ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Efficient Sugar Release by the Cellulose Solvent-Based Lignocellulose Fractionation Technology and Enzymatic Cellulose Hydrolysis

View Author Information
Biological Systems Engineering Department, Virginia Polytechnic Institute and State University, 210-A Seitz Hall, Blacksburg, Virginia 24061, Institute for Critical Technology and Applied Science (ICTAS), Virginia Polytechnic Institute and State University, Virginia 24061, and Department of Energy (DOE) BioEnergy Science Center, Oak Ridge, Tennessee 37831
* To whom correspondence should be addressed. Telephone: 540-231-7414. Fax: 540-231-3199. E-mail: [email protected]
†Biological Systems Engineering Department, Virginia Polytechnic Institute and State University.
‡Institute for Critical Technology and Applied Science (ICTAS), Virginia Polytechnic Institute and State University.
§Department of Energy (DOE) BioEnergy Science Center.
Cite this: J. Agric. Food Chem. 2008, 56, 17, 7885–7890
Publication Date (Web):August 15, 2008
https://doi.org/10.1021/jf801303f
Copyright © 2008 American Chemical Society

    Article Views

    3390

    Altmetric

    -

    Citations

    98
    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Abstract Image

    Efficient liberation of fermentable soluble sugars from lignocellulosic biomass waste not only decreases solid waste handling but also produces value-added biofuels and biobased products. Industrial hemp, a special economic crop, is cultivated for its high-quality fibers and high-value seed oil, but its hollow stalk cords (hurds) are a cellulosic waste. The cellulose-solvent-based lignocellulose fractionation (CSLF) technology has been developed to separate lignocellulose components under modest reaction conditions ( Zhang, Y.-H. P.; Ding, S.-Y.; Mielenz, J. R.; Elander, R.; Laser, M.; Himmel, M.; McMillan, J. D.; Lynd, L. R. Biotechnol. Bioeng.2007, 97 (2), 214−223). Three pretreatment conditions (acid concentration, reaction temperature, and reaction time) were investigated to treat industrial hemp hurds for a maximal sugar release: a combinatorial result of a maximal retention of solid cellulose and a maximal enzymatic cellulose hydrolysis. At the best treatment condition (84.0% H3PO4 at 50 °C for 60 min), the glucan digestibility was 96% at hour 24 at a cellulase loading of 15 filter paper units of cellulase per gram of glucan. The scanning electron microscopic images were presented for the CSLF-pretreated biomass for the first time, suggesting that CSLF can completely destruct the plant cell-wall structure, in a good agreement with the highest enzymatic cellulose digestibility and fastest hydrolysis rate. It was found that phosphoric acid only above a critical concentration (83%) with a sufficient reaction time can efficiently disrupt recalcitrant lignocellulose structures.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 98 publications.

    1. Lalitendu Das, Wenqi Li, Luke A. Dodge, Joseph C. Stevens, David W. Williams, Hongqiang Hu, Chenlin Li, Allison E. Ray, Jian Shi. Comparative Evaluation of Industrial Hemp Cultivars: Agronomical Practices, Feedstock Characterization, and Potential for Biofuels and Bioproducts. ACS Sustainable Chemistry & Engineering 2020, 8 (16) , 6200-6210. https://doi.org/10.1021/acssuschemeng.9b06145
    2. Anwar Hossain, Mohammad Shahinur Rahaman, David Lee, Thanh Khoa Phung, Christian G. Canlas, Blake A. Simmons, Scott Renneckar, William Reynolds, Anthe George, Sarttrawut Tulaphol, Noppadon Sathitsuksanoh. Enhanced Softwood Cellulose Accessibility by H3PO4 Pretreatment: High Sugar Yield without Compromising Lignin Integrity. Industrial & Engineering Chemistry Research 2020, 59 (2) , 1010-1024. https://doi.org/10.1021/acs.iecr.9b05873
