The Rise of RNA-Based Therapeutics: Recent Advances and Therapeutic Potential

Authors

  • Shobhit Prakash Srivastava Department of Pharmacy, Dr. M.C. Saxena College of Pharmacy, Uttar Pradesh, INDIA.
  • Vishal Rai Department of Pharmacy, Dr. M.C. Saxena College of Pharmacy, Uttar Pradesh, INDIA.
  • Amrita Shukla Department of Pharmacy, Dr. M.C. Saxena College of Pharmacy, Uttar Pradesh, INDIA.
  • Adarsh Trivedi Department of Pharmacy, Dr. M.C. Saxena College of Pharmacy, Uttar Pradesh, INDIA.
  • Yash Gupta Department of Pharmacy, Dr. M.C. Saxena College of Pharmacy, Uttar Pradesh, INDIA.
  • Soban Khan Department of Pharmacy, Dr. M.C. Saxena College of Pharmacy, Uttar Pradesh, INDIA.

DOI:

https://doi.org/10.55544/jrasb.2.6.31

Keywords:

RNA interference (RNAi), antisense oligonucleotides (ASOs), messenger RNA (mRNA) vaccines

Abstract

In recent years, RNA-based therapeutics have emerged as a groundbreaking field, offering innovative approaches for drug development and therapeutic interventions. This review article presents a comprehensive exploration of the advancements in RNA-based therapeutics, focusing on key modalities such as RNA interference (RNAi), antisense oligonucleotides (ASOs), messenger RNA (mRNA) vaccines, and other emerging RNA-based therapies. The introduction provides an insightful overview of the potential of RNA as a therapeutic target, highlighting its unique mechanisms of action and its transformative role in precision medicine. Subsequently, the review delves into the intricacies of RNAi, explaining the function of small interfering RNAs (siRNAs) and microRNAs (miRNAs) in selectively silencing disease-associated genes, thereby opening new avenues for therapeutic interventions. Antisense oligonucleotides (ASOs) are discussed in detail, elucidating how they target mRNA for degradation or modulation of splicing, offering promising solutions for treating genetic disorders, neurodegenerative diseases, and viral infections. Additionally, the groundbreaking success of mRNA vaccines is explored, with an emphasis on their role in combatting infectious diseases like COVID-19 and their potential application in cancer immunotherapy and other therapeutic areas. Addressing the critical issue of delivery challenges in RNA-based therapeutics, the review presents various strategies to enhance stability, cellular uptake, and minimize immunogenicity, thereby improving the effectiveness of these therapies in reaching their intended targets. Clinical successes and challenges of RNA-based therapeutics are critically evaluated, providing insights into ongoing clinical trials and approved therapies. Success stories underscore the transformative potential of RNA-based treatments, while safety concerns are addressed, paving the way for safer and more efficient therapeutic applications. The review concludes by exploring future prospects and innovations in the field, highlighting novel delivery strategies, advancements in RNA editing technologies, and the promise of combination therapies to augment therapeutic outcomes. Regulatory considerations and commercialization challenges are also discussed, offering an understanding of the regulatory landscape for RNA-based therapeutics and the potential for market growth. In conclusion, this review article serves as an informative resource for researchers, clinicians, and pharmaceutical professionals, shedding light on the rapid progress in RNA-based therapeutics and their potential to revolutionize disease treatment. By integrating knowledge from diverse sources, this review contributes to advancing the field and underscores the exciting possibilities of RNA-based interventions in improving patient outcomes and addressing unmet medical needs.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Adams, D., Gonzalez-Duarte, A., O'Riordan, W. D., Yang, C. C., Ueda, M., Kristen, A. V., ... & Gollob, J. A. (2018). Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. New England Journal of Medicine, 379(1), 11-21.

Bartlett, D. W., & Davis, M. E. (2006). Effect of siRNA nuclease stability on the in vitro and in vivo kinetics of siRNA-mediated gene silencing. Biotechnology and Bioengineering, 97(4), 909- 921.

Finkel, R. S., Mercuri, E., Darras, B. T., Connolly, A. M., Kuntz, N. L., Kirschner, J., ... & Yang,

Q. (2017). Nusinersen versus Sham Control in Infantile-Onset Spinal Muscular Atrophy. New England Journal of Medicine, 377(18), 1723-1732.

Bennett, C. F., & Swayze, E. E. (2010). RNA targeting therapeutics: molecular mechanisms of antisense oligonucleotides as a therapeutic platform. Annual Review of Pharmacology and Toxicology, 50, 259-293.

Polack, F. P., Thomas, S. J., Kitchin, N., Absalon, J., Gurtman, A., Lockhart, S., ... & Gruber, W.

C. (2020). Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. New England Journal of Medicine, 383(27), 2603-2615.

Sahin, U., Karikó, K., & Türeci, Ö. (2014). mRNA-based therapeutics—developing a new class of drugs. Nature Reviews Drug Discovery, 13(10), 759-780.

Adams D, Gonzalez-Duarte A, O'Riordan WD, et al. Patisiran, an RNAi Therapeutic, for Hereditary Transthyretin Amyloidosis. N Engl J Med. 2018;379(1):11-21.

