Skip to main content
Log in

Microbial fibrinolytic enzymes: an overview of source, production, properties, and thrombolytic activity in vivo

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Accumulation of fibrin in the blood vessels usually results in thrombosis, leading to myocardial infarction and other cardiovascular diseases. For thrombolytic therapy, microbial fibrinolytic enzymes have now attracted much more attention than typical thrombolytic agents because of the expensive prices and the undesirable side effects of the latter. The fibrinolytic enzymes were successively discovered from different microorganisms, the most important among which is the genus Bacillus from traditional fermented foods. The physiochemical properties of these enzymes have been characterized, and their effectiveness in thrombolysis in vivo has been further identified. Therefore, microbial fibrinolytic enzymes, especially those from food-grade microorganisms, have the potential to be developed as functional food additives and drugs to prevent or cure thrombosis and other related diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdel-Fattah AF, Ismail AS (1984) Purification and some properties of pure Cochliobolus lunatus fibrinolytic enzyme. Biotechnol Bioeng 26(5):407–411

    CAS  PubMed  Google Scholar 

  • Batomunkueva BP, Egorov NS (2001) Isolation, purification and resolution of the extracellular proteinase complex of Aspergillus ochraceus 513 with fibrinolytic and anticoagulant activities. Microbiology 70(5):519–522

    CAS  Google Scholar 

  • Chang CT, Fan MH, Kuo FC, Sung HY (2000) Potent fibrinolytic enzyme from a mutant of Bacillus subtilis IMR-NK1. J Agric Food Chem 48(8):3210–3216

    CAS  PubMed  Google Scholar 

  • Chen HM, Guan AL, Markland FS (1991) Immunological properties of the fibrinolytic enzyme (fibrolase) from southern copperhead (Agkistrodon contortrix contortrix) venom and its purification by immunoaffinity chromatograph. Toxicon 29(6):683–694

    CAS  PubMed  Google Scholar 

  • Chiang CJ, Chen HC, Chao Y, Tzen JTC (2005) Efficient system of artificial oil bodies for functional expression and purification of recombinant nattokinase in Escherichia coli. J Agric Food Chem 53(12):4799–4804

    CAS  PubMed  Google Scholar 

  • Chitte RR, Dey S (2000) Potent fibrinolytic enzyme from a thermophilic Streptomyces megasporus strain SD5. Lett Appl Microbiol 31(6):405–410

    CAS  PubMed  Google Scholar 

  • Chitte RR, Dey S (2002) Production of a fibrinolytic enzyme by thermophilic Streptomyces species. World J Microbiol Biotechnol 18(4):289–294

    CAS  Google Scholar 

  • Choi HS, Shin PH (1998) Purification and partial characterization of a fibrinolytic protease in Pleurotus ostreatus. Mycologia 90(4):674–679

    CAS  Google Scholar 

  • Choi NS, Chang KT, Jae Maeng P, Kim SH (2004) Cloning, expression, and fibrin(ogen)olytic properties of a subtilisin DJ-4 gene from Bacillus sp. DJ-4. FEMS Microbiol Lett 236(2):325–331

    CAS  PubMed  Google Scholar 

  • Choi NS, Yoo KH, Hahm JH, Yoon KS, Chang KT, Hyun BH, Maeng PJ, Kim SH (2005) Purification and characterization of a new peptidase, bacillopeptidase DJ-2, having fibrinolytic activity: produced by Bacillus sp. DJ-2 from Doen-Jang. J Microbiol Biotechnol 15(1):72–79

    CAS  Google Scholar 

  • Collen D, Lijnen HR (1994) Staphylokinase, a fibrin-specific plasminogen activator with therapeutic potential? Blood 84(3):680–686

    CAS  PubMed  Google Scholar 

  • Collen D, Lijnen HR (2004) Tissue-type plasminogen activator: a historical perspective and personal account. J Thromb Haemost 2(4):541–546

    CAS  PubMed  Google Scholar 

  • Duffy MJ (2002) Urokinase plasminogen activator and its inhibitor, PAI-1, as prognostic markers in breast cancer: from pilot to level 1 evidence studies. Clin Chem 48(8):1194–1197

