Nat Chem Biol. 2011;7:75–7.

    CAS  PubMed  Google Scholar 

  74. Wang Y, Li M, Stadler S, et al. Histone hypercitrullination mediates chromatin decondensation and neutrophil extracellular trap formation. J Cell Biol. 2009;184:205–13.

    PubMed Central  CAS  PubMed  Google Scholar 

  75. Brinkmann V, Zychlinsky A. Beneficial suicide: why neutrophils die to make NETs. Nat Rev Microbiol. 2007;5:577–82.

    CAS  PubMed  Google Scholar 

  76. Remijsen Q, Vanden BT, Wirawan E, et al. Neutrophil extracellular trap cell death requires both autophagy and superoxide generation. Cell Res. 2011;21:290–304.

    PubMed Central  CAS  PubMed  Google Scholar 

  77. Steinberg BE, Grinstein S. Unconventional roles of the NADPH oxidase: signaling, ion homeostasis, and cell death. Sci STKE. 2007;2007:e11.

    Google Scholar 

  78. Gehrke N, Mertens C, Zillinger T, et al. Oxidative damage of DNA confers resistance to cytosolic nuclease TREX1 degradation and potentiates STING-dependent immune sensing. Immunity. 2013;39:482–95.

    CAS  PubMed  Google Scholar 

  79. Neubauer O, Reichhold S, Nersesyan A, et al. Exercise-induced DNA damage: is there a relationship with inflammatory responses? Exerc Immunol Rev. 2008;14:51–72.

    PubMed  Google Scholar 

  80. Niess AM, Baumann M, Roecker K, et al. Effects of intensive endurance exercise on DNA damage in leucocytes. J Sports Med Phys Fitness. 1998;38:111–5.

    CAS  PubMed  Google Scholar 

  81. Peake J, Suzuki K. Neutrophil activation, antioxidant supplements and exercise-induced oxidative stress. Exerc Immunol Rev. 2004;10:129–41.

    PubMed  Google Scholar 

  82. Kirchner T, Hermann E, Moller S, et al. Flavonoids and 5-aminosalicylic acid inhibit the formation of neutrophil extracellular traps. Mediators Inflamm. 2013;2013:710239.

    PubMed Central  PubMed  Google Scholar 

  83. Ermert D, Urban CF, Laube B, et al. Mouse neutrophil extracellular traps in microbial infections. J Innate Immun. 2009;1:181–93.

    CAS  PubMed  Google Scholar 

  84. Wardini AB, Guimaraes-Costa AB, Nascimento MT, et al. Characterization of neutrophil extracellular traps in cats naturally infected with feline leukemia virus. J Gen Virol. 2010;91:259–64.

    CAS  PubMed  Google Scholar 

  85. Palic D, Ostojic J, Andreasen CB, et al. Fish cast NETs: neutrophil extracellular traps are released from fish neutrophils. Dev Comp Immunol. 2007;31:805–16.

    CAS  PubMed  Google Scholar 

  86. Chuammitri P, Ostojic J, Andreasen CB, et al. Chicken heterophil extracellular traps (HETs): novel defense mechanism of chicken heterophils. Vet Immunol Immunopathol. 2009;129:126–31.

    CAS  PubMed  Google Scholar 

  87. Altincicek B, Stotzel S, Wygrecka M, et al. Host-derived extracellular nucleic acids enhance innate immune responses, induce coagulation, and prolong survival upon infection in insects. J Immunol. 2008;181:2705–12.

    CAS  PubMed  Google Scholar 

  88. Hawes MC, Curlango-Rivera G, Wen F, et al. Extracellular DNA: the tip of root defenses? Plant Sci. 2011;180:741–5.

    CAS  PubMed  Google Scholar 

  89. Saitoh T, Komano J, Saitoh Y, et al. Neutrophil extracellular traps mediate a host defense response to human immunodeficiency virus-1. Cell Host Microbe. 2012;12:109–16.

    CAS  PubMed  Google Scholar 

  90. Guimaraes-Costa AB, Nascimento MT, Froment GS, et al. Leishmania amazonensis promastigotes induce and are killed by neutrophil extracellular traps. Proc Natl Acad Sci USA. 2009;106:6748–53.