    3. Hongdan Zhang and Shubin Wu . Efficient Sugar Release by Acetic Acid Ethanol-Based Organosolv Pretreatment and Enzymatic Saccharification. Journal of Agricultural and Food Chemistry 2014, 62 (48) , 11681-11687. https://doi.org/10.1021/jf503386b
    4. Ahmed ElMekawy, Ludo Diels, Heleen De Wever, and Deepak Pant . Valorization of Cereal Based Biorefinery Byproducts: Reality and Expectations. Environmental Science & Technology 2013, 47 (16) , 9014-9027. https://doi.org/10.1021/es402395g
    5. Hema Ramsurn and Ram B. Gupta . Nanotechnology in Solar and Biofuels. ACS Sustainable Chemistry & Engineering 2013, 1 (7) , 779-797. https://doi.org/10.1021/sc400046y
    6. Päivi Mäki-Arvela, Tapio Salmi, Bjarne Holmbom, Stefan Willför, and Dmitry Yu. Murzin . Synthesis of Sugars by Hydrolysis of Hemicelluloses- A Review. Chemical Reviews 2011, 111 (9) , 5638-5666. https://doi.org/10.1021/cr2000042
    7. Ye Liu, Qixin Zhong, Siqun Wang, and Zhiyiong Cai . Correlating Physical Changes and Enhanced Enzymatic Saccharification of Pine Flour Pretreated by N-Methylmorpholine-N-oxide. Biomacromolecules 2011, 12 (7) , 2626-2632. https://doi.org/10.1021/bm2004302
    8. Y.-H. Percival Zhang Zhiguang ZhuJoe Rollin Noppadon Sathitsuksanoh. Advances in Cellulose Solvent- and Organic Solvent-Based Lignocellulose Fractionation (COSLIF). 2010, 365-379. https://doi.org/10.1021/bk-2010-1033.ch020
    9. Pellegrino Conte, Antonella Maccotta, Claudio De Pasquale, Salvatore Bubici and Giuseppe Alonzo . Dissolution Mechanism of Crystalline Cellulose in H3PO4 As Assessed by High-Field NMR Spectroscopy and Fast Field Cycling NMR Relaxometry. Journal of Agricultural and Food Chemistry 2009, 57 (19) , 8748-8752. https://doi.org/10.1021/jf9022146
    10. Noppadon Sathitsuksanoh, Zhiguang Zhu, Neil Templeton, Joseph A. Rollin, Steven P. Harvey and Y-H. Percival Zhang . Saccharification of a Potential Bioenergy Crop, Phragmites australis (Common Reed), by Lignocellulose Fractionation Followed by Enzymatic Hydrolysis at Decreased Cellulase Loadings. Industrial & Engineering Chemistry Research 2009, 48 (13) , 6441-6447. https://doi.org/10.1021/ie900291s
    11. Shengbo Wu, Suan Shi, Ruotong Liu, Chun Wang, Jing Li, Lujia Han. The transformations of cellulose after concentrated sulfuric acid treatment and its impact on the enzymatic saccharification. Biotechnology for Biofuels and Bioproducts 2023, 16 (1) https://doi.org/10.1186/s13068-023-02293-4
    12. Debabrata Dash, Nitesh K. Mund, Deepanshu Upadhyay, Prasannajit Mishra, Sashi Kanta Dash, Nihar R. Nayak. Evaluation of alkali and cellulose solvent pretreatments for fermentable sugar production from the biomass of Phragmites karka (Retz.) Trin. ex Steud.: a high biomass producing grass. Biomass Conversion and Biorefinery 2023, 13 (9) , 7725-7736. https://doi.org/10.1007/s13399-021-01730-4
    13. Olaoluwa Oyedeji, Victor Olumide Olakusehin, Raphael Emuebie Okonji. A thermostable extracellular α-amylase from Aspergillus flavus S2-OY: Purification, characterisation and application in raw starch hydrolysis. Biocatalysis and Biotransformation 2023, 41 (3) , 174-186. https://doi.org/10.1080/10242422.2021.2005032
    14. Suwanan Wongleang, Duangporn Premjet, Siripong Premjet. Cellulosic Ethanol Production from Weed Biomass Hydrolysate of Vietnamosasa pusilla. Polymers 2023, 15 (5) , 1103. https://doi.org/10.3390/polym15051103
    15. E. Melis, Carla Asquer, Gianluca Carboni, Efisio Antonio Scano. Role of Cannabis sativa L. in energy production: residues as a potential lignocellulosic biomass in anaerobic digestion plants. 2023, 111-199. https://doi.org/10.1016/B978-0-323-89867-6.00003-2
    16. Pratima Bajpai. Cellulases for biofuels production. 2023, 139-177. https://doi.org/10.1016/B978-0-323-99496-5.00007-8
