Skip to main content

Advertisement

Log in

Cannabinoids in the treatment of glioblastoma

  • Review
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Glioblastoma (GBM) is the most prevalent primary malignant tumor of the nervous system. While the treatment of other neoplasms is increasingly more efficacious the median survival rate of GBM patients remains low and equals about 14 months. Due to this fact, there are intensive efforts to find drugs that would help combat GBM. Nowadays cannabinoids are becoming more and more important in the field of cancer and not only because of their properties of antiemetic drugs during chemotherapy. These compounds may have a direct cytotoxic effect on cancer cells. Studies indicate GBM has disturbances in the endocannabinoid system—changes in cannabinoid metabolism as well as in the cannabinoid receptor expression. The GBM cells show expression of cannabinoid receptors 1 and 2 (CB1R and CB2R), which mediate various actions of cannabinoids. Through these receptors, cannabinoids inhibit the proliferation and invasion of GBM cells, along with changing their morphology. Cannabinoids also induce an intrinsic pathway of apoptosis in the tumor. Hence the use of cannabinoids in the treatment of GBM may be beneficial to the patients. So far, studies focusing on using cannabinoids in GBM therapy are mainly preclinical and involve cell lines and mice. The results are promising and show cannabinoids inhibit GBM growth. Several clinical studies are also being carried out. The preliminary results show good tolerance of cannabinoids and prolonged survival after administration of these drugs. In this review, we describe the impact of cannabinoids on GBM and glioma cells in vitro and in animal studies. We also provide overview of clinical trials on using cannabinoids in the treatment of GBM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Stoyanov GS, Dzhenkov D, Ghenev P, Iliev B, Enchev Y, Tonchev AB. Cell biology of glioblastoma multiforme: from basic science to diagnosis and treatment. Med Oncol. 2018;35(3):27.

    Article  PubMed  Google Scholar 

  2. Silantyev AS, Falzone L, Libra M, Gurina OI, Kardashova KS, Nikolouzakis TK et al. Current and future trends on diagnosis and prognosis of Glioblastoma: from Molecular Biology to Proteomics. Cells. 2019;8(8).

  3. Melhem JM, Detsky J, Lim-Fat MJ, Perry JR. Updates in IDH-wildtype glioblastoma. Neurotherapeutics. 2022;19(6):1705–23.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Mohammed S, Dinesan M, Ajayakumar T. Survival and quality of life analysis in glioblastoma multiforme with adjuvant chemoradiotherapy: a retrospective study. Rep Pract Oncol Radiother. 2022;27(6):1026–36.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Shukla G, Alexander GS, Bakas S, Nikam R, Talekar K, Palmer JD, et al. Advanced magnetic resonance imaging in glioblastoma: a review. Chin Clin Oncol. 2017;6(4):40.

    Article  PubMed  Google Scholar 

  6. Abd-Elghany AA, Naji AA, Alonazi B, Aldosary H, Alsufayan MA, Alnasser M, et al. Radiological characteristics of glioblastoma multiforme using CT and MRI examination. J Radiation Res Appl Sci. 2019;12(1):289–93.

    Google Scholar 

  7. Aslan K, Gunbey H, Tomak L, Incesu L. Multiparametric MRI in differentiating solitary brain metastasis from high-grade glioma: diagnostic value of the combined use of diffusion-weighted imaging, dynamic susceptibility contrast imaging, and magnetic resonance spectroscopy parameters. Neurol Neurochir Pol. 2019;53(3):227–37.

    PubMed  Google Scholar 

  8. Baliyan V, Das CJ, Sharma R, Gupta AK. Diffusion weighted imaging: technique and applications. World J Radiol. 2016;8(9):785–98.

    Article  PubMed  PubMed Central  Google Scholar 

  9. M IJ-K, Snijders TJ, de Graeff A, Teunissen S, de Vos FYF. Prevalence of symptoms in glioma patients throughout the disease trajectory: a systematic review. J Neurooncol. 2018;140(3):485–96.

    Article  Google Scholar 

  10. Di Delello L, Hofstätter Azambuja J, Paes Dutra JA, Tavares Luiz M, Lobato Duarte J, Nicoleti LR, et al. Improving temozolomide biopharmaceutical properties in glioblastoma multiforme (GBM) treatment using GBM-targeting nanocarriers. Eur J Pharm Biopharm. 2021;168:76–89.