    PubMed Central  CAS  PubMed  Google Scholar 

  91. Douda DN, Jackson R, Grasemann H, et al. Innate immune collectin surfactant protein D simultaneously binds both neutrophil extracellular traps and carbohydrate ligands and promotes bacterial trapping. J Immunol. 2011;187:1856–65.

    CAS  PubMed  Google Scholar 

  92. Keshari RS, Jyoti A, Dubey M, et al. Cytokines induced neutrophil extracellular traps formation: implication for the inflammatory disease condition. PLoS One. 2012;7:e48111.

    PubMed Central  CAS  PubMed  Google Scholar 

  93. Gupta AK, Joshi MB, Philippova M, et al. Activated endothelial cells induce neutrophil extracellular traps and are susceptible to NETosis-mediated cell death. FEBS Lett. 2010;584:3193–7.

    CAS  PubMed  Google Scholar 

  94. Khandpur R, Carmona-Rivera C, Vivekanandan-Giri A, et al. NETs are a source of citrullinated autoantigens and stimulate inflammatory responses in rheumatoid arthritis. Sci Transl Med. 2013;5:178ra40.

    PubMed Central  PubMed  Google Scholar 

  95. Martinelli S, Urosevic M, Daryadel A, et al. Induction of genes mediating interferon-dependent extracellular trap formation during neutrophil differentiation. J Biol Chem. 2004;279:44123–32.

    CAS  PubMed  Google Scholar 

  96. Nishinaka Y, Arai T, Adachi S, et al. Singlet oxygen is essential for neutrophil extracellular trap formation. Biochem Biophys Res Commun. 2011;413:75–9.

    CAS  PubMed  Google Scholar 

  97. Engelmann B, Massberg S. Thrombosis as an intravascular effector of innate immunity. Nat Rev Immunol. 2013;13:34–45.

    CAS  PubMed  Google Scholar 

  98. Cooper PR, Palmer LJ, Chapple IL. Neutrophil extracellular traps as a new paradigm in innate immunity: friend or foe? Periodontol. 2000;2013(63):165–97.

    Google Scholar 

  99. Lande R, Ganguly D, Facchinetti V, et al. Neutrophils activate plasmacytoid dendritic cells by releasing self-DNA-peptide complexes in systemic lupus erythematosus. Sci Transl Med. 2011;3:73ra19.

    PubMed Central  PubMed  Google Scholar 

  100. Tillack K, Breiden P, Martin R, et al. T lymphocyte priming by neutrophil extracellular traps links innate and adaptive immune responses. J Immunol. 2012;188:3150–9.

    CAS  PubMed  Google Scholar 

  101. Parker H, Dragunow M, Hampton MB, et al. Requirements for NADPH oxidase and myeloperoxidase in neutrophil extracellular trap formation differ depending on the stimulus. J Leukoc Biol. 2012;92:841–9.

    CAS  PubMed  Google Scholar 

  102. Peschel A, Hartl D. Anuclear neutrophils keep hunting. Nat Med. 2012;18:1336–8.

    CAS  PubMed  Google Scholar 

  103. Pilsczek FH, Salina D, Poon KK, et al. A novel mechanism of rapid nuclear neutrophil extracellular trap formation in response to Staphylococcus aureus. J Immunol. 2010;185:7413–25.

    CAS  PubMed  Google Scholar 

  104. Remijsen Q, Kuijpers TW, Wirawan E, et al. Dying for a cause: NETosis, mechanisms behind an antimicrobial cell death modality. Cell Death Differ. 2011;18:581–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  105. Simon D, Simon HU, Yousefi S. Extracellular DNA traps in allergic, infectious, and autoimmune diseases. Allergy. 2013;68:409–16.

    CAS  PubMed  Google Scholar 

  106. Yipp BG, Petri B, Salina D, et al. Infection-induced NETosis is a dynamic process involving neutrophil multitasking in vivo. Nat Med. 2012;18:1386–93.