    17. Edzai Magowo, Craig Sheridan, Karl Rumbold. Fermentable sugars as bioprocessing feedstocks from lignocellulosic biomass pretreated with acid mine drainage. 2023, 161-178. https://doi.org/10.1016/B978-0-323-91192-4.00006-7
    18. Nitesh K. Mund, Debabrata Dash, Prasannajit Mishra, Nihar R. Nayak. Cellulose solvent–based pretreatment and enzymatic hydrolysis of pineapple leaf waste biomass for efficient release of glucose towards biofuel production. Biomass Conversion and Biorefinery 2022, 12 (9) , 4117-4126. https://doi.org/10.1007/s13399-020-01225-8
    19. Meenakshi Das, Soumen K. Maiti. Current knowledge on cyanobacterial biobutanol production: advances, challenges, and prospects. Reviews in Environmental Science and Bio/Technology 2022, 21 (2) , 483-516. https://doi.org/10.1007/s11157-022-09618-z
    20. Diep Trung Tin Le, Tae Hyun Kim. Fractionation Strategies. 2022, 7-33. https://doi.org/10.1007/978-3-031-05835-6_2
    21. Aylin Aghababaei, Ramin Azargohar, Ajay K. Dalai, Jafar Soltan, Catherine Hui Niu. Effective adsorption of carbamazepine from water by adsorbents developed from flax shives and oat hulls: Key factors and characterization. Industrial Crops and Products 2021, 170 , 113721. https://doi.org/10.1016/j.indcrop.2021.113721
    22. Ziyuan Zhou, Dehua Liu, Xuebing Zhao. Conversion of lignocellulose to biofuels and chemicals via sugar platform: An updated review on chemistry and mechanisms of acid hydrolysis of lignocellulose. Renewable and Sustainable Energy Reviews 2021, 146 , 111169. https://doi.org/10.1016/j.rser.2021.111169
    23. C. Karthick, K. Nanthagopal. A comprehensive review on ecological approaches of waste to wealth strategies for production of sustainable biobutanol and its suitability in automotive applications. Energy Conversion and Management 2021, 239 , 114219. https://doi.org/10.1016/j.enconman.2021.114219
    24. Merve GÖRE, Orhan KURT. Bitkisel Üretimde Yeni Bir Trend: Kenevir. International Journal of Life Sciences and Biotechnology 2021, 4 (1) , 138-157. https://doi.org/10.38001/ijlsb.789970
    25. Anqi Ji, Linjing Jia, Deepak Kumar, Chang Geun Yoo. Recent Advancements in Biological Conversion of Industrial Hemp for Biofuel and Value-Added Products. Fermentation 2021, 7 (1) , 6. https://doi.org/10.3390/fermentation7010006
    26. Gustavo Henrique Denzin Tonoli, Kevin holtman, Luiz Eduardo Silva, Delilah Wood, Lennard Torres, Tina Williams, Juliano Elvis Oliveira, Alessandra Souza Fonseca, Artur Klamczynski, Gregory Glenn, William Orts. Changes on structural characteristics of cellulose pulp fiber incubated for different times in anaerobic digestate. CERNE 2021, 27 https://doi.org/10.1590/01047760202127012647
    27. Pratima Bajpai. Pretreatment of Lignocelluloses Biomass for Bioethanol Production. 2021, 111-144. https://doi.org/10.1007/978-981-15-8779-5_6
    28. Cheng Cai, Yu Bao, Yu Jin, Feiyun Li, Yuxia Pang, Hongming Lou, Yong Qian, Xueqing Qiu. Preparation of high molecular weight pH-responsive lignin-polyethylene glycol (L-PEG) and its application in enzymatic saccharification of lignocelluloses. Cellulose 2020, 27 (2) , 755-767. https://doi.org/10.1007/s10570-019-02800-7
    29. Jingzhi Zhang, Haifeng Zhou, Dehua Liu, Xuebing Zhao. Pretreatment of lignocellulosic biomass for efficient enzymatic saccharification of cellulose. 2020, 17-65. https://doi.org/10.1016/B978-0-12-815936-1.00002-2
    30. Venkatesh Balan, Mingjie Jin, Bryan Ubanwa. Chemical and thermochemical methods on lignocellulosic biorefinery. 2020, 101-132. https://doi.org/10.1016/B978-0-12-818223-9.00005-9