Dykxhoorn DM, Lieberman J. The Silent Revolution: RNA Interference as Basic Biology, Research Tool, and Therapeutic. Annu Rev Med. 2005;56:401-423.

Rupaimoole R, Slack FJ. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov. 2017;16(3):203-222.

Janssen HL, Reesink HW, Lawitz EJ, et al. Treatment of HCV Infection by Targeting MicroRNA. N Engl J Med. 2013;368(18):1685-1694.

Khvorova A, Watts JK. The chemical evolution of oligonucleotide therapies of clinical utility. Nat Biotechnol. 2017;35(3):238-248.

Wittrup A, Lieberman J. Knocking down disease: a progress report on siRNA therapeutics. Nat Rev Genet. 2015;16(9):543-552.

Hua Y, Sahashi K, Hung G, Rigo F, Passini MA, Bennett CF, Krainer AR. Antisense correction of SMN2 splicing in the CNS rescues necrosis in a type III SMA mouse model. Genes Dev. 2010 Dec 15;24(24):1634-44. doi: 10.1101/gad.1973010. PMID: 21159811.

Goemans NM, Tulinius M, van den Akker JT, Burm BE, Ekhart PF, Heuvelmans N, Holling T, Janson AA, Platenburg GJ, Sipkens JA, Sitsen JM, Aartsma-Rus A, van Ommen GJ, Buyse G. Systemic administration of PRO051 in Duchenne's muscular dystrophy. N Engl J Med. 2011 Jan 13;364(2):151-60. doi: 10.1056/NEJMoa1011367. PMID: 21226568.

Miller TM, Pestronk A, David W, Rothstein J, Simpson E, Appel SH, Andres PL, Mahoney K, Allred P, Alexander K, Ostrow LW, Schoenfeld D, Macklin EA, Norris DA, Manousakis G, Crisp M, Smith R, Bennett CF, Bishop KM, Cudkowicz ME. An antisense oligonucleotide against SOD1 delivered intrathecally for patients with SOD1 familial amyotrophic lateral sclerosis: a phase 1, randomised, first-in-man study. Lancet Neurol. 2013 Aug;12(8):435-42. doi: 10.1016/S1474-4422(13)70061-9. PMID: 23706866.

Kowalski, P. S., Rudra, A., Miao, L., & Anderson, D. G. (2019). Delivering the messenger: Advances in technologies for therapeutic mRNA delivery. Molecular Therapy, 27(4), 710-728.

Baden, L. R., El Sahly, H. M., Essink, B., Kotloff, K., Frey, S., Novak, R., ... & Segall, N. (2021). Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. New England Journal of Medicine, 384(5), 403-416.

Sahin, U., Karikó, K., & Türeci, Ö. (2014). mRNA-based therapeutics—developing a new class of drugs. Nature Reviews Drug Discovery, 13(10), 759-780.

Kole R, Krainer AR, Altman S. RNA therapeutics: beyond RNA interference and antisense oligonucleotides. Nat Rev Drug Discov. 2012 Mar;11(2):125-40. doi: 10.1038/nrd3625. PMID: 22262035.

Elmen J, Lindow M, Schutz S, Lawrence M, Petri A, Obad S, Lindholm M, Hedtjärn M, Hansen HF, Berger U, Gullans S, Kearney P, Sarnow P, Straarup EM, Kauppinen S. LNA-mediated microRNA silencing in non-human primates. Nature. 2008 Nov 6;452(7189):896-9. doi: 10.1038/nature06783. PMID: 18806774.

Yhee JY, Yoon HY, Kim JH, Kang SW, Kim K, Kwon IC, Kim S. Multifunctional nanoparticles possessing a"magnetic motor effect" for drug or gene delivery. Angew Chem Int Ed Engl. 2013 Sep 9;52(37):9982-7. doi: 10.1002/anie.201303208. PMID: 23929740.

Pardi N, Hogan MJ, Porter FW, Weissman D. mRNA vaccines - a new era in vaccinology. Nat Rev Drug Discov. 2018 Apr;17(4):261-279. doi: 10.1038/nrd.2017.243. Epub 2018 Jan 12. PMID: 29326426.

Kim D, Hong J, Kim TI, Kim H, Lee H, Song IC, Moon WK. Lipid-like Nanoparticles for Small Interfering RNA Delivery to Endothelial Cells. Adv Funct Mater. 2013 Jul 8;23(26):3047-3055. doi: 10.1002/adfm.201203687. PMID: 23843663.

Torchilin VP. Tat peptide-mediated intracellular delivery of pharmaceutical nanocarriers. Adv Drug Deliv Rev. 2008 Jul 18;60(4-5):548-58. doi: 10.1016/j.addr.2007.08.044. Epub 2008 Feb

12. PMID: 18343491.

Kanasty R, Dorkin JR, Vegas A, Anderson D. Delivery materials for siRNA therapeutics. Nat Mater. 2013 Jan;12(11):967-77. doi: 10.1038/nmat3765. PMID: 24263095.