    CAS  PubMed  Google Scholar 

  107. Kolaczkowska E, Kubes P. Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol. 2013;13:159–75.

    CAS  PubMed  Google Scholar 

  108. Phillipson M, Kubes P. The neutrophil in vascular inflammation. Nat Med. 2011;17:1381–90.

    CAS  PubMed  Google Scholar 

  109. Massberg S, Grahl L, von Bruehl ML, et al. Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nat Med. 2010;16:887–96.

    CAS  PubMed  Google Scholar 

  110. Jenne CN, Urrutia R, Kubes P. Platelets: bridging hemostasis, inflammation, and immunity. Int J Lab Hematol. 2013;35:254–61.

    CAS  PubMed  Google Scholar 

  111. Borissoff JI, ten Cate H. From neutrophil extracellular traps release to thrombosis: an overshooting host-defense mechanism? J Thromb Haemost. 2011;9:1791–4.

    CAS  PubMed  Google Scholar 

  112. Fuchs TA, Brill A, Duerschmied D, et al. Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci USA. 2010;107:15880–5.

    PubMed Central  CAS  PubMed  Google Scholar 

  113. Fuchs TA, Brill A, Wagner DD. Neutrophil extracellular trap (NET) impact on deep vein thrombosis. Arterioscler Thromb Vasc Biol. 2012;32:1777–83.

    PubMed Central  CAS  PubMed  Google Scholar 

  114. Brill A, Fuchs TA, Savchenko AS, et al. Neutrophil extracellular traps promote deep vein thrombosis in mice. J Thromb Haemost. 2012;10:136–44.

    PubMed Central  CAS  PubMed  Google Scholar 

  115. von Bruhl ML, Stark K, Steinhart A, et al. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J Exp Med. 2012;209:819–35.

    Google Scholar 

  116. Oehmcke S, Morgelin M, Herwald H. Activation of the human contact system on neutrophil extracellular traps. J Innate Immun. 2009;1:225–30.

    PubMed  Google Scholar 

  117. Morrissey JH, Choi SH, Smith SA. Polyphosphate: an ancient molecule that links platelets, coagulation, and inflammation. Blood. 2012;119:5972–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  118. Semeraro F, Ammollo CT, Morrissey JH, et al. Extracellular histones promote thrombin generation through platelet-dependent mechanisms: involvement of platelet TLR2 and TLR4. Blood. 2011;118:1952–61.

    PubMed Central  CAS  PubMed  Google Scholar 

  119. Ammollo CT, Semeraro F, Xu J, et al. Extracellular histones increase plasma thrombin generation by impairing thrombomodulin-dependent protein C activation. J Thromb Haemost. 2011;9:1795–803.

    CAS  PubMed  Google Scholar 

  120. Kambas K, Mitroulis I, Apostolidou E, et al. Autophagy mediates the delivery of thrombogenic tissue factor to neutrophil extracellular traps in human sepsis. PLoS One. 2012;7:e45427.

    PubMed Central  CAS  PubMed  Google Scholar 

  121. Ma AC, Kubes P. Platelets, neutrophils, and neutrophil extracellular traps (NETs) in sepsis. J Thromb Haemost. 2008;6:415–20.

    CAS  PubMed  Google Scholar 

  122. Esmon CT. Molecular circuits in thrombosis and inflammation. Thromb Haemost. 2013;109:416–20.

    CAS  PubMed  Google Scholar 

  123. Martinod K, Wagner DD. Thrombosis: tangled up in NETs. Blood. 2014;123:2768–76.

    CAS  PubMed  Google Scholar 

  124. El-Sayed MS. Exercise and training effects on platelets in health and disease. Platelets. 2002;13:261–6.

    CAS  PubMed  Google Scholar 

  125. Li N, Wallen NH, Hjemdahl P. Evidence for prothrombotic effects of exercise and limited protection by aspirin. Circulation. 1999;100:1374–9.

    CAS  PubMed  Google Scholar 

  126. Li N, He S, Blomback M, Hjemdahl P. Platelet activity, coagulation, and fibrinolysis during exercise in healthy males: effects of thrombin inhibition by argatroban and enoxaparin. Arterioscler Thromb Vasc Biol. 2007;27:407–13.