    31. Sayari Majumdar, Bhaswati Goswami, Ankita Chakraborty, D. K. Bhattacharyya, Jayati Bhowal. Effect of pretreatment with organic solvent on enzymatic digestibility of cauliflower wastes. Preparative Biochemistry and Biotechnology 2019, 49 (10) , 935-948. https://doi.org/10.1080/10826068.2019.1650374
    32. Alessandra de Souza Fonseca, Suhara Panthapulakkal, Samir Kumar Konar, Mohini Sain, Lina Bufalinof, Joabel Raabe, Ires Paula de Andrade Miranda, Maria Alice Martins, Gustavo Henrique Denzin Tonoli. Improving cellulose nanofibrillation of non-wood fiber using alkaline and bleaching pre-treatments. Industrial Crops and Products 2019, 131 , 203-212. https://doi.org/10.1016/j.indcrop.2019.01.046
    33. Deepika Kushwaha, Neha Srivastava, Ishita Mishra, Siddh Nath Upadhyay, Pradeep Kumar Mishra. Recent trends in biobutanol production. Reviews in Chemical Engineering 2019, 35 (4) , 475-504. https://doi.org/10.1515/revce-2017-0041
    34. Behzad Satari, Keikhosro Karimi, Rajeev Kumar. Cellulose solvent-based pretreatment for enhanced second-generation biofuel production: a review. Sustainable Energy & Fuels 2019, 3 (1) , 11-62. https://doi.org/10.1039/C8SE00287H
    35. Rodrigue Safou Tchiama, Patrice Soulounganga, Péguy Starlin Engozogho Anris, Arsène Bikoro Bi Athomo, Timoléon Andzi Barhé, Bernard De Jeso, Bertrand Charrier, Aristide Gervais Akagah. Understanding the natural durability of some African tropical heartwoods toward Pycnoporus sanguineus and Antrodia sp.: lignin structure and cellulose morphology control. Journal of the Indian Academy of Wood Science 2018, 15 (2) , 162-171. https://doi.org/10.1007/s13196-018-0222-5
    36. Yun Nian Tan, Qingxin Li. Microbial production of rhamnolipids using sugars as carbon sources. Microbial Cell Factories 2018, 17 (1) https://doi.org/10.1186/s12934-018-0938-3
    37. Nitesh K. Mund, Debabrata Dash, Chitta R. Barik, Vaibhav V. Goud, Lingaraj Sahoo, Prasannajit Mishra, Nihar R. Nayak. Evaluation of efficient glucose release using sodium hydroxide and phosphoric acid as pretreating agents from the biomass of Sesbania grandiflora (L.) Pers.: A fast growing tree legume. Bioresource Technology 2017, 236 , 97-105. https://doi.org/10.1016/j.biortech.2017.03.177
    38. Leticia Romero-Cedillo, Hector M Poggi-Varaldo, Teresa Ponce-Noyola, Elvira Ríos-Leal, Ana C Ramos-Valdivia, Carlos M Cerda-García Rojas, José Tapia-Ramírez. A review of the potential of pretreated solids to improve gas biofuels production in the context of an OFMSW biorefinery. Journal of Chemical Technology & Biotechnology 2017, 92 (5) , 937-958. https://doi.org/10.1002/jctb.5116
    39. Sanjeev Kumar, Ritu Singh, Virendra Kumar, Anita Rani, Rajeev Jain. Cannabis sativa: A Plant Suitable for Phytoremediation and Bioenergy Production. 2017, 269-285. https://doi.org/10.1007/978-981-10-3084-0_10
    40. Govindarajan Ramadoss, Karuppan Muthukumar. Ultrasound assisted metal chloride treatment of sugarcane bagasse for bioethanol production. Renewable Energy 2016, 99 , 1092-1102. https://doi.org/10.1016/j.renene.2016.08.003
    41. Stefan Demcak, Magdalena Balintova. Study of Inorganic Pollutants Removal from Acid Mine Drainage by Hemp Hurds. Selected Scientific Papers - Journal of Civil Engineering 2016, 11 (2) , 129-134. https://doi.org/10.1515/sspjce-2016-0025
    42. Yuko Yoneda, Hubert Hettegger, Thomas Rosenau, Toshinari Kawada. Additive Tendency of Substituent Effects onto Rate Constant of Acidic Hydrolysis of Methyl 4‐ O ‐Methyl‐β‐ d ‐Glucopyranoside. ChemistrySelect 2016, 1 (18) , 5715-5720. https://doi.org/10.1002/slct.201601125
    43. Sasikumar Elumalai, Bhumica Agarwal, Troy M. Runge, Rajender S. Sangwan. Integrated two-stage chemically processing of rice straw cellulose to butyl levulinate. Carbohydrate Polymers 2016, 150 , 286-298. https://doi.org/10.1016/j.carbpol.2016.04.122