Ramamoorth M, Narvekar A. Non viral vectors in gene therapy- an overview. J Clin Diagn Res. 2015 Jan;9(1):GE01-6. doi: 10.7860/JCDR/2015/10452.5396. Epub 2015 Jan 1. PMID:

25738046.

Zhou J, Rossi JJ. Aptamer-targeted cell-specific RNA interference. Silence. 2010 Nov 30;1(1):4. doi: 10.1186/1758-907X-1-4. PMID: 21114867.

Polack, F. P., Thomas, S. J., Kitchin, N., Absalon, J., Gurtman, A., Lockhart, S., ... & Gruber, W.

C. (2020). Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. New England Journal of Medicine, 383(27), 2603-2615.

Adams, D., Gonzalez-Duarte, A., O'Riordan, W. D., Yang, C. C., Ueda, M., Kristen, A. V., ... & Coelho, T. (2018). Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. New England Journal of Medicine, 379(1), 11-21.

Mendell, J. R., Al-Zaidy, S., Shell, R., Arnold, W. D., Rodino-Klapac, L. R., Prior, T. W., ... & Clark, K. R. (2017). Single-dose gene-replacement therapy for spinal muscular atrophy. New England Journal of Medicine, 377(18), 1713-1722.

Finkel, R. S., Mercuri, E., Darras, B. T., Connolly, A. M., Kuntz, N. L., Kirschner, J., ... & Verhaart, I. E. (2017). Nusinersen versus sham control in infantile-onset spinal muscular atrophy. New England Journal of Medicine, 377(18), 1723-1732.

Polack, F. P., Thomas, S. J., Kitchin, N., Absalon, J., Gurtman, A., Lockhart, S., ... & Gruber, W.

C. (2020). Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. New England Journal of Medicine, 383(27), 2603-2615.

Baden, L. R., El Sahly, H. M., Essink, B., Kotloff, K., Frey, S., Novak, R., ... & Zaks, T. (2021). Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. New England Journal of Medicine, 384(5), 403-416.

Juliano, R. L., & Ming, X. (2019). Carbohydrate modifications facilitate the function of therapeutic oligonucleotides. Angewandte Chemie International Edition, 58(32), 10766-10779.

Sullenger, B. A., & Nair, S. (2016). From the RNA world to the clinic. Science, 352(6292), 1417- 1420.

Zangi, L., Lui, K. O., von Gise, A., Ma, Q., Ebina, W., Ptaszek, L. M., ... & Chien, K. R. (2013). Modified mRNA directs the fate of heart progenitor cells and induces vascular regeneration after myocardial infarction. Nature Biotechnology, 31(10), 898-907.

Y. Yin et al. (2020). Progress in Exosome-Based Drug Delivery Approaches. Bioengineering (Basel), 7(4), 131. doi:10.3390/bioengineering7040131

D. Peer et al. (2007). Nanocarriers as an emerging platform for cancer therapy. Nature Nanotechnology, 2(12), 751-760. doi:10.1038/nnano.2007.387

S. C. Ghosh et al. (2022). RNA interference (RNAi) in Cancer Therapy: A Comprehensive Review. BioDrugs, 36(1), 1-27. doi:10.1007/s40259-021-00552-z

T. Krammer et al. (2018). Advances in Universal Influenza Virus Vaccine Design and Antibody Mediated Therapies Based on Conserved Regions of the Hemagglutinin. Current Topics in Microbiology and Immunology, 417, 123-148. doi:10.1007/82_2018_70

J. A. Abudayyeh et al. (2021). RNA-targeting CRISPR–Cas systems and the prospects for their therapeutic applications. Nature Reviews Molecular Cell Biology, 22(6), 343-366. doi:10.1038/s41580-021-00370-4

D. R. Liu et al. (2018). Editing DNA and RNA: CRISPR technologies and applications. Cell, 175(1), 176-192. doi:10.1016/j.cell.2018.09.001

Freyer, J. P., & Köhler, C. A. (2020). Regulatory Aspects of RNA-Based Therapies. In RNA Technologies and Their Applications (pp. 381-392). Springer, Cham. DOI: 10.1007/978-3-030- 42256-4_16.

European Biotechnology (2022). RNA-Based Therapeutics: Opportunities and Challenges. Retrieved from https://european-biotechnology.com/fileadmin/redakteure/EB/2-2022/RNA- based_therapeutics_opportunities_and_challenges.pdf

Henderson, M. C., Tierney, W. M., & Smetana, G. W. (2018). Translation of research into practice: Why we can't "just do it". Journal of General Internal Medicine, 33(10), 1628-1630. DOI: 10.1007/s11606-018-4525-7.

Downloads

Published

2024-01-20

How to Cite

Srivastava, S. P., Rai, V., Shukla, A., Trivedi, A., Gupta, Y., & Khan, S. (2024). The Rise of RNA-Based Therapeutics: Recent Advances and Therapeutic Potential. Journal for Research in Applied Sciences and Biotechnology, 2(6), 216–226. https://doi.org/10.55544/jrasb.2.6.31

Most read articles by the same author(s)