    CAS  PubMed  Google Scholar 

  127. Wang JS, Cheng LJ. Effect of strenuous, acute exercise on alpha2-adrenergic agonist-potentiated platelet activation. Arterioscler Thromb Vasc Biol. 1999;19:1559–65.

    CAS  PubMed  Google Scholar 

  128. Wang JS. Intense exercise increases shear-induced platelet aggregation in men through enhancement of von Willbrand factor binding, glycoprotein IIb/IIIa activation, and P-selectin expression on platelets. Eur J Appl Physiol. 2004;91:741–7.

    CAS  PubMed  Google Scholar 

  129. Sossdorf M, Otto GP, Claus RA, et al. Cell-derived microparticles promote coagulation after moderate exercise. Med Sci Sports Exerc. 2011;43:1169–76.

    CAS  PubMed  Google Scholar 

  130. Menzel K, Hilberg T. Blood coagulation and fibrinolysis in healthy, untrained subjects: effects of different exercise intensities controlled by individual anaerobic threshold. Eur J Appl Physiol. 2011;111:253–60.

    CAS  PubMed  Google Scholar 

  131. Preckel D, von Känel R. Regulation of hemostasis by the sympathetic nervous system: any contribution to coronary artery disease? Heartdrug. 2004;4:123–30.

    PubMed Central  PubMed  Google Scholar 

  132. Adams M, Williams A, Fell J. Exercise in the fight against thrombosis: friend or foe? Semin Thromb Hemost. 2009;35:261–8.

    PubMed  Google Scholar 

  133. Lippi G, Maffulli N. Biological influence of physical exercise on hemostasis. Semin Thromb Hemost. 2009;35:269–76.

    CAS  PubMed  Google Scholar 

  134. Posthuma JJ, Loeffen R, van Oerle R, et al. Long-term strenuous exercise induces a hypercoagulable state through contact activation. Thromb Haemost. 2014;111:1197–9.

    CAS  PubMed  Google Scholar 

  135. Thompson PD, Franklin BA, Balady GJ, et al. Exercise and acute cardiovascular events placing the risks into perspective: a scientific statement from the American Heart Association Council on Nutrition, Physical Activity, and Metabolism and the Council on Clinical Cardiology. Circulation. 2007;115:2358–68.

    PubMed  Google Scholar 

  136. Wang JS, Liao CH. Moderate-intensity exercise suppresses platelet activation and polymorphonuclear leukocyte interaction with surface-adherent platelets under shear flow in men. Thromb Haemost. 2004;91:587–94.

    CAS  PubMed  Google Scholar 

  137. Borch KH, Hansen-Krone I, Braekkan SK, et al. Physical activity and risk of venous thromboembolism. The Tromso study. Haematologica. 2010;95:2088–94.

    PubMed Central  PubMed  Google Scholar 

  138. Sattelmair J, Pertman J, Ding EL, et al. Dose response between physical activity and risk of coronary heart disease: a meta-analysis. Circulation. 2011;124:789–95.

    PubMed Central  PubMed  Google Scholar 

  139. Legein B, Temmerman L, Biessen EA, et al. Inflammation and immune system interactions in atherosclerosis. Cell Mol Life Sci. 2013;70:3847–69.

    CAS  PubMed  Google Scholar 

  140. Soehnlein O. Multiple roles for neutrophils in atherosclerosis. Circ Res. 2012;110:875–88.

    CAS  PubMed  Google Scholar 

  141. Megens RT, Vijayan S, Lievens D, et al. Presence of luminal neutrophil extracellular traps in atherosclerosis. Thromb Haemost. 2012;107:597–8.

    CAS  PubMed  Google Scholar 

  142. Xu J, Zhang X, Pelayo R, et al. Extracellular histones are major mediators of death in sepsis. Nat Med. 2009;15:1318–21.

    PubMed Central  CAS  PubMed  Google Scholar 

  143. Araujo FB, Barbosa DS, Hsin CY, et al. Evaluation of oxidative stress in patients with hyperlipidemia. Atherosclerosis. 1995;117:61–71.