    Article  Google Scholar 

  11. Yang K, Wu Z, Zhang H, Zhang N, Wu W, Wang Z, et al. Glioma targeted therapy: insight into future of molecular approaches. Mol Cancer. 2022;21(1):39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Medikonda R, Dunn G, Rahman M, Fecci P, Lim M. A review of glioblastoma immunotherapy. J Neurooncol. 2021;151(1):41–53.

    Article  PubMed  Google Scholar 

  13. Doherty GJ, de Paula BHR. Cannabinoids in glioblastoma multiforme-hype or hope? Br J Cancer. 2021;124(8):1341–3.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Fraguas-Sánchez AI, Torres-Suárez AI. Medical Use of cannabinoids. Drugs. 2018;78(16):1665–703.

    Article  PubMed  Google Scholar 

  15. Gülck T, Møller BL, Phytocannabinoids. Origins and Biosynthesis. Trends Plant Sci. 2020;25(10):985–1004.

    Article  PubMed  Google Scholar 

  16. Lu HC, Mackie K. Review of the Endocannabinoid System. Biol Psychiatry Cogn Neurosci Neuroimaging. 2021;6(6):607–15.

    PubMed  Google Scholar 

  17. Castaneto MS, Gorelick DA, Desrosiers NA, Hartman RL, Pirard S, Huestis MA. Synthetic cannabinoids: epidemiology, pharmacodynamics, and clinical implications. Drug Alcohol Depend. 2014;144:12–41.

    Article  CAS  PubMed  Google Scholar 

  18. Howlett AC, Barth F, Bonner TI, Cabral G, Casellas P, Devane WA, et al. International Union of Pharmacology. XXVII. Classification of cannabinoid receptors. Pharmacol Rev. 2002;54(2):161–202.

    Article  CAS  PubMed  Google Scholar 

  19. Zou S, Kumar U. Cannabinoid receptors and the Endocannabinoid System: signaling and function in the Central Nervous System. Int J Mol Sci. 2018;19(3).

  20. Ryberg E, Vu HK, Larsson N, Groblewski T, Hjorth S, Elebring T, et al. Identification and characterisation of a novel splice variant of the human CB1 receptor. FEBS Lett. 2005;579(1):259–64.

    Article  CAS  PubMed  Google Scholar 

  21. Schurman LD, Lu D, Kendall DA, Howlett AC, Lichtman AH. Molecular mechanism and cannabinoid pharmacology. Handb Exp Pharmacol. 2020;258:323–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mackie K. Distribution of cannabinoid receptors in the central and peripheral nervous system. Handb Exp Pharmacol. 2005;168:299–325.

    Article  CAS  Google Scholar 

  23. Tam J, Trembovler V, Di Marzo V, Petrosino S, Leo G, Alexandrovich A, et al. The cannabinoid CB1 receptor regulates bone formation by modulating adrenergic signaling. Faseb j. 2008;22(1):285–94.

    Article  CAS  PubMed  Google Scholar 

  24. Breivogel CS, Puri V, Lambert JM, Hill DK, Huffman JW, Razdan RK. The influence of beta-arrestin2 on cannabinoid CB1 receptor coupling to G-proteins and subcellular localization and relative levels of beta-arrestin1 and 2 in mouse brain. J Recept Signal Transduct Res. 2013;33(6):367–79.

    Article  CAS  PubMed  Google Scholar 

  25. Nogueras-Ortiz C, Yudowski GA. The multiple waves of cannabinoid 1 receptor signaling. Mol Pharmacol. 2016;90(5):620–6.

    Article  CAS  PubMed  Google Scholar 

  26. Legare CA, Raup-Konsavage WM, Vrana KE. Therapeutic potential of Cannabis, Cannabidiol, and cannabinoid-based pharmaceuticals. Pharmacology. 2022;107(3–4):131–49.

    Article  CAS  PubMed  Google Scholar 

  27. Muller C, Morales P, Reggio PH. Cannabinoid ligands targeting TRP channels. Front Mol Neurosci. 2019;11.

  28. Lucas CJ, Galettis P, Schneider J. The pharmacokinetics and the pharmacodynamics of cannabinoids. Br J Clin Pharmacol. 2018;84(11):2477–82.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Baghel P, Roy A, Verma S, Satapathy T, Bahadur S. Amelioration of lipophilic compounds in regards to bioavailability as self-emulsifying drug delivery system (SEDDS). Future J Pharm Sci. 2020;6(1):21.