    CAS  PubMed  Google Scholar 

  • Egorov NS, Kochetov GA, Khaidarova NV (1976) Isolation and properties of the fibrinolytic enzyme from the Actinomyces thermovulgaris cultural broth. Mikrobiologiia 45:455–459

    CAS  PubMed  Google Scholar 

  • Egorov NS, Prianishnikova NI, Al-Nuri MA, Aslanian RR (1985) Streptomyces spheroides M8-2 strain—a producer of extracellular proteolytic enzyme possessing fibrinolytic and thrombolytic action. Naucn Dokl Vyss Sk Biol Nauki 1:77–81

    Google Scholar 

  • El-Aassar SA (1995) Production and properties enzyme in solid state cultures of Fusarium pallidoroseum. Biotechnol Lett 17(9):943–948

    CAS  Google Scholar 

  • El-Aassar SA, El-Badry HM, Abdel-Fattah AF (1990) The biosynthesis of proteases with fibrinolytic activity in immobilized cultures of Penicillium chrysogenum H9. Appl Microbiol Biotechnol 33(1):26–30

    CAS  PubMed  Google Scholar 

  • Fu L, Li RP, Li J, Zhang SM, Zhang YH, Zhao XX, Yang, ZX (1997) Study on the fibrinolytic enzyme of Bacillus subtilis: selection of liquid fermentation condition. Chin Prog Biotechnol 17(3):31–33

    Google Scholar 

  • Fujita M, Nomura K, Hong K, Ito Y, Asada A, Nishimuro S (1993) Purification and characterization of a strong fibrinolytic enzyme (nattokinase) in the vegetable cheese natto, a popular soybean fermented food in Japan. Biochem Biophys Res Commun 197(3):1340–1347

    CAS  PubMed  Google Scholar 

  • Fujita M, Hong K, Ito Y (1995a) Transport of nattokinase across the rat intestinal tract. Biol Pharm Bull 18(9):1194–1196

    CAS  PubMed  Google Scholar 

  • Fujita M, Hong K, Ito Y, Fujii R, Kariya K, Nishimuro S (1995b) Thrombolytic effect of nattokinase on a chemically induced thrombosis model in rat. Biol Pharm Bull 18(10):1387–1391

    CAS  PubMed  Google Scholar 

  • Fujita M, Ito Y, Hong K, Nishimuro S (1995c) Characterization of nattokinase-degraded products from human fibrinogen or cross-linked fibrin. Fibrinolysis 9(3):157–164

    CAS  Google Scholar 

  • Goldhaber SZ, Bounameaux H (2001) Thrombolytic therapy in pulmonary embolism. Semin Vasc Med 1(2):213–220

    CAS  PubMed  Google Scholar 

  • Ikemura H, Inouye M (1988) In vitro processing of pro-subtilisin in Escherichia coli. J Biol Chem 263:12959–12963

    CAS  PubMed  Google Scholar 

  • Jeong YK, Park JU, Baek H, Park SH, Kong IS, Kim DW, Joo WH (2001) Purification and biochemical characterization of a fibrinolytic enzyme from Bacillus subtilis BK-17. World J Microbiol Biotechnol 17:89–92

    CAS  Google Scholar 

  • Jeong YK, Kim JH, Gal SW, Kim JE, Park SS, Chung KT, Kim YH, Kim BW, Joo WH (2004) Molecular cloning and characterization of the gene encoding a fibrinolytic enzyme from Bacillus subtilis Strain A1. World J Microbiol Biotechnol 20:711–717

    CAS  Google Scholar 

  • Kho CW, Park SG, Cho S, Lee DH, Myung PK, Park BC (2005) Confirmation of Vpr as a fibrinolytic enzyme present in extracellular proteins of Bacillus subtilis. Protein Expr Purif 39:1–7