    CAS  PubMed  Google Scholar 

  144. Drechsler M, Megens RT, van Zandvoort M, et al. Hyperlipidemia-triggered neutrophilia promotes early atherosclerosis. Circulation. 2010;122:1837–45.

    CAS  PubMed  Google Scholar 

  145. Mazor R, Shurtz-Swirski R, Farah R, et al. Primed polymorphonuclear leukocytes constitute a possible link between inflammation and oxidative stress in hyperlipidemic patients. Atherosclerosis. 2008;197:937–43.

    CAS  PubMed  Google Scholar 

  146. Lara LL, Rivera H, Perez P, et al. Low density lipoprotein receptor expression and function in human polymorphonuclear leucocytes. Clin Exp Immunol. 1997;107:205–12.

    PubMed Central  CAS  PubMed  Google Scholar 

  147. Doring Y, Drechsler M, Wantha S, et al. Lack of neutrophil-derived CRAMP reduces atherosclerosis in mice. Circ Res. 2012;110:1052–6.

    PubMed  Google Scholar 

  148. Doring Y, Manthey HD, Drechsler M, et al. Auto-antigenic protein–DNA complexes stimulate plasmacytoid dendritic cells to promote atherosclerosis. Circulation. 2012;125:1673–83.

    PubMed  Google Scholar 

  149. Lande R, Gregorio J, Facchinetti V, et al. Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature. 2007;449:564–9.

    CAS  PubMed  Google Scholar 

  150. Doring Y, Zernecke A. Plasmacytoid dendritic cells in atherosclerosis. Front Physiol. 2012;3:230.

    PubMed Central  PubMed  Google Scholar 

  151. Goossens P, Gijbels MJ, Zernecke A, et al. Myeloid type I interferon signaling promotes atherosclerosis by stimulating macrophage recruitment to lesions. Cell Metab. 2010;12:142–53.

    CAS  PubMed  Google Scholar 

  152. Doring Y, Weber C, Soehnlein O. Footprints of neutrophil extracellular traps as predictors of cardiovascular risk. Arterioscler Thromb Vasc Biol. 2013;33:1735–6.

    PubMed  Google Scholar 

  153. Kahlenberg JM, Kaplan MJ. Mechanisms of premature atherosclerosis in rheumatoid arthritis and lupus. Annu Rev Med. 2013;64:249–63.

    PubMed Central  CAS  PubMed  Google Scholar 

  154. Guillevin L, Dorner T. Vasculitis: mechanisms involved and clinical manifestations. Arthritis Res Ther. 2007;9(Suppl 2):S9.

    PubMed Central  PubMed  Google Scholar 

  155. Elkon K, Casali P. Nature and functions of autoantibodies. Nat Clin Pract Rheumatol. 2008;4:491–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  156. Wahren-Herlenius M, Dorner T. Immunopathogenic mechanisms of systemic autoimmune disease. Lancet. 2013;382:819–31.

    CAS  PubMed  Google Scholar 

  157. Kaplan MJ. Neutrophils in the pathogenesis and manifestations of SLE. Nat Rev Rheumatol. 2011;7:691–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  158. Knight JS, Kaplan MJ. Lupus neutrophils: ‘NET’ gain in understanding lupus pathogenesis. Curr Opin Rheumatol. 2012;24:441–50.

    CAS  PubMed  Google Scholar 

  159. Leadbetter EA, Rifkin IR, Hohlbaum AM, et al. Chromatin–IgG complexes activate B cells by dual engagement of IgM and toll-like receptors. Nature. 2002;416:603–7.

    CAS  PubMed  Google Scholar 

  160. Means TK, Latz E, Hayashi F, et al. Human lupus autoantibody–DNA complexes activate DCs through cooperation of CD32 and TLR9. J Clin Invest. 2005;115:407–17.

    PubMed Central  CAS  PubMed  Google Scholar 

  161. Garcia-Romo GS, Caielli S, Vega B, et al. Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus. Sci Transl Med. 2011;3:73ra20.

    PubMed Central  PubMed  Google Scholar 

  162. Sangaletti S, Tripodo C, Chiodoni C, et al. Neutrophil extracellular traps mediate transfer of cytoplasmic neutrophil antigens to myeloid dendritic cells toward ANCA induction and associated autoimmunity. Blood. 2012;120:3007–18.