    44. Reinu E Abraham, Jitraporn Vongsvivut, Colin J Barrow, Munish Puri. Understanding physicochemical changes in pretreated and enzyme hydrolysed hemp (Cannabis sativa) biomass for biorefinery development. Biomass Conversion and Biorefinery 2016, 6 (2) , 127-138. https://doi.org/10.1007/s13399-015-0168-4
    45. Prans Brazdausks, Aigars Paze, Janis Rizhikovs, Maris Puke, Kristine Meile, Nikolajs Vedernikovs, Ramunas Tupciauskas, Martins Andzs. Effect of aluminium sulphate-catalysed hydrolysis process on furfural yield and cellulose degradation of Cannabis sativa L. shives. Biomass and Bioenergy 2016, 89 , 98-104. https://doi.org/10.1016/j.biombioe.2016.01.016
    46. Nitesh K. Mund, Debabrata Dash, Chitta R. Barik, Vaibhav V. Goud, Lingaraj Sahoo, Prasannajit Mishra, Nihar R. Nayak. Chemical composition, pretreatments and saccharification of Senna siamea (Lam.) H.S. Irwin & Barneby: An efficient biomass producing tree legume. Bioresource Technology 2016, 207 , 205-212. https://doi.org/10.1016/j.biortech.2016.01.118
    47. G. H. D. Tonoli, K. M. Holtman, G. Glenn, A. S. Fonseca, D. Wood, T. Williams, V. A. Sa, L. Torres, A. Klamczynski, W. J. Orts. Properties of cellulose micro/nanofibers obtained from eucalyptus pulp fiber treated with anaerobic digestate and high shear mixing. Cellulose 2016, 23 (2) , 1239-1256. https://doi.org/10.1007/s10570-016-0890-5
    48. Premjet Siripong, Premjet Duangporn, Eri Takata, Yuji Tsutsumi. Phosphoric acid pretreatment of Achyranthes aspera and Sida acuta weed biomass to improve enzymatic hydrolysis. Bioresource Technology 2016, 203 , 303-308. https://doi.org/10.1016/j.biortech.2015.12.037
    49. Pratima Bajpai. Pretreatment of Lignocellulosic Biomass. 2016, 17-70. https://doi.org/10.1007/978-981-10-0687-6_4
    50. Małgorzata Smuga-Kogut, Kazimiera Zgórska, Daria Szymanowska-Powałowska. Influence of the crystalline structure of cellulose on the production of ethanol from lignocellulose biomass. International Agrophysics 2016, 30 (1) , 83-88. https://doi.org/10.1515/intag-2015-0072
    51. Govindarajan Ramadoss, Karuppan Muthukumar. Mechanistic study on ultrasound assisted pretreatment of sugarcane bagasse using metal salt with hydrogen peroxide for bioethanol production. Ultrasonics Sonochemistry 2016, 28 , 207-217. https://doi.org/10.1016/j.ultsonch.2015.07.006
    52. Qianqian Wang, Wei Wei, Gakai Peter Kingori, Jianzhong Sun. Cell wall disruption in low temperature NaOH/urea solution and its potential application in lignocellulose pretreatment. Cellulose 2015, 22 (6) , 3559-3568. https://doi.org/10.1007/s10570-015-0767-z
    53. Wu Qin, Lingnan Wu, Zongming Zheng, Changqing Dong, Yongping Yang. Lignin Hydrolysis and Phosphorylation Mechanism during Phosphoric Acid–Acetone Pretreatment: A DFT Study. Molecules 2014, 19 (12) , 21335-21349. https://doi.org/10.3390/molecules191221335
    54. Moreshwar P. Hude, Ganapati D. Yadav. Process intensification in methane generation during anaerobic digestion of Napier grass using supercritical carbon dioxide combined with acid hydrolysis pre‐treatment. The Canadian Journal of Chemical Engineering 2014, 92 (12) , 2176-2184. https://doi.org/10.1002/cjce.22080
    55. Stefano Gandolfi, Gianluca Ottolina, Roberto Consonni, Sergio Riva, Ilabahen Patel. Fractionation of Hemp Hurds by Organosolv Pretreatment and its Effect on Production of Lignin and Sugars. ChemSusChem 2014, 7 (7) , 1991-1999. https://doi.org/10.1002/cssc.201301396
    56. Aleksandra Mitrovic, Karlheinz Flicker, Georg Steinkellner, Karl Gruber, Christoph Reisinger, Georg Schirrmacher, Andrea Camattari, Anton Glieder. Thermostability improvement of endoglucanase Cel7B from Hypocrea pseudokoningii. Journal of Molecular Catalysis B: Enzymatic 2014, 103 , 16-23. https://doi.org/10.1016/j.molcatb.2013.12.009