    Article  Google Scholar 

  30. Mahmoudinoodezh H, Telukutla SR, Bhangu SK, Bachari A, Cavalieri F, Mantri N. The Transdermal Delivery of Therapeutic cannabinoids. Pharmaceutics. 2022;14(2).

  31. Lust CAC, Lin X, Rock EM, Limebeer CL, Parker LA, Ma DWL. Short communication: tissue distribution of major cannabinoids following intraperitoneal injection in male rats. PLoS ONE. 2022;17(1):e0262633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gronewold A, Skopp G. A preliminary investigation on the distribution of cannabinoids in man. Forensic Sci Int. 2011;210(1):e7–e11.

    Article  CAS  PubMed  Google Scholar 

  33. Chayasirisobhon S. Mechanisms of action and pharmacokinetics of Cannabis. Perm J. 2020;25:1–3.

    PubMed  Google Scholar 

  34. Mangal N, Erridge S, Habib N, Sadanandam A, Reebye V, Sodergren MH. Cannabinoids in the landscape of cancer. J Cancer Res Clin Oncol. 2021;147(9):2507–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cangemi DJ, Kuo B. Practical perspectives in the treatment of nausea and vomiting. J Clin Gastroenterol. 2019;53(3):170–8.

    Article  PubMed  Google Scholar 

  36. Janelsins MC, Tejani MA, Kamen C, Peoples AR, Mustian KM, Morrow GR. Current pharmacotherapy for chemotherapy-induced nausea and vomiting in cancer patients. Expert Opin Pharmacother. 2013;14(6):757–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Smith LA, Azariah F, Lavender VT, Stoner NS, Bettiol S. Cannabinoids for nausea and vomiting in adults with cancer receiving chemotherapy. Cochrane Database Syst Rev. 2015;2015(11):Cd009464.

    PubMed  PubMed Central  Google Scholar 

  38. Ray AP, Griggs L, Darmani NA. Delta 9-tetrahydrocannabinol suppresses vomiting behavior and Fos expression in both acute and delayed phases of cisplatin-induced emesis in the least shrew. Behav Brain Res. 2009;196(1):30–6.

    Article  CAS  PubMed  Google Scholar 

  39. Darmani NA. Mechanisms of Broad-Spectrum Antiemetic Efficacy of cannabinoids against Chemotherapy-Induced Acute and delayed vomiting. Pharmaceuticals (Basel). 2010;3(9):2930–55.

    Article  CAS  PubMed  Google Scholar 

  40. Russo EB, Burnett A, Hall B, Parker KK. Agonistic properties of cannabidiol at 5-HT1a receptors. Neurochem Res. 2005;30(8):1037–43.

    Article  CAS  PubMed  Google Scholar 

  41. Baracos VE, Martin L, Korc M, Guttridge DC, Fearon KCH. Cancer-associated cachexia. Nat Rev Dis Primers. 2018;4:17105.

    Article  PubMed  Google Scholar 

  42. Walsh D, Kirkova J, Davis MP. The efficacy and tolerability of long-term use of dronabinol in cancer-related anorexia: a case series. J Pain Symptom Manage. 2005;30(6):493–5.

    Article  PubMed  Google Scholar 

  43. Sainz-Cort A, Müller-Sánchez C, Espel E. Anti-proliferative and cytotoxic effect of cannabidiol on human cancer cell lines in presence of serum. BMC Res Notes. 2020;13(1):389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cerretani D, Collodel G, Brizzi A, Fiaschi AI, Menchiari A, Moretti E et al. Cytotoxic effects of cannabinoids on human HT-29 colorectal adenocarcinoma cells: different mechanisms of THC, CBD, and CB83. Int J Mol Sci. 2020;21(15).

  45. Śledziński P, Nowak-Terpiłowska A, Rzymski P, Słomski R, Zeyland J. In Vitro evidence of selective pro-apoptotic action of the pure Cannabidiol and Cannabidiol-Rich Extract. Molecules. 2023;28(23).

  46. Haustein M, Ramer R, Linnebacher M, Manda K, Hinz B. Cannabinoids increase lung cancer cell lysis by lymphokine-activated killer cells via upregulation of ICAM-1. Biochem Pharmacol. 2014;92(2):312–25.