    CAS  PubMed  Google Scholar 

  163. Diana J, Simoni Y, Furio L, et al. Crosstalk between neutrophils, B-1a cells and plasmacytoid dendritic cells initiates autoimmune diabetes. Nat Med. 2013;19:65–73.

    CAS  PubMed  Google Scholar 

  164. Guiducci C, Tripodo C, Gong M, et al. Autoimmune skin inflammation is dependent on plasmacytoid dendritic cell activation by nucleic acids via TLR7 and TLR9. J Exp Med. 2010;207:2931–42.

    PubMed Central  CAS  PubMed  Google Scholar 

  165. Talukdar S, Oh da Y, Bandyopadhyay G, et al. Neutrophils mediate insulin resistance in mice fed a high-fat diet through secreted elastase. Nat Med. 2012;18:1407–12.

    PubMed Central  CAS  PubMed  Google Scholar 

  166. Cooper DM, Radom-Aizik S, Schwindt C, et al. Dangerous exercise: lessons learned from dysregulated inflammatory responses to physical activity. J Appl Physiol. 2007;103:700–9.

    CAS  PubMed  Google Scholar 

  167. Reid VL, Gleeson M, Williams N, Clancy RL. Clinical investigation of athletes with persistent fatigue and/or recurrent infections. Br J Sports Med. 2004;38:42–5.

    PubMed Central  CAS  PubMed  Google Scholar 

  168. Meeusen R, Duclos M, Foster C, et al. Prevention, diagnosis, and treatment of the overtraining syndrome: joint consensus statement of the European College of Sport Science and the American College of Sports Medicine. Med Sci Sports Exerc. 2013;45:186–205.

    PubMed  Google Scholar 

  169. Fitch KD. An overview of asthma and airway hyper-responsiveness in Olympic athletes. Br J Sports Med. 2012;46:413–6.

    PubMed  Google Scholar 

  170. Kippelen P, Fitch KD, Anderson SD, et al. Respiratory health of elite athletes—preventing airway injury: a critical review. Br J Sports Med. 2012;46:471–6.

    PubMed Central  PubMed  Google Scholar 

  171. Lund TK, Pedersen L, Anderson SD, et al. Are asthma-like symptoms in elite athletes associated with classical features of asthma? Br J Sports Med. 2009;43:1131–5.

    CAS  PubMed  Google Scholar 

  172. Bougault V, Turmel J, St-Laurent J, et al. Asthma, airway inflammation and epithelial damage in swimmers and cold-air athletes. Eur Respir J. 2009;33:740–6.

    CAS  PubMed  Google Scholar 

  173. Helenius IJ, Rytila P, Metso T, et al. Respiratory symptoms, bronchial responsiveness, and cellular characteristics of induced sputum in elite swimmers. Allergy. 1998;53:346–52.

    CAS  PubMed  Google Scholar 

  174. Karjalainen EM, Laitinen A, Sue-Chu M, et al. Evidence of airway inflammation and remodeling in ski athletes with and without bronchial hyperresponsiveness to methacholine. Am J Respir Crit Care Med. 2000;161:2086–91.

    CAS  PubMed  Google Scholar 

  175. Carlson M, Hakansson L, Peterson C, et al. Secretion of granule proteins from eosinophils and neutrophils is increased in asthma. J Allergy Clin Immunol. 1991;87:27–33.

    CAS  PubMed  Google Scholar 

  176. Lee TH, Nagy L, Nagakura T, et al. Identification and partial characterization of an exercise-induced neutrophil chemotactic factor in bronchial asthma. J Clin Invest. 1982;69:889–99.

    PubMed Central  CAS  PubMed  Google Scholar 

  177. Nagy L, Lee TH, Kay AB. Neutrophil chemotactic activity in antigen-induced late asthmatic reactions. N Engl J Med. 1982;306:497–501.

    CAS  PubMed  Google Scholar 

  178. Loughlin CE, Esther CR Jr, Lazarowski ER, et al. Neutrophilic inflammation is associated with altered airway hydration in stable asthmatics. Respir Med. 2010;104:29–33.