    57. Charles Rutter, Rachel Chen. Improved cellobiose utilization in E. coli by including both hydrolysis and phosphorolysis mechanisms. Biotechnology Letters 2014, 36 (2) , 301-307. https://doi.org/10.1007/s10529-013-1355-7
    58. Roselinde Ooms, Michiel Dusselier, Jan A. Geboers, Beau Op de Beeck, Rick Verhaeven, Elena Gobechiya, Johan A. Martens, Andreas Redl, Bert F. Sels. Conversion of sugars to ethylene glycol with nickel tungsten carbide in a fed-batch reactor: high productivity and reaction network elucidation. Green Chem. 2014, 16 (2) , 695-707. https://doi.org/10.1039/C3GC41431K
    59. Paripok Phitsuwan, Kazuo Sakka, Khanok Ratanakhanokchai. Improvement of lignocellulosic biomass in planta: A review of feedstocks, biomass recalcitrance, and strategic manipulation of ideal plants designed for ethanol production and processability. Biomass and Bioenergy 2013, 58 , 390-405. https://doi.org/10.1016/j.biombioe.2013.08.027
    60. Yuzhi Kang, Prabuddha Bansal, Matthew J. Realff, Andreas S. Bommarius. SO 2 ‐catalyzed steam explosion: The effects of different severity on digestibility, accessibility, and crystallinity of lignocellulosic biomass. Biotechnology Progress 2013, 29 (4) , 909-916. https://doi.org/10.1002/btpr.1751
    61. Shivakumar Pattada Devaiah, Deborah Vicuna Requesens, Yeun-Kyung Chang, Kendall R. Hood, Ashley Flory, John A. Howard, Elizabeth E. Hood. Heterologous expression of cellobiohydrolase II (Cel6A) in maize endosperm. Transgenic Research 2013, 22 (3) , 477-488. https://doi.org/10.1007/s11248-012-9659-2
    62. Brian G. Schuster, Mari S. Chinn. Consolidated Bioprocessing of Lignocellulosic Feedstocks for Ethanol Fuel Production. BioEnergy Research 2013, 6 (2) , 416-435. https://doi.org/10.1007/s12155-012-9278-z
    63. Brian J. Watson, Boualem Hammouda, Robert M. Briber, Steven W. Hutcheson. Influence of organic liquids on the nanostructure of precipitated cellulose. Journal of Applied Polymer Science 2013, 127 (4) , 2620-2627. https://doi.org/10.1002/app.37540
    64. Muhammad Saif Ur Rehman, Naim Rashid, Ameena Saif, Tariq Mahmood, Jong-In Han. Potential of bioenergy production from industrial hemp (Cannabis sativa): Pakistan perspective. Renewable and Sustainable Energy Reviews 2013, 18 , 154-164. https://doi.org/10.1016/j.rser.2012.10.019
    65. Noppadon Sathitsuksanoh, Anthe George, Y‐H Percival Zhang. New lignocellulose pretreatments using cellulose solvents: a review. Journal of Chemical Technology & Biotechnology 2013, 88 (2) , 169-180. https://doi.org/10.1002/jctb.3959
    66. Christos K. Nitsos, Chrysa M. Mihailof, Konstantinos A. Matis, Angelos A. Lappas, Kostas S. Triantafyllidis. The Role of Catalytic Pretreatment in Biomass Valorization Toward Fuels and Chemicals. 2013, 217-260. https://doi.org/10.1016/B978-0-444-56330-9.00007-3
    67. Ravichandra Potumarthi, Rama Raju Baadhe, Priyanka Nayak, Annapurna Jetty. Simultaneous pretreatment and sacchariffication of rice husk by Phanerochete chrysosporium for improved production of reducing sugars. Bioresource Technology 2013, 128 , 113-117. https://doi.org/10.1016/j.biortech.2012.10.030
    68. Xiaofei Tian, Zhen Fang, Charles Xu. Status and Perspective of Organic Solvent Based Pretreatment of Lignocellulosic Biomass for Enzymatic Saccharification. 2013, 309-337. https://doi.org/10.1007/978-3-642-32735-3_14
    69. Chieh-Lun Cheng, Pei-Yi Che, Bor-Yann Chen, Wen-Jhy Lee, Chiu-Yue Lin, Jo-Shu Chang. Biobutanol production from agricultural waste by an acclimated mixed bacterial microflora. Applied Energy 2012, 100 , 3-9. https://doi.org/10.1016/j.apenergy.2012.05.042