    Article  CAS  PubMed  Google Scholar 

  47. Costas-Insua C, Guzmán M. Endocannabinoid signaling in glioma. Glia. 2023;71(1):127–38.

    Article  CAS  PubMed  Google Scholar 

  48. Ellert-Miklaszewska A, Grajkowska W, Gabrusiewicz K, Kaminska B, Konarska L. Distinctive pattern of cannabinoid receptor type II (CB2) expression in adult and pediatric brain tumors. Brain Res. 2007;1137:161–9.

    Article  CAS  PubMed  Google Scholar 

  49. Schley M, Ständer S, Kerner J, Vajkoczy P, Schüpfer G, Dusch M, et al. Predominant CB2 receptor expression in endothelial cells of glioblastoma in humans. Brain Res Bull. 2009;79(5):333–7.

    Article  CAS  PubMed  Google Scholar 

  50. Wu X, Han L, Zhang X, Li L, Jiang C, Qiu Y, et al. Alteration of endocannabinoid system in human gliomas. J Neurochem. 2012;120(5):842–9.

    Article  CAS  PubMed  Google Scholar 

  51. Kyriakou I, Yarandi N, Polycarpou E. Efficacy of cannabinoids against glioblastoma multiforme: a systematic review. Phytomedicine. 2021;88:153533.

    Article  CAS  PubMed  Google Scholar 

  52. Blázquez C, González-Feria L, Álvarez L, Haro A, Casanova ML, Guzmán M. Cannabinoids inhibit the vascular endothelial growth factor pathway in Gliomas. Cancer Res. 2004;64(16):5617–23.

    Article  PubMed  Google Scholar 

  53. Blázquez C, Salazar M, Carracedo A, Lorente M, Egia A, González-Feria L, et al. Cannabinoids inhibit glioma cell invasion by down-regulating matrix metalloproteinase-2 expression. Cancer Res. 2008;68(6):1945–52.

    Article  PubMed  Google Scholar 

  54. Dumitru CA, Sandalcioglu IE, Karsak M. Cannabinoids in Glioblastoma Therapy: New Applications for Old drugs. Front Mol Neurosci. 2018;11:159.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Hernández-Tiedra S, Fabriàs G, Dávila D, Salanueva ÍJ, Casas J, Montes LR, et al. Dihydroceramide accumulation mediates cytotoxic autophagy of cancer cells via autolysosome destabilization. Autophagy. 2016;12(11):2213–29.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Ellert-Miklaszewska A, Ciechomska I, Kaminska B. Cannabinoid signaling in glioma cells. Adv Exp Med Biol. 2013;986:209–20.

    Article  CAS  PubMed  Google Scholar 

  57. Kolbe MR, Hohmann T, Hohmann U, Ghadban C, Mackie K, Zöller C et al. THC reduces Ki67-Immunoreactive cells derived from human primary Glioblastoma in a GPR55-Dependent manner. Cancers (Basel). 2021;13(5).

  58. Mangini M, Iaccino E, Mosca MG, Mimmi S, D’Angelo R, Quinto I, et al. Peptide-guided targeting of GPR55 for anti-cancer therapy. Oncotarget. 2017;8(3):5179–95.

    Article  PubMed  Google Scholar 

  59. Marcu JP, Christian RT, Lau D, Zielinski AJ, Horowitz MP, Lee J, et al. Cannabidiol enhances the inhibitory effects of delta9-tetrahydrocannabinol on human glioblastoma cell proliferation and survival. Mol Cancer Ther. 2010;9(1):180–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Luís Â, Marcelino H, Rosa C, Domingues F, Pereira L, Cascalheira JF. The effects of cannabinoids on glioblastoma growth: a systematic review with meta-analysis of animal model studies. Eur J Pharmacol. 2020;876:173055.

    Article  PubMed  Google Scholar 

  61. Hohmann T, Feese K, Ghadban C, Dehghani F, Grabiec U. On the influence of cannabinoids on cell morphology and motility of glioblastoma cells. PLoS ONE. 2019;14(2):e0212037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Peeri H, Koltai H. Cannabis Biomolecule effects on Cancer cells and Cancer Stem cells: Cytotoxic, Anti-proliferative, and anti-migratory activities. Biomolecules. 2022;12(4).