    PubMed Central  PubMed  Google Scholar 

  179. Macdowell AL, Peters SP. Neutrophils in asthma. Curr Allergy Asthma Rep. 2007;7:464–8.

    CAS  PubMed  Google Scholar 

  180. Narasaraju T, Yang E, Samy RP, et al. Excessive neutrophils and neutrophil extracellular traps contribute to acute lung injury of influenza pneumonitis. Am J Pathol. 2011;179:199–210.

    PubMed Central  CAS  PubMed  Google Scholar 

  181. Manzenreiter R, Kienberger F, Marcos V, et al. Ultrastructural characterization of cystic fibrosis sputum using atomic force and scanning electron microscopy. J Cyst Fibros. 2012;11:84–92.

    CAS  PubMed  Google Scholar 

  182. Caudrillier A, Kessenbrock K, Gilliss BM, et al. Platelets induce neutrophil extracellular traps in transfusion-related acute lung injury. J Clin Invest. 2012;122:2661–71.

    PubMed Central  CAS  PubMed  Google Scholar 

  183. Saffarzadeh M, Juenemann C, Queisser MA, et al. Neutrophil extracellular traps directly induce epithelial and endothelial cell death: a predominant role of histones. PLoS One. 2012;7:e32366.

    PubMed Central  CAS  PubMed  Google Scholar 

  184. Boucher RC. Airway surface dehydration in cystic fibrosis: pathogenesis and therapy. Annu Rev Med. 2007;58:157–70.

    CAS  PubMed  Google Scholar 

  185. Randolph C. An update on exercise-induced bronchoconstriction with and without asthma. Curr Allergy Asthma Rep. 2009;9:433–8.

    PubMed  Google Scholar 

  186. de Boer JD, Majoor CJ, van’t Veer C, et al. Asthma and coagulation. Blood. 2012;119:3236–44.

    PubMed  Google Scholar 

  187. Hakkim A, Furnrohr BG, Amann K, et al. Impairment of neutrophil extracellular trap degradation is associated with lupus nephritis. Proc Natl Acad Sci USA. 2010;107:9813–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  188. Malickova K, Duricova D, Bortlik M, et al. Impaired deoxyribonuclease I activity in patients with inflammatory bowel diseases. Autoimmune Dis. 2011;2011:945861.

    PubMed Central  PubMed  Google Scholar 

  189. Savchenko AS, Borissoff JI, Martinod K, et al. VWF-mediated leukocyte recruitment with chromatin decondensation by PAD4 increases myocardial ischemia/reperfusion injury in mice. Blood. 2014;123:141–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  190. De Meyer SF, Suidan GL, Fuchs TA, et al. Extracellular chromatin is an important mediator of ischemic stroke in mice. Arterioscler Thromb Vasc Biol. 2012;32:1884–91.

    PubMed Central  PubMed  Google Scholar 

  191. Thomas GM, Carbo C, Curtis BR, et al. Extracellular DNA traps are associated with the pathogenesis of TRALI in humans and mice. Blood. 2012;119:6335–43.

    PubMed Central  CAS  PubMed  Google Scholar 

  192. Cools-Lartigue J, Spicer J, McDonald B, et al. Neutrophil extracellular traps sequester circulating tumor cells and promote metastasis. J Clin Invest. Epub 2013 Jul 1. doi:10.1172/JCI67484.

  193. Fuchs HJ, Borowitz DS, Christiansen DH, et al. Effect of aerosolized recombinant human DNase on exacerbations of respiratory symptoms and on pulmonary function in patients with cystic fibrosis. The Pulmozyme Study Group. N Engl J Med. 1994;331:637–42.

    CAS  PubMed  Google Scholar 

  194. Martinez VF, Balada E, Ordi-Ros J, et al. DNase1 and systemic lupus erythematosus. Autoimmun Rev. 2008;7:359–63.

    Google Scholar 

  195. Meng W, Paunel-Gorgulu A, Flohe S, et al. Depletion of neutrophil extracellular traps in vivo results in hypersusceptibility to polymicrobial sepsis in mice. Crit Care. 2012;16:R137.