    CAS  PubMed  Google Scholar 

  • Kim SH, Choi NS (2000) Purification and characterization of subtilisin DJ-4 secreted by Bacillus sp strain DJ-4 screened from Doen-Jang. Biosci Biotechnol Biochem 64:1722–1725

    CAS  PubMed  Google Scholar 

  • Kim W, Choi K, Kim Y, Park H, Choi J, Lee Y, Oh H, Kwon I, Lee S (1996) Purification and characterization of a fibrinolytic enzyme produced from Bacillus sp. strain CK 11-4 screened from Chungkook-Jang. Appl Environ Microbiol 62(7):1488–2482

    Google Scholar 

  • Kim HK, Kim GT, Kim DK, Choi WA, Park SH, Jeong YK, Kong IS (1997) Purification and characterization of a novel fibrinolytic enzyme from Bacillus sp. KA38 originated from fermented fish. J Ferment Bioeng 84(4):307–312

    CAS  Google Scholar 

  • Ko JH, Yan JP, Zhu L, Qi YP (2004) Identification of two novel fibrinolytic enzymes from Bacillus subtilis QK02. Comp Biochem Physiol C Toxicol Pharmacol 137:65–74

    PubMed  Google Scholar 

  • Kumada K, Onga T, Hoshino H (1994) The effect of natto possessing a high fibrinolytic activity in human plasma. Igaku to Seibutsugaku 128(3):117–119

    CAS  Google Scholar 

  • Lai YP, Huang J, Wang LF, Li J, Wu ZR (2004) A new approach to random mutagenesis in vitro. Biotechnol Bioeng 86(6):622–627

    CAS  PubMed  Google Scholar 

  • Lee J, Park S, Choi WA, Lee KH, Jeong YK, Kong IS, Park S (1999) Production of a fibrinolytic enzyme in bioreactor culture by Bacillus subtilis BK-17. J Microbiol Biotechnol 9(4):443–449

    Google Scholar 

  • Lee SK, Bae DH, Kwon TJ, Lee SB, Lee HH, Park JH, Heo S, Johnson MG (2001) Purification and characterization of a fibrinolytic enzyme from Bacillus sp. KDO-13 isolated from soybean paste. J Microbiol Biotechnol 11(5):845–852

    CAS  Google Scholar 

  • Lee SY, Kim JS, Kim JE, Sapkota K, Shen MH, Kim S, Chun HS, Yoo JC, Choi HS, Kim MK, Kim SJ (2005) Purification and characterization of fibrinolytic enzyme from cultured mycelia of Armillaria mellea. Protein Expr Purif 43(1):10–17

    CAS  PubMed  Google Scholar 

  • Liu BY, Song HY (2002) Molecular cloning and expression of nattokinase gene in Bacillus subtilis. Acta Biochim Biophys Sin (Shanghai) 34(3):338–340

    CAS  Google Scholar 

  • Liu JG, Xing JM, Chang TS, Ma ZY, Liu HZ (2005) Optimization of nutritional conditions for nattokinase production by Bacillus natto NLSSE using statistical experimental methods. Process Biochem 40:2757–2762

    CAS  Google Scholar 

  • Matsubara K, Sumi H, Hori K, Miyazawa K (1998) Purification and characterization of two fibrinolytic enzymes from a marine green alga, Codium intricatum. Comp Biochem Physiol Biochem Mol Biol 119:177–181

    Google Scholar 

  • Matsubara K, Hori K, Matsuura Y, Miyazawa K (1999) A fibrinolytic enzyme from a marine green alga, Codium latum. Phytochemistry 52(6):993–999

    CAS  PubMed  Google Scholar 

  • Matsubara K, Hori K, Matsuura Y, Miyazawa K (2000) Purification and characterization of a fibrinolytic enzyme and identification of fibrinogen clotting enzyme in a marine green alga, Codium divaricatum. Comp Biochem Physiol Biochem Mol Biol 125(1):137–143

    CAS  Google Scholar 

  • Mihara H, Sumi H, Yoneta T, Mizumoto H, Ikedo R, Seiki M, Maruyama M (1991) A novel fibrinolytic enzyme extracted from the earthworm Lumbricus rubellus. Jpn J Physiol 41(3):461–472