  63. Aguado T, Carracedo A, Julien B, Velasco G, Milman G, Mechoulam R, et al. Cannabinoids induce glioma stem-like cell differentiation and inhibit gliomagenesis. J Biol Chem. 2007;282(9):6854–62.

    Article  CAS  PubMed  Google Scholar 

  64. Volmar MNM, Cheng J, Alenezi H, Richter S, Haug A, Hassan Z, et al. Cannabidiol converts NF-κB into a tumor suppressor in glioblastoma with defined antioxidative properties. Neuro Oncol. 2021;23(11):1898–910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Singer E, Judkins J, Salomonis N, Matlaf L, Soteropoulos P, McAllister S, et al. Reactive oxygen species-mediated therapeutic response and resistance in glioblastoma. Cell Death Dis. 2015;6(1):e1601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Huang T, Xu T, Wang Y, Zhou Y, Yu D, Wang Z, et al. Cannabidiol inhibits human glioma by induction of lethal mitophagy through activating TRPV4. Autophagy. 2021;17(11):3592–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Nabissi M, Morelli MB, Amantini C, Liberati S, Santoni M, Ricci-Vitiani L, et al. Cannabidiol stimulates Aml-1a-dependent glial differentiation and inhibits glioma stem-like cells proliferation by inducing autophagy in a TRPV2-dependent manner. Int J Cancer. 2015;137(8):1855–69.

    Article  CAS  PubMed  Google Scholar 

  68. Ellert-Miklaszewska A, Ciechomska IA, Kaminska B. Synthetic cannabinoids induce autophagy and mitochondrial apoptotic pathways in human glioblastoma cells independently of Deficiency in TP53 or PTEN Tumor suppressors. Cancers (Basel). 2021;13(3).

  69. Scott KA, Dennis JL, Dalgleish AG, Liu WM. Inhibiting heat shock proteins can potentiate the cytotoxic effect of Cannabidiol in Human Glioma cells. Anticancer Res. 2015;35(11):5827–37.

    CAS  PubMed  Google Scholar 

  70. Rupprecht A, Theisen U, Wendt F, Frank M, Hinz B. The Combination of Δ9-Tetrahydrocannabinol and Cannabidiol Suppresses Mitochondrial Respiration of Human Glioblastoma Cells via Downregulation of Specific Respiratory Chain Proteins. Cancers. 2022;14(13):3129.

  71. Gurley SN, Abidi AH, Allison P, Guan P, Duntsch C, Robertson JH, et al. Mechanism of anti-glioma activity and in vivo efficacy of the cannabinoid ligand KM-233. J Neurooncol. 2012;110(2):163–77.

    Article  CAS  PubMed  Google Scholar 

  72. Sánchez C, de Ceballos ML, Gomez del Pulgar T, Rueda D, Corbacho C, Velasco G, et al. Inhibition of glioma growth in vivo by selective activation of the CB(2) cannabinoid receptor. Cancer Res. 2001;61(15):5784–9.

    PubMed  Google Scholar 

  73. Kosgodage US, Uysal-Onganer P, MacLatchy A, Mould R, Nunn AV, Guy GW, et al. Cannabidiol affects Extracellular Vesicle Release, miR21 and miR126, and reduces prohibitin protein in Glioblastoma Multiforme Cells. Transl Oncol. 2019;12(3):513–22.

    Article  PubMed  Google Scholar 

  74. Namee NM, O’Driscoll L. Extracellular vesicles and anti-cancer drug resistance. Biochim Biophys Acta Rev Cancer. 2018;1870(2):123–36.

    Article  CAS  PubMed  Google Scholar 

  75. McAllister SD, Chan C, Taft RJ, Luu T, Abood ME, Moore DH, et al. Cannabinoids selectively inhibit proliferation and induce death of cultured human glioblastoma multiforme cells. J Neurooncol. 2005;74(1):31–40.

    Article  CAS  PubMed  Google Scholar 

  76. Torres S, Lorente M, Rodríguez-Fornés F, Hernández-Tiedra S, Salazar M, García-Taboada E, et al. A combined preclinical therapy of cannabinoids and temozolomide against glioma. Mol Cancer Ther. 2011;10(1):90–103.

    Article  CAS  PubMed  Google Scholar 

  77. Soroceanu L, Singer E, Dighe P, Sidorov M, Limbad C, Rodriquez-Brotons A et al. Cannabidiol inhibits RAD51 and sensitizes glioblastoma to temozolomide in multiple orthotopic tumor models. Neuro-Oncology Adv. 2022;4(1).