    PubMed Central  PubMed  Google Scholar 

  196. Nieman DC. Exercise, infection, and immunity. Int J Sports Med. 1994;15(Suppl 3):S131–41.

    PubMed  Google Scholar 

  197. Pedersen BK, Bruunsgaard H. How physical exercise influences the establishment of infections. Sports Med. 1995;19:393–400.

    CAS  PubMed  Google Scholar 

  198. Rhodes A, Wort SJ, Thomas H, et al. Plasma DNA concentration as a predictor of mortality and sepsis in critically ill patients. Crit Care. 2006;10:R60.

    PubMed Central  PubMed  Google Scholar 

  199. Saukkonen K, Lakkisto P, Pettila V, et al. Cell-free plasma DNA as a predictor of outcome in severe sepsis and septic shock. Clin Chem. 2008;54:1000–7.

    CAS  PubMed  Google Scholar 

  200. Rodrigues Filho EM, Simon D, Ikuta N, et al. Elevated cell-free plasma DNA level as an independent predictor of mortality in patients with severe traumatic brain injury. J Neurotrauma. 2014;31:1639–46.

    PubMed  Google Scholar 

  201. Rainer TH, Wong LK, Lam W, et al. Prognostic use of circulating plasma nucleic acid concentrations in patients with acute stroke. Clin Chem. 2003;49:562–9.

    CAS  PubMed  Google Scholar 

  202. Cui M, Fan M, Jing R, et al. Cell-free circulating DNA: a new biomarker for the acute coronary syndrome. Cardiology. 2013;124:76–84.

    CAS  PubMed  Google Scholar 

  203. Fujibayashi K, Kawai Y, Kitayama M, et al. Serum deoxyribonuclease I activity can be a useful diagnostic marker for the early diagnosis of unstable angina pectoris or non-ST-segment elevation myocardial infarction. J Cardiol. 2012;59:258–65.

    PubMed  Google Scholar 

  204. Meuwese MC, Stroes ES, Hazen SL, et al. Serum myeloperoxidase levels are associated with the future risk of coronary artery disease in apparently healthy individuals: the EPIC-Norfolk Prospective Population Study. J Am Coll Cardiol. 2007;50:159–65.

    CAS  PubMed  Google Scholar 

  205. Knight JS, Zhao W, Luo W, et al. Peptidylarginine deiminase inhibition is immunomodulatory and vasculoprotective in murine lupus. J Clin Invest. 2013;123:2981–93.

    PubMed Central  CAS  PubMed  Google Scholar 

  206. Campbell AM, Kashgarian M, Shlomchik MJ. NADPH oxidase inhibits the pathogenesis of systemic lupus erythematosus. Sci Transl Med. 2012;4:157ra141.

    PubMed Central  PubMed  Google Scholar 

  207. Farrera C, Fadeel B. Macrophage clearance of neutrophil extracellular traps is a silent process. J Immunol. 2013;191:2647–56.

    CAS  PubMed  Google Scholar 

  208. Griffith TS, Ferguson TA. Cell death in the maintenance and abrogation of tolerance: the five Ws of dying cells. Immunity. 2011;35:456–66.

    PubMed Central  CAS  PubMed  Google Scholar 

  209. Beauvillain C, Delneste Y, Scotet M, et al. Neutrophils efficiently cross-prime naive T cells in vivo. Blood. 2007;110:2965–73.

    CAS  PubMed  Google Scholar 

  210. Matsushima H, Geng S, Lu R, et al. Neutrophil differentiation into a unique hybrid population exhibiting dual phenotype and functionality of neutrophils and dendritic cells. Blood. 2013;121:1677–89.

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Barbara Munz, Miriam Hoene and Oana Ursu for carefully proofreading the manuscript and providing valuable comments. No sources of funding were used in the preparation of the review. The authors have no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Beiter.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beiter, T., Fragasso, A., Hartl, D. et al. Neutrophil Extracellular Traps: A Walk on the Wild Side of Exercise Immunology. Sports Med 45, 625–640 (2015). https://doi.org/10.1007/s40279-014-0296-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-014-0296-1

Keywords

Navigation