    CAS  PubMed  Google Scholar 

  • Nakamura T, Yamagata Y, Ichishima E (1992) Nucleotide sequence of the subtilisin NAT gene, aprN, of Bacillus subtilis (natto). Biosci Biotechnol Biochem 56(11):1869–1871

    CAS  PubMed  Google Scholar 

  • Paik HD, Lee SK, Heo S, Kim SY, Lee H, Kwon TJ (2004) Purification and characterization of the fibrinolytic enzyme produced by Bacillus subtilis KCK-7 from Chungkookjang. J Microbiol Biotechnol 14(4):829–835

    CAS  Google Scholar 

  • Peng Y, Zhang YZ (2002a) Isolation and characterization of fibrinolytic enzyme-producing strain DC-4 from Chinese douchi and primary analysis of the enzyme property. Chin High Technol Lett 12:30–34

    CAS  Google Scholar 

  • Peng Y, Zhang YZ (2002b) Optimization of fermentation conditions of douchi fibrinolytic enzyme produced by Bacillus amyloliquefaciens DC-4. Chin Food Ferment Ind 28:19–23

    CAS  Google Scholar 

  • Peng Y, Zhang YZ (2002c) Cloning and expression in E. coli of coding sequence of the fibrinolytic enzyme mature peptide from Bacillus amyloliquefaciens DC-4. Chin J Appl Environ Biol 8:285–289

    CAS  Google Scholar 

  • Peng Y, Huang Q, Zhang RH, Zhang YZ (2003) Purification and characterization of a fibrinolytic enzyme produced by Bacillus amyloliquefaciens DC-4 screened from douchi, a traditional Chinese soybean food. Comp Biochem Physiol Biochem Mol Biol 134:45–52

    Google Scholar 

  • Peng Y, Yang XJ, Xiao L, Zhang YZ (2004) Cloning and expression of a fibrinolytic enzyme (subtilisin DFE) gene from Bacillus amyloliquefaciens DC-4 in Bacillus subtilis. Res Microbiol 155(3):167–173

    CAS  PubMed  Google Scholar 

  • Ruppert C, Markart P, Schmidt R, Grimminger F, Seeger W, Lehr CM, Gunther A (2003) Chemical crosslinking of urokinase to pulmonary surfactant protein B for targeting alveolar fibrin. Thromb Haemost 89:53–64

    CAS  PubMed  Google Scholar 

  • Seo JH, Lee SP (2004) Production of fibrinolytic enzyme from soybean grits fermented by Bacillus firmus NA-1. J Med Food 7(4):442–449

    CAS  PubMed  Google Scholar 

  • Sumi H, Hamada H, Tsushima H, Mihara H, Muraki H (1987) A novel fibrinolytic enzyme (nattokinase) in the vegetable cheese Natto; a typical and popular soybean food in the Japanese diet. Experientia 43(10):1110–1111

    CAS  PubMed  Google Scholar 

  • Sumi H, Hamada H, Mihara H, Nakanishi K, Hiratani H (1989) Fibrinolytic effect of the Japanese traditional food natto (nattokinase). Thromb Haemost 62(1):549

    Google Scholar 

  • Sumi H, Hamada H, Nakanishi K, Hiratani H (1990) Enhancement of the fibrinolytic activity in plasma by oral administration of nattokinase. Acta Haematol 84(3):139–143

    CAS  PubMed  Google Scholar 

  • Sun T, Liu BH, Li P, Liu DM, Li ZH (1998) New solid-state fermentation process for repeated batch production of fibrinolytic enzyme by Fusarium oxysporum. Process Biochem 33(4):419–422

    CAS  Google Scholar 

  • Suzuki Y, Kondo K, Ichise H, Tsukamoto Y, Urano T, Umemura K (2003a) Dietary supplementation with fermented soybeans suppresses intimal thickening. Nutrition 19:261–264