  78. López-Valero I, Saiz-Ladera C, Torres S, Hernández-Tiedra S, García-Taboada E, Rodríguez-Fornés F, et al. Targeting glioma initiating cells with a combined therapy of cannabinoids and temozolomide. Biochem Pharmacol. 2018;157:266–74.

    Article  PubMed  Google Scholar 

  79. Khodadadi H, Salles ÉL, Alptekin A, Mehrabian D, Rutkowski M, Arbab AS et al. Inhalant Cannabidiol inhibits Glioblastoma Progression through Regulation of Tumor Microenvironment. Cannabis Cannabinoid Res. 2021.

  80. Lah TT, Novak M, Pena Almidon MA, Marinelli O, Žvar Baškovič B, Majc B, et al. Cannabigerol is a potential therapeutic Agent in a Novel Combined Therapy for Glioblastoma. Cells. 2021;10(2):340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hernán Pérez, de la Ossa D, Lorente M, Gil-Alegre ME, Torres S, García-Taboada E, Aberturas Mdel R, et al. Local delivery of cannabinoid-loaded microparticles inhibits tumor growth in a murine xenograft model of glioblastoma multiforme. PLoS ONE. 2013;8(1):e54795.

    Article  Google Scholar 

  82. Guzmán M, Duarte MJ, Blázquez C, Ravina J, Rosa MC, Galve-Roperh I, et al. A pilot clinical study of Delta9-tetrahydrocannabinol in patients with recurrent glioblastoma multiforme. Br J Cancer. 2006;95(2):197–203.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Schloss J, Lacey J, Sinclair J, Steel A, Sughrue M, Sibbritt D, et al. A phase 2 Randomised Clinical Trial assessing the tolerability of two different ratios of Medicinal Cannabis in patients with high Grade Gliomas. Front Oncol. 2021;11:649555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Twelves C, Sabel M, Checketts D, Miller S, Tayo B, Jove M, et al. A phase 1b randomised, placebo-controlled trial of nabiximols cannabinoid oromucosal spray with temozolomide in patients with recurrent glioblastoma. Br J Cancer. 2021;124(8):1379–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Likar R, Koestenberger M, Stutschnig M, Nahler G. Cannabidiol Μay prolong survival in patients with Glioblastoma Multiforme. Cancer Diagn Progn. 2021;1(2):77–82.

    Article  PubMed  PubMed Central  Google Scholar 

  86. A Clinical Trial of a Hemp-Derived., High Cannabidiol Product for Anxiety in Glioblastoma Patients [Available from: https://clinicaltrials.gov/study/NCT05753007?cond=Glioblastoma&term=Cannabinoids&rank=2.

  87. TN-TC11G (THC + CBD.) Combination With Temozolomide and Radiotherapy in Patients With Newly-diagnosed Glioblastoma (GEINOCANN) [Available from: https://clinicaltrials.gov/study/NCT03529448?cond=Glioblastoma&term=Cannabinoids&rank=3.

  88. Bhaskaran D, Savage J, Patel A, Collinson F, Mant R, Boele F, et al. A randomised phase II trial of temozolomide with or without cannabinoids in patients with recurrent glioblastoma (ARISTOCRAT): protocol for a multi-centre, double-blind, placebo-controlled trial. BMC Cancer. 2024;24(1):83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Antonini M, Aguzzi C, Fanelli A, Frassineti A, Zeppa L, Morelli MB, et al. The effects of a combination of Medical Cannabis, Melatonin, and oxygen–ozone therapy on Glioblastoma Multiforme: a Case Report. Reports. 2023;6(2):22.

    Article  Google Scholar 

  90. Dall’Stella PB, Docema MFL, Maldaun MVC, Feher O, Lancellotti CLP. Case Report: clinical outcome and image response of two patients with secondary high-Grade glioma treated with chemoradiation, PCV, and Cannabidiol. Front Oncol. 2018;8:643.

    Article  PubMed  Google Scholar 

Download references

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

BB created the concept of the article. BB performed the literature search, and data analysis, and drafted the manuscript. BB and MOL created the figures. KK and ACJ critically revised the work and prepared the final version of the manuscript. All authors accepted the final version of the manuscript.

Corresponding author

Correspondence to Katarzyna Kamińska.