    70. Anna Penkina, Maija Hakola, Urve Paaver, Sirpa Vuorinen, Kalle Kirsimäe, Karin Kogermann, Peep Veski, Jouko Yliruusi, Timo Repo, Jyrki Heinämäki. Solid-state properties of softwood lignin and cellulose isolated by a new acid precipitation method. International Journal of Biological Macromolecules 2012, 51 (5) , 939-945. https://doi.org/10.1016/j.ijbiomac.2012.07.024
    71. Peng Kang, Wu Qin, Zong-Ming Zheng, Chang-Qing Dong, Yong-Ping Yang. Theoretical study on the mechanisms of cellulose dissolution and precipitation in the phosphoric acid–acetone process. Carbohydrate Polymers 2012, 90 (4) , 1771-1778. https://doi.org/10.1016/j.carbpol.2012.07.068
    72. Noppadon Sathitsuksanoh, Zhiguang Zhu, Y.-H. Percival Zhang. Cellulose solvent- and organic solvent-based lignocellulose fractionation enabled efficient sugar release from a variety of lignocellulosic feedstocks. Bioresource Technology 2012, 117 , 228-233. https://doi.org/10.1016/j.biortech.2012.04.088
    73. Raymundo Sánchez Orozco, Patricia Balderas Hernández, Nelly Flores Ramírez, Gabriela Roa Morales, Jaime Saucedo Luna, Agustín Jaime Castro Montoya. Gamma Irradiation Induced Degradation of Orange Peels. Energies 2012, 5 (8) , 3051-3063. https://doi.org/10.3390/en5083051
    74. Raveendran Sindhu, Parameswaran Binod, Kanakambaran Usha Janu, Rajeev K. Sukumaran, Ashok Pandey. Organosolvent pretreatment and enzymatic hydrolysis of rice straw for the production of bioethanol. World Journal of Microbiology and Biotechnology 2012, 28 (2) , 473-483. https://doi.org/10.1007/s11274-011-0838-8
    75. Xumeng Ge, V. Steven Green, Ningning Zhang, Ganapathy Sivakumar, Jianfeng Xu. Eastern gamagrass as an alternative cellulosic feedstock for bioethanol production. Process Biochemistry 2012, 47 (2) , 335-339. https://doi.org/10.1016/j.procbio.2011.11.008
    76. Mrunalini V. Pattarkine, Vikram M. Pattarkine. Nanotechnology for Algal Biofuels. 2012, 147-163. https://doi.org/10.1007/978-94-007-5110-1_8
    77. Devin Takara, Samir Kumar Khanal. Biomass Pretreatment for Biofuel Production. 2012, 59-70. https://doi.org/10.1007/978-1-4471-2324-8_4
    78. Y.-H. Percival Zhang. What is vital (and not vital) to advance economically-competitive biofuels production. Process Biochemistry 2011, 46 (11) , 2091-2110. https://doi.org/10.1016/j.procbio.2011.08.005
    79. Xiao-Zhou Zhang, Noppadon Sathitsuksanoh, Zhiguang Zhu, Y.-H. Percival Zhang. One-step production of lactate from cellulose as the sole carbon source without any other organic nutrient by recombinant cellulolytic Bacillus subtilis. Metabolic Engineering 2011, 13 (4) , 364-372. https://doi.org/10.1016/j.ymben.2011.04.003
    80. William O.S. Doherty, Payam Mousavioun, Christopher M. Fellows. Value-adding to cellulosic ethanol: Lignin polymers. Industrial Crops and Products 2011, 33 (2) , 259-276. https://doi.org/10.1016/j.indcrop.2010.10.022
    81. Noppadon Sathitsuksanoh, Zhiguang Zhu, Sungsool Wi, Y.‐H. Percival Zhang. Cellulose solvent‐based biomass pretreatment breaks highly ordered hydrogen bonds in cellulose fibers of switchgrass. Biotechnology and Bioengineering 2011, 108 (3) , 521-529. https://doi.org/10.1002/bit.22964
    82. Daniel Klein‐Marcuschamer, Brad Holmes, Blake A. Simmons, Harvey W. Blanch. Biofuel Economics. 2011, 329-354. https://doi.org/10.1002/9780470959138.ch14
    83. Iria Ana Ares-Peón, Carlos Vila, Gil Garrote, Juan Carlos Parajó. Enzymatic hydrolysis of autohydrolyzed barley husks. Journal of Chemical Technology & Biotechnology 2011, 86 (2) , 251-260. https://doi.org/10.1002/jctb.2511
    84. Shawn Pugh, Rebekah McKenna, Richard Moolick, David R. Nielsen. Advances and opportunities at the interface between microbial bioenergy and nanotechnology. The Canadian Journal of Chemical Engineering 2011, 89 (1) , 2-12. https://doi.org/10.1002/cjce.20434