    CAS  PubMed  Google Scholar 

  • Suzuki Y, Kondo K, Matsumoto Y, Zhao BQ, Otsuguro K, Maeda T, Tsukamoto Y, Urano T, Umemura K (2003b) Dietary supplementation of fermented soybean, natto, suppresses intimal thickening and modulates the lysis of mural thrombi after endothelial injury in rat femoral artery. Life Sci 73:1289–1298

    CAS  PubMed  Google Scholar 

  • Tait JF, Engelhardt S, Smith C, Fujikawa K (1995) Prourokinase-annexin V chimeras. Construction, expression, and characterization of recombinant proteins. J Biol Chem 270(37):21594–21599

    CAS  PubMed  Google Scholar 

  • Tao S, Peng L, Beihui L, Deming L, Zuohu L (1997) Solid state fermentation of rice chaff for fibrinolytic enzyme production by Fusarium oxysporum. Biotechnol Lett 19(5):465–467

    CAS  Google Scholar 

  • Tao S, Peng L, Beihui L, Deming L, Zuohu L (1998) Successive cultivation of Fusarium oxysporum on rice chaff for economic production of fibrinolytic enzyme. Bioprocess Eng 18(5):379–381

    CAS  Google Scholar 

  • Tough J (2005) Thrombolytic therapy in acute myocardial infarction. Nurs Stand 19(37):55–64

    PubMed  Google Scholar 

  • Urano T, Ihara H, Umemura K, Suzuki Y, Oike M, Akita S, Tsukamoto Y, Suzuki I, Takada A (2001) The profibrinolytic enzyme subtilisin NAT purified from Bacillus subtilis cleaves and inactivates plasminogen activator inhibitor type 1. J Biol Chem 276:24690–24696

    CAS  PubMed  Google Scholar 

  • Xiao L, Zhang RH, Peng Y, Zhang YZ (2004) Highly efficient gene expression of a fibrinolytic enzyme (subtilisin DFE) in Bacillus subtilis mediated by the promoter of α-amylase gene from Bacillus amyloliquefaciens. Biotechnol Lett 26:1365–1369

    CAS  PubMed  Google Scholar 

  • Xiao-Lan L, Lian-Xiang D, Fu-Ping L, Xi-Qun Z, Jing X (2005) Purification and characterization of a novel fibrinolytic enzyme from Rhizopus chinensis 12. Appl Microbiol Biotechnol 67(2):209–214

    PubMed  Google Scholar 

  • Yoon SJ, Yu MA, Sim GS, Kwon ST, Hwang JK, Shin JK, Yeo IH, Pyun YR (2002) Screening and characterization of microorganisms with fibrinolytic activity from fermented foods. J Microbiol Biotechnol 12(4):649–656

    Google Scholar 

  • Zhang RH, Xiao L, Peng Y, Wang HY, Bai F, Zhang YZ (2005) Expression and characteristics of a novel fibrinolytic enzyme (subtilisin DFE) in Escherichia coli. Lett Appl Microbiol 41:190–195

    CAS  PubMed  Google Scholar 

  • Zhu X, Ohta Y, Jordan F, Inouye M (1989) Pro-sequence of subtilisin can guide the refolding of denatured subtilisin in an intermolecular process. Nature 339:483–484

    CAS  PubMed  Google Scholar 

  • Wang J, Wang M, Wang Y (1999) Purification and characterization of a novel fibrinolytic enzyme from Streptomyces spp. Chin J Biotechnol 15(2):83–89

    CAS  PubMed  Google Scholar 

  • Wong SL (1995) Advances in the use of Bacillus subtilis for the expression and secretion of heterologous proteins. Curr Opin Biotechnol 6:517–522

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Peng.

Additional information

Dr. Yong Peng was invited by the editor-in-chief, Professor Dr. A. Steinbüchel, to write this review

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, Y., Yang, X. & Zhang, Y. Microbial fibrinolytic enzymes: an overview of source, production, properties, and thrombolytic activity in vivo. Appl Microbiol Biotechnol 69, 126–132 (2005). https://doi.org/10.1007/s00253-005-0159-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-005-0159-7

Keywords

Navigation