Ethics declarations

Data and/or code availability

Not applicable.

Compliance with ethical standards

The manuscript does not contain clinical studies or patient data.

Competing Interests

Authors declare no conflict of interests.

List of abbreviations

ADC—apparent diffusion coefficient.

AEA—anandamide.

2-AG—2-arachidonoyl glycerol.

Aml-1—acute myeloid leukemia 1.

AMPK—5’AMP-activated protein kinase.

ATP—adenosine triphosphate.

BBB—blood-brain barrier.

Bcl-2—B-cell lymphoma 2 family.

C. sativa—Cannabis sativa.

cAMP—cyclic adenosine monophosphate.

CB1R—cannabinoid 1 receptor.

CB2R—cannabinoid 2 receptor.

CBGs—cannabigerols.

CBCs—cannabichromenes.

CBDs—cannabidiols.

CBEs—cannabielsoins.

CBLs—cannabicyclols.

CBNs—cannabinols.

CBNDs—cannabinodiols.

CBTs—cannabitriols.

CD103—cluster of differentiation 103.

CNR1—CB1R gene.

CNR2—CB2R gene.

COX2—cytochrome c oxidase subunit 2.

COX4—cytochrome c oxidase subunit 4.

CYP—cytochrome P450.

DGL—diacylglycerol lipase-alpha.

DWI—diffusion-weighted imaging.

eCBs—endocannabinoids.

EGFR—epidermal growth factor receptor.

EVs—extracellular vesicles.

E2F1—E2F transcription factor 1.

FAAH—fatty acid amide hydrolase.

FAK—focal adhesion kinase.

pFAK—phosphorylated FAK.

FOXM1—forkhead box M1.

GABA—gamma-aminobutyric acid.

GBM—glioblastoma.

GFAP—glial fibrillary acidic protein.

GPCRs—G-protein coupled receptors.

GPR55—G protein-coupled receptor 55.

GRKs—G-protein receptor kinases.

GSCs—glioma stem cells.

GSH—glutathione.

HGGs—high-grade gliomas.

HSPs—heat shock proteins.

IC50—half maximal inhibitory concentration.

Id1—inhibitor of DNA binding 1.

IDO—indoleamine 2,3-dioxygenase.

IL-8—interleukin 8.

LC3-I—light chain 3.

LGG—low grade glioma.

MAPK—p44/42 mitogen-activated protein kinase.

MGL—monoacylglycerol lipase.

MMP-2—matrix metalloproteinase-2.

MRI—magnetic resonance imaging.

mTORC1—mechanistic target of rapamycin complex 1.

NAPE-PLD—N-acylphosphatidylethanolamine-hydrolysing phospholipase D.

NDUFA9—NADH dehydrogenase 1 alpha subcomplex subunit 9.

NDUFB8—NADH dehydrogenase 1 beta subcomplex subunit 8.

NF-kB—nuclear factor kappa-light-chain-enhancer of activated B cells.

NK-1—neurokinin 1.

NRF2—nuclear factor erythroid 2-related factor 2.

p53—cellular tumor antigen p53.

p-STAT3—signal transducer and activator of transcription 3.

PTEN—phosphatase and tensin homolog gene.

Rb—retinoblastoma protein.

RELA—v-rel reticuloendotheliosis viral oncogene homolog A.

ROS—reactive oxygen species.

RTKs—receptor tyrosine kinases.

SCs—synthetic cannabinoids.

Sox2—sex determining region Y box 2.

Δ8-THCs—Δ8-trans-tetrahydrocannabinols.

Δ9-THCs, THCs—Δ9-trans-tetrahydrocannabinols.

TME—tumor microenvironment.

TMZ—temozolomide.

TP53—p53 protein gene.

TRPA—transient receptor potential ankyrin.

TRPM—transient receptor potential melastatin.

TRPV1—transient receptor potential cation channel subfamily V member 1.

TRPV2—transient receptor potential cation channel subfamily V member 2.

TRPV4—transient receptor potential cation channel subfamily V member 4.

VEGFR-2—vascular endothelial growth factor receptor 2.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buchalska, B., Kamińska, K., Owe-Larsson, M. et al. Cannabinoids in the treatment of glioblastoma. Pharmacol. Rep 76, 223–234 (2024). https://doi.org/10.1007/s43440-024-00580-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43440-024-00580-x

Keywords

Navigation