    85. Xumeng Ge, David M. Burner, Jianfeng Xu, Gregory C. Phillips, Ganapathy Sivakumar. Bioethanol production from dedicated energy crops and residues in Arkansas, USA. Biotechnology Journal 2011, 6 (1) , 66-73. https://doi.org/10.1002/biot.201000240
    86. Joseph A. Rollin, Zhiguang Zhu, Noppadon Sathitsuksanoh, Y.‐H. Percival Zhang. Increasing cellulose accessibility is more important than removing lignin: A comparison of cellulose solvent‐based lignocellulose fractionation and soaking in aqueous ammonia. Biotechnology and Bioengineering 2011, 108 (1) , 22-30. https://doi.org/10.1002/bit.22919
    87. Michael FitzPatrick, Pascale Champagne, Michael F. Cunningham, Ralph A. Whitney. A biorefinery processing perspective: Treatment of lignocellulosic materials for the production of value-added products. Bioresource Technology 2010, 101 (23) , 8915-8922. https://doi.org/10.1016/j.biortech.2010.06.125
    88. Jia Ouyang, Zhenwei Dong, Xiangyang Song, Xin Lee, Mu Chen, Qiang Yong. Improved enzymatic hydrolysis of microcrystalline cellulose (Avicel PH101) by polyethylene glycol addition. Bioresource Technology 2010, 101 (17) , 6685-6691. https://doi.org/10.1016/j.biortech.2010.03.085
    89. Mélanie Hall, Prabuddha Bansal, Jay H. Lee, Matthew J. Realff, Andreas S. Bommarius. Cellulose crystallinity – a key predictor of the enzymatic hydrolysis rate. The FEBS Journal 2010, 277 (6) , 1571-1582. https://doi.org/10.1111/j.1742-4658.2010.07585.x
    90. N. Sathitsuksanoh, Z. Zhu, J. Rollin, Y.-H.P. Zhang. Solvent fractionation of lignocellulosic biomass. 2010, 122-140. https://doi.org/10.1533/9781845699611.1.122
    91. S.P.S. Chundawat, V. Balan, L. Da costa Sousa, B.E. Dale. Thermochemical pretreatment of lignocellulosic biomass. 2010, 24-72. https://doi.org/10.1533/9781845699611.1.24
    92. Hua Zhao, Gary A. Baker, Janet V. Cowins. Fast enzymatic saccharification of switchgrass after pretreatment with ionic liquids. Biotechnology Progress 2010, 26 (1) , 127-133. https://doi.org/10.1002/btpr.331
    93. Saumita Banerjee, Sandeep Mudliar, Ramkrishna Sen, Balendu Giri, Devanand Satpute, Tapan Chakrabarti, R.A. Pandey. Commercializing lignocellulosic bioethanol: technology bottlenecks and possible remedies. Biofuels, Bioproducts and Biorefining 2010, 4 (1) , 77-93. https://doi.org/10.1002/bbb.188
    94. Li Liu, Junshe Sun, Min Li, Shuhao Wang, Haisheng Pei, Jingsheng Zhang. Enhanced enzymatic hydrolysis and structural features of corn stover by FeCl3 pretreatment. Bioresource Technology 2009, 100 (23) , 5853-5858. https://doi.org/10.1016/j.biortech.2009.06.040
    95. Zhiguang Zhu, Noppadon Sathitsuksanoh, Todd Vinzant, Daniel J. Schell, James D. McMillan, Y.‐H. Percival Zhang. Comparative study of corn stover pretreated by dilute acid and cellulose solvent‐based lignocellulose fractionation: Enzymatic hydrolysis, supramolecular structure, and substrate accessibility. Biotechnology and Bioengineering 2009, 103 (4) , 715-724. https://doi.org/10.1002/bit.22307
    96. Leonardo da Costa Sousa, Shishir PS Chundawat, Venkatesh Balan, Bruce E Dale. ‘Cradle-to-grave’ assessment of existing lignocellulose pretreatment technologies. Current Opinion in Biotechnology 2009, 20 (3) , 339-347. https://doi.org/10.1016/j.copbio.2009.05.003
    97. Y.-H. Percival Zhang, Eric Berson, Simo Sarkanen, Bruce E. Dale. Sessions 3 and 8: Pretreatment and Biomass Recalcitrance: Fundamentals and Progress. Applied Biochemistry and Biotechnology 2009, 153 (1-3) , 80-83. https://doi.org/10.1007/s12010-009-8610-3
    98. Y.-H. Percival Zhang. A sweet out-of-the-box solution to the hydrogen economy: is the sugar-powered car science fiction?. Energy & Environmental Science 2009, 2 (3) , 272. https://doi.org/10.1039/b818694d

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect