Review article

Check for updates

COVID-19 drug discovery and treatment options

In the format provided by the authors and unedited

Targets	Drug class	Examples	Antiviral mechanism	Pre-clinical antiviral data
(A) Spike protein				
S1 subunit	mAb and nanobodies	Amubarvimab/roml usevimab Bamlanivimab- etesevimab Bebtelovimab Casirivimab- imdevimab Regdanvimab Sotrovimab Tixagevimab/cilgav imab 10-40	Targets the RBD and non-RBD regions of spike to inhibit virus entry into host cells.	In vitro: potently \downarrow viral load and virus titers with EC ₅₀ in nM range. In vivo: \downarrow clinical signs, respiratory tract viral load, virus titers, and tissue pathology in various animal models. Antiviral effects against different variants are variable ^{1,2} .
	Convalescent plasma	Convalescent plasma	Plasma from recovered COVID-19 patients containing high-titer neutralizing anti-SARS-CoV-2 antibodies.	In vivo: passive immunization \downarrow nasal and lung viral loads in Syrian hamsters and rhesus macaques ³⁻⁵ .
	Aptamers	nCoV-S1-Apt1 to Apt6 RBD-PB6	Binds with S1 to inhibit spike-ACE2 interaction.	In vitro: EC ₅₀ : 0.1-0.2 μ M (HEK293T-hACE2-TMPRSS2 cells) ^{6,7} .
	Miniprotein inhibitors	AHB1 & 2 LCB1 to 5	Binds with RBD to block spike-ACE2 interaction.	In vitro: EC ₅₀ : 24pM to 35nM VeroE6 cells) ⁸ .
	Naturally occurring alkaloid	Cepharanthine	Inhibits spike-ACE2 binding to prevent viral entry into host cells.	<i>In vitro:</i> EC ₅₀ : 0.98µmol/L (VeroE6 cells) ^{9,10} .

SUPPLEMENTARY TABLE 1 | Representative virus-targeting therapeutic candidates for COVID-19.

S2 subunit	Indole derivate	Umifenovir	Influenza drug that binds with SARS- CoV-2 S2 membrane fusion domain to \downarrow viral fusion and entry.	<i>In vitro:</i> EC ₅₀ : 4.11μ M (VeroE6 cells) ^{11,12} .
	HIV protease inhibitors	Cobicistat	HIV protease inhibitor (darunavir- cobicistat) that inhibits SARS-CoV-2 spike-mediated fusion.	<i>In vitro:</i> EC ₅₀ : <8.76 μ M (cobicistat in VeroE6, Calu-3, and T84 cells) and is synergistic with remdesivir. <i>In vivo:</i> \downarrow body weight loss and lung viral load and virus titer in Syrian hamsters ¹³ .
	Peptides	SARS _{HRC} -PEG and related peptides EK1 and related peptides P9R and related peptides	Antiviral peptides that inhibit fusion of SARS-CoV-2 spike-mediated fusion.	In vitro: potently \downarrow viral load and virus titers with IC ₅₀ in nM range. In vivo: \downarrow respiratory tract viral load, virus titers, tissue pathology, and/or transmission in various animal models ¹⁴⁻¹⁸ .
S1/S2 subunits	DARPin	Ensovibep (MP0420) MP0423	Binds to multiple epitopes on the spike protein S1 and/or S2 subunits to inhibit virus entry into host cells.	In vitro: EC ₅₀ : <10ng/ml (VeroE6 cells). In vivo: \uparrow survival and \downarrow lung viral load, virus titers, and tissue pathology in Roborovski dwarf hamsters ¹⁹ .
	Salicylanilide derivative	Niclosamide DWRX2003	Anthelminthic that inhibits SARS-CoV- 2 replication by ↓ TMEM16-mediated syncytium formation and/or other mechanisms.	In vitro: EC_{50} : 0.28-0.34µM (Vero and VeroE6 cells). In vivo: \downarrow viral load and inflammation in lung tissues of ferrets ²⁰⁻²² .
	Lectins	H84T-banana lectin (BanLec)	Binds to high-mannose glycans on spike protein to prevent virus entry into host cells.	<i>In vitro:</i> EC ₅₀ : <0.02 μ M (VeroE6 cells). <i>In vivo:</i> \downarrow respiratory tract viral load, virus titer, and tissue pathology in hamsters ²³ .
		FRIL	Binds to complex-type glycans on spike protein.	In vitro: EC ₅₀ : $<0.01\mu$ M (VeroE6 cells) ²⁴ .
		Griffithsin	Binds to high mannose glycans on spike protein to prevent virus entry into host cells.	<i>In vitro:</i> EC ₅₀ : <0.05 μ M (VeroE6 cells). <i>In vivo:</i> \downarrow viral load and virus titer in mice ^{25,26} .

(B) Viral enzymes

PL ^{pro}	CoV PL ^{pro} inhibitors	F0213	Potential "pan-CoV" PL ^{pro} inhibitor that competitively inhibits the PL ^{pro} of SARS-CoV-2 and other CoVs via binding with the 157K amino acid residue.	In vitro: EC ₅₀ : 7.4 μ mol/L against SARS-CoV-2 PL ^{pro} . In vivo: oral or IP F0213 \downarrow lung viral load, virus titers, viral antigen expression, and tissue pathology in hamsters ²⁷ .
		GRL-0617	SARS-CoV inhibitor that also inhibits SARS-CoV-2 PL ^{pro} .	<i>In vitro:</i> EC ₅₀ : 3.18µmol/L (VeroE6 cells) ^{28,29} .
		rac3j, rac3k, and rac5c	SARS-CoV inhibitors that also inhibit SARS-CoV-2 PL ^{pro} .	In vitro: \downarrow SARS-CoV-2 replication (Vero cells) ³⁰ .
	Other repositioned drugs	6-thioguanine	Guanine analog used in the treatment of leukemia that inhibits SARS-CoV-2 PL ^{pro} .	In vitro: EC ₅₀ : 2.13µM (VeroE6 cells) ³¹ .
		Cryptotanshinone	Natural quinone compound and STAT-3 inhibitor that inhibits SARS-CoV-2 PL ^{pro} .	In vitro: EC ₅₀ : 0.70µmol/L (VeroE6 cells) ²⁸ .
		Sepantronium bromide (YM155)	Survivin inhibitor that inhibits SARS-CoV-2 PL ^{pro} .	In vitro: EC ₅₀ : 0.17µmol/L (VeroE6 cells) ²⁸ .
		Tanshinone I	Tanshinone that inhibits SARS-CoV-2 PL ^{pro} .	<i>In vitro</i> : EC ₅₀ : 2.26µmol/L (VeroE6 cells) ²⁸ .
M ^{pro}	CoV M ^{pro} inhibitors	Nirmatrelir- ritonavir (PF- 07321332)	Inhibits M ^{pro} of SARS-CoV-2 and other CoVs. Lufotrelvir (PF-07304814) is a related intravenous SARS-CoV-2 M ^{pro} inhibitor.	<i>In vitro:</i> "pan-coronaviral" activity against human-pathogenic CoVs in M ^{pro} enzymatic inhibition and CPE inhibition assays (EC ₅₀ : <0.08µM in VeroE6s, A549-hACE2, and human bronchial epithelial cells). <i>In vivo:</i> \downarrow weight loss, virus titer, and tissue pathology in BALB/c mice infected with mouse-adapted SARS-CoV-2 ³² .
		13b	Inhibits M ^{pro} of SARS-CoV-2 and other	In vitro: EC ₅₀ : $<5.0\mu$ M (Calu-3 cells) ³³ .

	Covs.	
ALG-097431	Inhibits M ^{pro} of SARS-CoV-2 and other CoVs.	<i>In vitro:</i> inhibits SARS-CoV-2 (EC ₅₀ : 0.2μ M), HCoV-OC43, and HCoV-229E in A549- hACE2, HeLa, and Huh-7 cells, respectively. <i>In vivo:</i> \downarrow lung viral load and virus titer in Syrian hamsters ³⁴ .
ASC-11	Inhibits SARS-CoV-2 Mpro.	In vitro: EC ₉₀ : 0.005µM (VeroE6 cells) ³⁵ .
EDP-235	Inhibits SARS-CoV-2 Mpro.	In vitro: EC ₉₀ : 0.033µM (VeroE6 cells) ^{35,36} .
Ensitrelvir (S- 217622)	Inhibits SARS-CoV-2 M ^{pro} .	<i>In vitro:</i> "pan-coronaviral" activity against SARS-CoV-2 (EC ₅₀ : $<0.5\mu$ M in VeroE6- TMPRSS2 cells) and other human-pathogenic CoVs ³⁷ . <i>In vivo:</i> \downarrow respiratory tract virus titer in mice and hamsters ³⁷⁻³⁹ .
GC373 GC376	Feline CoV M ^{pro} inhibitors that also inhibit SARS-CoV-2 M ^{pro} .	<i>In vitro:</i> EC ₅₀ : 1.50μ M (GC373) and 0.90 (GC376) (VeroE6 cells) ⁴⁰ .
GDI-4405	Inhibits SARS-CoV-2 M ^{pro} .	<i>In vitro:</i> inhibits SARS-CoV-2 in multiple assays including in primary human-derived airway epithelial cells ⁴¹ .
11a & 11b FB2001	Inhibits SARS-CoV-2 M ^{pro} .	In vitro: EC ₅₀ : 0.53μ M (VeroE6 cells) ⁴² .
Leritrelvir (RAY1216)	Inhibits SARS-CoV-2 M ^{pro} .	<i>In vitro:</i> EC ₅₀ : <200nM (VeroE6 cells) ⁴³ . <i>In vivo:</i> \uparrow survival, \downarrow lung viral titer, and tissue pathology in K18-hACE2 mice ⁴³ .
MI-09 MI-30	Novel bicycloproline-containing SARS-CoV-2 M ^{pro} inhibitors.	In vitro: EC ₅₀ : <0.9 μ M (VeroE6 cells). In vivo: \downarrow lung viral loads and tissue pathology in hACE2 mice ⁴⁴ .
PBI-0451	Inhibits SARS-CoV-2 Mpro.	In vitro: EC ₉₀ : 32nM (VeroE6 cells) ⁴⁵ .

CoVs.

	PF-00835231	SARS-CoV M ^{pro} inhibitor that also inhibits SARS-CoV-2 M ^{pro} .	<i>In vitro:</i> EC ₅₀ : 0.221µM (A549-ACE2 cells) ⁴⁶ .
	N3	Michael acceptor inhibitor that inhibits M ^{pro} of SARS-CoV-2 and other CoVs.	<i>In vitro:</i> "pan-coronaviral" activity against SARS-CoV-2 (EC ₅₀ : 16.77 μ M in VeroE6 cells) and other human-pathogenic CoVs ⁴⁷ .
	Simnotrelvir- ritonavir (SIM0417)	Inhibits SARS-CoV-2 M ^{pro} .	In vitro: EC ₅₀ : 43nM (VeroE6 cells) ⁴⁸ . In vivo: \downarrow body weight loss, lung virus titer, and tissue pathology in K18-hACE2 mice ⁴⁸ .
	Y180	Inhibits SARS-CoV-2 M ^{pro} .	In vitro: EC ₅₀ : <0.04 μ M (VeroE6-TMPRSS2 cells). In vivo: \uparrow survival and \downarrow body weight loss, lung viral load, virus titer, and tissue pathology in K18-hACE2 mice ⁴⁹ .
HCV protease inhibitors	Boceprevir Ciluprevir Narlaprevir Telaprevir	HCV protease inhibitors that may also inhibit SARS-CoV-2 M ^{pro} .	<i>In vitro:</i> EC ₅₀ : 11.552 μ M (telaprevir in VeroE6 cells) ^{50,51} .
HIV protease inhibitors	Atazanavir	HIV protease inhibitor (atazanavir- ritonavir) that also inhibits SARS-CoV- 2 M ^{pro} .	In vitro: EC ₅₀ : <0.5 μ M (atazanavir in Calu-3 cells) ⁵² . In vivo: \uparrow survival and \downarrow body weight loss, lung viral load, and tissue pathology in K18-hACE2 mice ⁵³ .
	Lopinavir	HIV protease inhibitor (lopinavir- ritonavir) that also inhibits SARS-CoV- 2 M ^{pro} .	In vitro: EC ₅₀ : 11.6µM (lopinavir in VeroE6 cells) ⁵⁴ . In vivo: \downarrow clinical scores but no significant \downarrow nasal wash viral load in ferrets ⁵⁵ .
Other repositioned drugs	Emodin	An anthraquinone that inhibits SARS-CoV-2 M ^{pro} .	In vitro: EC_{50} : <32.00µM (Vero and Calu-3 cells) ⁵⁶ .
Remdesivir and related	Remdesivir (GS- 5734) and its active	Broad-spectrum nucleoside analog viral RdRp inhibitor.	In vitro: EC ₅₀ : 0.77 μ M (VeroE6 cells) ⁵⁷ . In vivo: \downarrow clinical signs, lung infiltrates, viral

RdRp

compounds	metabolite GS- 441524		loads, virus titers, and tissue pathology in rhesus macaques ⁵⁸ .
	ATV006	Oral derivate of GS-441524 (parent nucleoside of remdesivir) viral RdRp inhibitor.	In vitro: EC ₅₀ : <2.00 μ M (VeroE6 and Huh7cells). In vivo: oral ATV006 \downarrow lung viral loads, virus titer, and tissue pathology in mice ⁵⁹ .
	GS-621763	Oral prodrug of GS-441524 (parent nucleoside of remdesivir) viral RdRp inhibitor.	In vitro: EC ₅₀ : 0.11-0.73 μ M (VeroE6 cells). In vivo: \downarrow clinical signs, respiratory tract viral load and virus titers, and transmission in ferrets ⁶⁰ .
	ODBG-P-RVn	Oral prodrug of GS-441524 (parent nucleoside of remdesivir) viral RdRp inhibitor.	<i>In vitro:</i> EC ₅₀ : <0.30 μ M (VeroE6, Calu-3, Huh- 7.5, Caco-2, and human pluripotent stem cell- derived lung cells) ⁶¹ . <i>In vivo:</i> achieved therapeutic levels in plasma above EC ₉₀ for SARS-CoV-2 in Syrian hamsters ⁶² .
	Mindeudesivir (JT001; VV116)	Oral derivate of GS-441524 (parent nucleoside of remdesivir) viral RdRp inhibitor.	In vitro: EC ₅₀ : 0.24µM (VeroE6 cells) ⁶³ . In vivo: \downarrow active against SARS-CoV-2 WT and variants in mice ⁶⁴ .
Other broad- spectrum RdRp inhibitors	Galidesivir (BCX4430)	Broad-spectrum nucleoside analog viral RdRp inhibitor.	<i>In vitro:</i> EC ₉₀ : $<20.00\mu$ M (Vero76 and Caco2 cells). <i>In vivo:</i> \downarrow weight loss, viral burden, and tissue pathology in Syrian hamsters ⁶⁵ .
	Molnupiravir (EIDD-2801 or MK-4482)	Oral prodrug of the broad-spectrum ribonucleoside analog NHC; induces mutations in the replication of viral RdRp.	In vitro: EC ₅₀ : <0.5 μ M (A549-hACE2 and Calu-3 cells) ⁶⁶ . In vivo: \downarrow lung viral load, virus titers, and tissue pathology in mice implanted with human lung tissue and Syrian hamsters, and \downarrow transmission in ferrets ⁶⁷⁻⁷⁰ .
	Ribavirin	Broad-spectrum nucleoside analog viral RdRp inhibitor.	<i>In vitro:</i> EC ₅₀ : 109.50µM ⁵⁷ .

		Triazavirin	Broad-spectrum nucleoside analog viral RdRp inhibitor that may also inhibit SARS-CoV-2 RdRp and M ^{pro} .	<i>In silico:</i> potential SARS-CoV-2 M ^{pro} inhibitor ⁷¹ .
]	HCV inhibitors	Bemnifosbuvir (AT-527, RO7496998)	HCV nucleotide analog viral RdRp inhibitor that also inhibits SARS-CoV-2 RdRp.	In vitro: EC_{90} : 0.53 μ M ⁷² .
		Sofosbuvir	HCV NS5B inhibitor that inhibits SARS-CoV-2 RdRp.	In vitro: EC_{50} : 5.1 to >10.0µM (VeroE6, Huh7, and Calu-3 cells) ⁷³ .
]	HIV inhibitors	Azvudine	HIV RdRp inhibitor that also inhibits SARS-CoV-2 RdRp and may also have immunomodulatory effects.	<i>In vitro:</i> inhibits replication of SARS-CoV-2 (EC ₅₀ : 4.31µM in VeroE6 cells) and HCoV-OC43 (1.2µM in H460 cells). - <i>In vivo:</i> ↓ respiratory tract and blood viral load, lung viral antigen expression, and lung tissue pathology in rhesus macaques ⁷⁴ .
		Tenofovir	HIV and HBV nucleotide analog RdRp inhibitor (tenofovir-emtricitabine) that also inhibits SARS-CoV-2 RdRp.	In vivo: \downarrow clinical signs and nasal wash virus titers in ferrets ^{55,75} .
	Influenza nhibitors	Enisamium (FAV00A)	Isonicotinic acid derivative anti- influenza drug that inhibits SARS-CoV- 2 RdRp.	In vitro: EC ₅₀ : 1200µM in Caco2 cells ⁷⁶ .
		Favipiravir	Anti-influenza nucleoside analog viral RdRp inhibitor that also inhibits SARS- CoV-2 RdRp.	In vitro: EC ₅₀ : 61.88μ M ⁵⁷ . In vivo: \downarrow lung viral load, virus titers, and tissue pathology in Syrian hamsters ⁷⁷ .
	Other repositioned drugs	Omipalisib	A PI3K/mTOR inhibitor that is predicted to inhibit SARS-CoV-2 RdRp.	In vitro: EC_{50} : <0.50µM (Vero and Calu-3 cells) ⁵⁶ .
		Tipifarnib	A farnesyltransferase inhibitor that is predicted to inhibit SARS-CoV-2 RdRp.	In vitro: EC_{50} : <12.00µM (Vero and Calu-3 cells) ⁵⁶ .
5	siRNAs	C6G25S sLNP-siUC7	siRNAs (with or without sLNPs) that target SARS-CoV-2 RdRp.	<i>In vitro:</i> EC ₅₀ : <0.1nM. <i>In vivo:</i> intravenous sLNP-siUC7, inhaled

		siR-7-EM/KK-46		C6G25S, and inhaled siR-7-EM/KK-46 \downarrow lung viral load, virus titers, and tissue pathology in K18-hACE2 mice and Syrian hamsters ⁷⁸⁻⁸⁰ .
Helicase	Helicase inhibitors	Ranitidine bismuth citrate	Anti- <i>Helicobacter pylori</i> infection and peptic ulcer disease drug that inhibits SARS-CoV-2 helicase.	In vitro: EC ₅₀ : 2.3µM (VeroE6 cells). In vivo: \downarrow clinical signs, and lung viral load, virus titer, and tissue pathology in Syrian hamsters ⁸¹ .
		FPA-124	AKT inhibitor that inhibits SARS-CoV-2 helicase.	In vitro: EC ₅₀ : 14μ M (VeroE6 cells) ⁸² .
		Myricetin	Flavonoid that inhibits SARS-CoV-2 helicase.	In vitro: EC ₅₀ : 32µM (VeroE6 cells) ⁸² .
		Suramin	Anti-parasitic that inhibits SARS-CoV-2 helicase.	In vitro: EC ₅₀ : 9.9 μ M (VeroE6 cells) ⁸² .
		SSYA10-001	SARS-CoV helicase inhibitor that also inhibits SARS-CoV-2 helicase.	In vitro: EC ₅₀ : 81μ M (VeroE6 cells) ⁸² .
		sLNP-siHel2	siRNAs with sLNPs that target SARS-CoV-2 helicase.	In vivo: intravenous sLNP-siHel2 and inhaled C6G25S \downarrow lung viral load, virus titers, and tissue pathology in K18-hACE2 mice ⁷⁸ .
Exonuclease	HCV inhibitors	Elbasivr Pibrentasvir Ombitasvir	Inhibit SARS-CoV-2 exonuclease.	<i>In vitro:</i> EC ₅₀ : 0.4-0.7µM (Calu-3 cells) ⁸³ .
Endoribonuclease	TPase inhibitor	Tipiracil	TPase inhibitor used in the treatment of colorectal cancer that inhibits SARS-CoV-2 SARS-CoV-2 endoribonuclease.	<i>In vitro:</i> inhibition of endoribonuclease activity but limited effect on viral replication (A549-hCE2 cells) ⁸⁴ .
2'-O- methyltransferase	Miscellaneous	Compound 11 Nsp10 peptides	<i>In silico</i> prediction of high binding affinities with SARS-CoV-2 2'-O-methyltransferase.	<i>In silico:</i> uncertain <i>in vitro</i> or <i>in vivo</i> antiviral activity ^{85,86} .
Multiple enzymes	Antimycobacterial	Clofazimine	Inhibits SARS-CoV-2 helicase and	In vitro: EC ₅₀ : 0.31µM (VeroE6 cells).

		RdRp.	<i>In vivo:</i> \downarrow lung viral load, virus titers, and tissue pathology in Syrian hamsters ⁸⁷ .
HCV inhibitors	Simeprevir Grazoprevir Paritaprevir Vaniprevir	Inhibits SARS-CoV-2 M ^{pro} , PL ^{pro} , and/or RdRp.	<i>In vitro:</i> EC ₅₀ : 4.082µM (VeroE6 cells) ^{88,89} .
	Daclatasvir Ledipasvir Velpatasvir	Inhibit SARS-CoV-2 RdRp and exonuclease.	<i>In vitro:</i> EC ₅₀ : 0.6-1.1 μ M (daclatasvir in VeroE6, Huh7, and Calu-3 cells) ^{73,74,83} .
Others	Carmofur Disulfiram Ebselen PX-12 Shikonin Tideglusib	Non-specific inhibition of SARS-CoV-2 PL ^{pro} , M ^{pro} , nsp13 ATPase, and/or nsp14 exoribonuclease.	<i>In vitro:</i> inhibits SARS-CoV-2 PL ^{pro} , M ^{pro} , nsp13 ATPase, and/or nsp14 exoribonuclease activities; EC_{50} : 24.30µM (carmofur in VeroE6 cells) ^{47,90-92} .

(C) Other viral targets

Viroporin inhibitors	Amantadine Emodin Epigallocatechin Hexamethylene- amiloride Quercetin Xanthene	Inhibits SARS-CoV-2 envelope protein and other viroporins from inducing intracellular membrane remodelling to generate membrane vesicles as viral replication site and/or ion channel activities.	<i>In vitro:</i> EC ₅₀ : 83-119µM (amantadine in VeroE6 cells) ⁹³⁻⁹⁵ .
siRNAs	siORF1 (O1 to O3) siL (L1 to L3) siN (N1 to N11) siU (U1 to U3)	siRNA targeting different genomic and subgenomic RNAs of SARS-CoV-2.	<i>Ex vivo:</i> siORF1 (O3) \downarrow viral load in <i>ex vivo</i> lung culture model ^{96,97} .

Abbreviations: CXR, chest X-ray; DARPin, designated ankyrin repeat protein; FRIL, Flt3 receptor interacting lectin; HCV, hepatitis C virus; HIV, human immunodeficiency virus; M^{pro}, main protease; NHC, beta-D-N4-hydroxycytidine; PL^{pro}, papain-like protease; RdRp, RNA-dependent RNA polymerase; siRNA, small interfering RNA; sLNP, stealth lipid nanoparticle; TMEM16, transmembrane protein 16; TPase, thymidine phosphorylase.

SUPPLEMENTARY TABLE 2 | Representative host-targeting therapeutic candidates for COVID-19.

Target	Drug class	Examples	Antiviral mechanism	Pre-clinical antiviral data		
(A) Host immune response						
Broad-spectrum	Alkaloid	Colchicine	Anti-mitotic drug that inhibits microtubule assembly and modulates multiple inflammatory pathways.	Clinical uses: inflammatory disorders such as gout, pericarditis, Behçet's disease, and familia Mediterranean fever. Uncertain <i>in vitro</i> and <i>in vivo</i> efficacy against SARS-CoV-2 ⁹⁸ .		
	Indole-imidazole derivative	Sabizabulin (VERU-111)	Novel bis-indole microtubule depolymerisation agent with anti-inflammatory and potentially antiviral effects.	<i>In vitro:</i> 1 inflammatory cytokines in endotoxin stimulated mouse spleen cells ⁹⁹ .		
	Glucocorticoids	Dexamethasone Methylprednisolone Hydrocortisone	Systemic corticosteroids with broad-spectrum anti- inflammatory effects.	In vivo: combination of systemic methylprednisolone and remdesivir \downarrow body weight loss, viral loads, and tissue inflammatio in Syrian hamsters ¹⁰⁰ .		
		Budesonide Ciclesonide	Inhaled corticosteroids that ↓ airway inflammation. Ciclesonide also targets SARS-CoV-2 nsp3 and/or nsp4 to inhibit viral replication.	<i>In vitro:</i> EC ₅₀ : 4.33μ M (ciclesonide in Vero cells) and EC ₉₀ : 0.55μ M in human bronchial tracheal epithelial cells ^{20,101} .		
Interferons						
Type I IFNs	Recombinant type I	Recombinant IFN-α	A family of cytokines with	Clinical uses: HBV and HCV infections (IFN-		

	IFNs	Recombinant IFN-β	broad-spectrum antiviral activities.	and multiple sclerosis (IFN- β). <i>In vitro:</i> potent antiviral activity against SARS-CoV-2 alone or in combination with other antivirals ^{54,102} . <i>In vivo:</i> early use of intranasal IFN- $\alpha \downarrow$ weight loss, lung viral load and virus titers, and tissue damage in Syrian hamsters ¹⁰³ .
Type II IFNs	Antibodies against type II IFNs	Neutralizing antibody against IFN-γ	Neutralizing antibodies that block IFN-γ-mediated inflammation.	In vitro: IFN- $\gamma \uparrow$ viral replication in human colonic organoids ¹⁰⁴ . In vivo: neutralizing antibodies against IFN- γ and TNF- α co-treatment \uparrow survival and \downarrow tissue damage of K18-hACE2 mice ¹⁰⁵ .
Type III IFNs	Recombinant type III IFNs	Recombinant IFN-λ	A family of cytokines with broad-spectrum antiviral activities.	In vitro: pegylated IFN- $\lambda 1 \downarrow$ SARS-CoV-2 replication in primary human airway epithelial cells ¹⁰⁶ . In vivo: early use of pegylated IFN- $\lambda 1 \downarrow$ SARS- CoV-2 replication in mice ¹⁰⁶ . Intranasal IFN- $\lambda 2$ \downarrow respiratory tract viral load, virus titers, and tissue damage in K18-hACE2 mice ¹⁰⁷ .
IFN inducers	Synthetic double- stranded RNA analogues	Poly(I:C)	TLR3/MDA5 synthetic agonist that potently induces IFN production.	In vitro: poly(I:C)-primed mesenchymal stem cells exhibit \uparrow antiviral and immunomodulatory response pathways and \uparrow expression of antiviral proteins (MX1, IFITM3, and OAS1). Addition of poly(I:C)-primed mesenchymal stem cells to COVID-19 patients' whole blood \downarrow inflammatory neutrophils and \uparrow M2 monocytes with enhanced phagocytic effector function ¹⁰⁸ . In vivo: early use of intranasal poly(I:C) results in \uparrow survival rate, \downarrow viral loads, and \downarrow lung and brain cytokine storm in K18-hACE2-transgenic mice ¹⁰⁹ .

Interleukins

IL-1	IL-1 inhibitors	Anakinra Canakinumab	IL-1 receptor antagonist (eg: anakinra) and mAb (eg: canakinumab) that ↓ IL1- mediated immunopathologies.	Clinical uses: immune disorders such as rheumatoid arthritis, systemic juvenile idiopathic arthritis, Still's disease, and neonatal onset multisystem inflammatory disease. Anakinra has been used to treat pediatric patients with MIS-C.
IL-6	IL-6 inhibitors	Sarilumab Siltuximab Tocilizumab	Anti-IL-6 receptor mAb (eg: tocilizumab and sarilumab) and anti-IL-6 mAb (eg: siltuximab) that ↓ IL6- mediated immunopathologies.	Clinical uses: immune disorders such as rheumatoid arthritis, CAR T-cell therapy- induced cytokine release syndrome, and Castleman disease. Tocilizumab and sarilumab may be used in combination of corticosteroids for treatment of COVID-19.
Other inflam	matory mediators			
BET	BRD2 and BRD4 inhibitors	Mivebresib (ABBV-075) ABBV-744 Apabetalone (RVX-208) CPI-0610 dBET6 JQ-1 MZ1 SF2523	Inhibits BRD2 and BRD4- mediated regulation of gene transcription.	<i>In vitro:</i> EC ₅₀ : 1.52µM (SF2523 in Vero STAT KO cells) ^{110,111} .
ВТК	BTK inhibitors	Acalabrutinib Ibrutinib Zanubrutinib	Inhibits B-cell and macrophage activation, signalling, and development to ↓ immunopathologies.	Clinical uses: B-cell malignancies such as chronic lymphocytic leukemia and mantle cell lymphoma, and chronic GVHD. Uncertain <i>in vitro</i> and <i>in vivo</i> anti-SARS-CoV- efficacy.
JAK	JAK inhibitors	Baricitinib Ruxolitinib Tofacitinib	Interferes with phosphorylation of key proteins involved in the inflammatory response. Baricitinib may also ↓	Clinical uses: immune disorders such as rheumatoid arthritis, psoriatic arthritis, juvenile idiopathic arthritis, and ulcerative colitis, and hematological disorders such as myelofibrosis, polycythemia vera, and acute GVHD.

			of SARS-CoV-2 ¹¹² .	corticosteroids. In vivo: baricitinb \downarrow inflammation and pulmonary tissue pathologies in SARS-CoV-2- infected rhesus macaques ¹¹³ .
Sigma-1 and -2 receptor	SSRI	Fluvoxamine	Reduces pro-inflammatory cytokine production through binding to sigma-1 receptor on immune cells; may also ↓ SARS-CoV-2 entry through inhibition of acid sphingomyelinase and ceramide-enriched membrane domain formation ^{114,115} .	Clinical uses: depression and obsessive- compulsive disorder. Uncertain <i>in vitro</i> and <i>in vivo</i> efficacy against SARS-CoV-2.
		Chloroquine Clemastine Haloperiodol PB28 PD-144418 RS-PPCC	Perturbs sigma receptor- mediated cell stress response.	In vitro: \downarrow viral antigen \pm titer (VeroE6 cells) ¹¹⁶ .
Histamine receptor	H ₂ receptor antagonist	Famotidine	Inhibits histamine-induced TLR3 expression and cytokine release in SARS-CoV-2 infected cells.	Clinical uses: peptic ulcer disease and gastroesophageal reflux disease. In vitro: no effect on viral replication, but \downarrow CCL-2 and IL-6 expression levels in SARS-CoV-2 infected cells ¹¹⁷ .
GM-CSF	Anti-GM-CSF mAbs	Gimsilumab Lenzilumab Mavrilimumab Namilumab Otilimab	Blocks interaction between GM-CSF and its cell surface receptor or the intracellular signalling of GM-CSF to ↓ immunopathologies.	Uncertain <i>in vitro</i> and <i>in vivo</i> efficacy against SARS-CoV-2.
Complements	Complement inhibitors	AMY-101 (anti-C3) Eculizumab (anti-C5) Ravulizumab (anti-C5) Zilucoplan (anti-C5) Vilobelimab (anti-C5a)	Anti-complement mAbs and peptides that ↓ complement-mediated immunopathologies.	Clinical uses: myasthenia gravis, paroxysmal nocturnal hemoglobinuria ¹¹⁸⁻¹²¹ .

TOP1	TOP1 inhibitors	Topotecan	Inhibits TOP1-mediated inflammation.	Clinical uses: chemotherapeutic agent for ovarian, cervical, and lung cancers. <i>In vitro:</i> \downarrow SARS-CoV-2-induced inflammatory gene expression <i>In vivo:</i> \downarrow inflammation in hamsters and \uparrow survival in K18-hACE2 mice ¹²² .
HMGB1	HMGB1 inhibitors	Glycyrrhizin	Inhibits HMGB1-mediated inflammatory response, lung ACE2 mRNA expression, and inhibits SARS-CoV-2 M ^{pro} .	<i>In vitro:</i> EC ₅₀ : 0.44mg/mL (VeroE6 cells) ^{123,124} .
HDAC2	HDAC inhibitors	Apicidin Belinostat Vorinostat Valproic acid	Inhibit HDAC2-mediated inflammatory and interferon response.	In vitro: \downarrow ACE2 expression but uncertain effects on SARS-CoV-2 replication ^{116,125} .
S1P	S1P receptor modulators and spingosine kinase inhibitors	Fingolimod Opaganib	Inhibits S1P synthesis and the associated inflammatory response.	Clinical uses: multiple sclerosis (fingolimod). In vitro: \downarrow viral load in human bronchial epithelial cells ¹²⁶ .

(B) Host factors involved in the viral replication cycle

Receptor

ACE2	Recombinant soluble hACE2	ACE2-1-618-DDC-ABD hACE2 1-618	Act as decoys to compete with cell-bound ACE2 to ↓ spike-ACE2 binding.	In vitro: \downarrow viral load of SARS-CoV-2 WT and variants and human kidney organoids ¹²⁷ . In vivo: \downarrow clinical scores, lung viral load and virus titers, and tissue damage in K18-hACE2-transgenic mice and Syrian hamsters ^{128,129} .
	Bivalent ACE2-Fc	M81	Competes with cell-bound ACE2 and possesses robust	<i>In vitro:</i> cross-neutralizes SARS-CoV-2 WT and variants with low nM EC ₅₀ .

		Fc-effector functions, including antibody-dependent cellular cytotoxicity, phagocytosis, and complement deposition.	<i>In vivo:</i> \uparrow survival and \downarrow respiratory tract viral load in K18-hACE2-transgenic mice ¹³⁰ .
Circulating extracellular vesicles expressing ACE2	evACE2	Act as decoys to compete with cell-bound ACE2 to ↓ spike-ACE2 binding.	In vitro: neutralizes SARS-CoV-2 WT and variants with about 80-fold higher potentcy than recombinant soluble ACE2. In vivo: intranasal evACE2 \uparrow survival and \downarrow lung viral load in K18-hACE2-transgenic mice [114].
PPAR-α agonist	Fenofibrate	Destabilizes RBD-ACE2 binding and may reverse alterations in lipid metabolism induced by SARS-CoV-2.	In vitro: EC ₅₀ : 7-14 μ M (Vero cells) ¹³¹ .

Attachment factors and/or co-receptors

HSPGs	Sulfated glycans	LMWH Fucoidans Mucopolysaccharide polysulfate Pentosan polysulfate Unfractionated heparin	Competitive inhibitors of heparan sulfate.	Clinical uses: anticoagulation (heparin) and interstitial cystitis (pentosane polysulfate). <i>In vitro:</i> ↓ viral entry ¹³²⁻¹³⁵ .
	Other inhibitors of HSPG-dependent endocytosis	BNTX Brilacidin Lactoferrin Mitoxantrone Piceatannol Raloxifene Sunitinib Tilorone	Directly inhibits heparan sulfate or disrupts actin network to indirectly inhibit heparan sulfate-assisted viral entry.	<i>In vitro:</i> \downarrow viral entry and virus-induced CPE; EC ₅₀ : <23µM (brilacidin in Vero, Calu-3, Caco-2, Huh-7, and 293T-ACE2 cells) ^{132,136,137} .
CD147 (basigin or	Humanized anti-	Meplazumab (HP6H8)	Inhibits CD147-mediated	Clinical uses: severe eosinophilic ashma,

EMMPRIN)	CD147 antibody		SARS-CoV-2 entry.	eosinophilic granulomatosis, and hypereosinophilic syndrome. <i>In vitro:</i> EC ₅₀ : 15.16 μ g/ml ¹³⁸ .
Entry				
Surface host proteases	Serine protease inhibitors	Camostat Nafaomstat Upamostat	Inhibits spike-TMPRSS2 binding to reduce TMPRSS2- mediated virus entry into host cells.	Clinical uses: chronic pancreatitis and reflux esophagitis. In vitro: EC ₅₀ : 2.2nM (HAE cells) to 22.50 μ M (nafamostat, VeroE6 cells) ^{57,139,140} . In vivo: intranasal nafamostat \downarrow virus titers, weight loss, and mortality in K18-hACE2 mice ¹⁴¹ .
	Peptidomimetics	N-0385	Inhibits TMPRSS-2-mediated virus entry into host cells.	In vitro: EC ₅₀ : 2.8nM (Calu-3 cells) ¹⁴² . In vivo: \downarrow morbidity and mortality in K18- hACE2 mice ¹⁴² .
	Kallikrein-related B1 inhibitor	Avoralstat	Inhibits TMPRSS-2-mediated virus entry into host cells.	In vitro: inhibits SARS-CoV-2 entry and replication in human airway epithelial cells ¹⁴³ . In vivo: \downarrow lung tissue viral titers and body weight loss in Ad5-hACE2-transduced BALB/c mice ¹⁴³ .
	Mucolytics	Bromhexine	Inhibits spike-TMPRSS2 binding of TMPRSS2 to reduce TMPRSS2-mediated virus entry into host cells.	<i>In vitro:</i> inhibits TMPRSS2 with EC_{50} : 0.75µM and SARS-CoV-2 entry in lung cells ¹⁴⁴ .
	Antiandrogens	Apalutamide Bicalutamide Enzalutamide	Inhibits transcriptional expression of TMPRSS2 to reduce TMPRSS2-mediated virus entry into host cells.	<i>In vivo:</i> \downarrow TMPRSS2 levels in human lung cells and mouse lung ¹⁴⁵ .
Endosomal host	Adamantanes	Amantadine	Inhibits cathepsin L-mediated	In vitro: EC ₅₀ : 83-119µM (amantadine in

proteases			virus entry into host cells.	VeroE6 cells) ⁹³ . In vivo: \downarrow SARS-CoV-2 pseudovirus infection
				in hACE2 humanized mice ¹⁴⁶ .
	Cysteine protease inhibitor	Aloxistatin (E64d)	Inhibits cathepsin L-mediated virus entry into host cells.	<i>In vitro:</i> \downarrow SARS-CoV-2 pseudovirus infection (293T-hACE2 cells) ¹⁴⁷ . <i>In vivo:</i> \downarrow SARS-CoV-2 pseudovirus infection in hACE2 humanized mice ¹⁴⁶ .
	Glycopeptides	Dalbavancin	Inhibits cathepsin L-mediated virus entry into host cells.	In vitro: EC ₅₀ : 12nM (VeroE6 cells). In vivo: \downarrow viral load and pulmonary tissue pathologies in hACE2 mice and rhesus macaques ¹⁴⁸ .
	Selective cathepsin L inhibitors	SID 26681509	Inhibits cathepsin L-mediated virus entry into host cells.	In vitro: \downarrow SARS-CoV-2 pseudovirus infection (293T-hACE2 cells) ¹⁴⁷ .
Other endosomal entry regulators	4-aminoquinolines	Chloroquine Hydroxychloroquine	Increases endosomal pH to inhibit fusion of SARS-CoV-2 with host cell membrane, glycosylation of ACE2, and transport of SARS-CoV-2 rom early endosomes to endolysosomes.	<i>In vitro:</i> EC ₅₀ : 1.13-7.36µM (chloroquine) and 4.06-12.96µM (hydroxychloroquine) (VeroE6 cells) ^{57,149} . <i>In vivo:</i> \downarrow lung viral load and tissue pathology in hACE2 mice, but not in hamsters, ferrets, and rhesus macaques ^{55,150-152} .
	Bis- benzylisoquinoline alkaloids	Berbamine	Endosomal acidification	In vitro: EC ₅₀ : 2.4μ M (VeroE6 cells) ¹⁵³ .
	Cardiac glycosides	Bufalin Digoxin Ouabain	Inhibits Na ⁺ /K ⁺ -ATPase- mediated regulation of intracellular ion homeostasis and/or ATP1A1-mediated Src signalling ¹⁵⁴ .	In vitro: EC ₅₀ : $<0.2\mu$ M (Vero and VeroE6 cells) ¹⁵⁵⁻¹⁵⁷ .
	Macrolides	Bafilomycin A1	Endosomal acidification	<i>In vitro:</i> ↓ viral load (Vero, Huh-7, and 293T-hACE2 cells).

				<i>In vivo:</i> \downarrow lung viral load and tissue pathology in hACE2 mice ¹⁵⁰ .			
	Phenothiazines	Chlorpromazine	Inhibits viral entry through clathrin-mediated endocytosis.	In vitro: EC_{50} : 8.2µM (VeroE6 and A549-ACE2 cells) ¹⁵⁸ .			
	PIK-fyve inhibitors	Apilimod Vacuolin-1 YM201636	Inhibits PIK-fyve-mediated synthesis of PI(3,5)P2 which regulates endosome maturation.	In vitro: \downarrow SARS-CoV-2 pseudovirus entry (apilimod, 293/hACE2 cells) ^{147,159,160} .			
	<i>RAB7A</i> siRNA	RAB7A knockout	↓ viral entry by intracellular ACE2 sequestration through altered endosomal trafficking.	In vitro: \downarrow cell surface expression and \uparrow endosomal accumulation of ACE2 ¹⁵⁹ .			
	TPC2 antagonists	Naringenin Tetrandrine	Inhibits TPC2-mediated endolysosomal functions and virus entry.	In vitro: \downarrow SARS-CoV-2-induced CPE (naringenin, VeroE6 cells) and pseudovirion entry (tetrandrine, 293/hACE2 cells) ^{147,162} .			
Other host proteases	Furin inhibitors	Agmatine Andrographolide BOS-981 and BOS-138 CMK Naphthofluorescein	Inhibits furin-mediated cleavage at the S1/S2 polybasic cleavage (PRRAR) site which is important for virus entry.	In vitro: \downarrow viral load (EC ₅₀ of CMK: 0.057µM), CPE, spike cleavage and syncytia formation (VeroE6 and MK2 cells) ¹⁶²⁻¹⁶⁶ .			
	MT-MMP inhibitors	Incyclinide Prinomastat 20(R)-ginsenoside Rh2	Inhibits MT-MMP-mediated virus entry into host cells.	In vitro: \downarrow viral load in Calu-3 and Caco-2 cells. In vivo: intranasal incyclinide or 20(R)- ginsenoside Rh2 \downarrow lung viral load, virus titers, viral antigen expression, and tissue pathology in Syrian hamsters ¹⁶⁷ .			
Translation and pr	Translation and protein synthesis						
AP2M1	AP2M1 inhibitors	ACA	Inhibits AP2M1-YxxØ motif interaction-mediated	<i>In vitro:</i> broad-spectrum activity against SARS-CoV-2 and other CoVs, as well as multiple			

			intracellular virus trafficking.	DNA and RNA families ¹⁶⁸ .
Translation elongation	Translation elongation inhibitors	Cycloheximide	Inhibits translation elongation.	<i>In vitro:</i> EC ₅₀ : 0.17µM (Caco-2 cells) ¹⁶⁹ .
40S ribosomal protein S14	40S ribosomal protein S14 inhibitors	Emetine	Inhibits 40S ribosomal protein S14.	<i>In vitro:</i> EC ₅₀ : 0.47µM (Caco-2 cells) ¹⁶⁹ .
eEF1A	eEF1A inhibitors	Plitidepsin Ternatin-4	Inhibits eEF1A-mediated mRNA translation, protein synthesis and viral replication.	Clinical use: multiple myeloma In vitro: EC ₅₀ : <0.8nM (plitidepsin in VeroE6 and 293T-hACE2 cells). In vivo: sc plitidepsin \downarrow lung virus titer and tissue pathology in K18-hACE2 mice ^{116,170} .
eIF4A	eIF4A inhibitor	Zotatifin	Inhibits eEF1A-mediated mRNA translation, protein synthesis and viral replication.	Clinical use: phase 1 clinical trial for cancer <i>In vitro</i> : EC_{50} : 0.037 μ M ¹¹⁶ .
PI3K/AKT/ mTOR	PI3K/AKT/mTOR inhibitors	ASTEX Everolimus OSI-127 Rapamycin Temisirolimus	Inhibits PI3K/AKT/mTOR- mediated protein synthesis and viral replication.	<i>In vitro:</i> \downarrow SARS-CoV-2 viral load (Vero, Calu- 3, and 293T-ACE2 cells) ^{110,171-173} .
Viral glycoprotein folding	Iminosugars	Celgosivir EB-0281 Miglustat MON-DNJ	Inhibits α-glucosidases I and II which are involved in the early stages of glycoprotein N- linked oligosaccharide processing in ER.	Clinical uses: HCV (celgosivir) and lysosome storage diseases (miglustat). In vitro: EC ₅₀ : 1 μ M (celgosivir, Huh7-hACE2 cells), 9.5 μ M (EB-0281, Calu-3 cells) and 45.2 μ M (miglustat, Calu-3 cells) ^{174,175} .
Sec61	Sec61 inhibitors	PS3061	Inhibits Sec61-mediated protein biogenesis.	<i>In vitro:</i> \downarrow virus titer (VeroE6 cells) ¹¹⁶ .
UPR activation	Antibiotics	Clofoctol	Inhibits translation of viral RNA possibly through activation of UPR pathways	In vitro: EC ₅₀ : 12.41µM (Vero-81 cells) ¹⁷⁶ . In vivo: intraperitoneal clofoctol \downarrow lung virus titer and inflammation in K18-hACE2 mice ¹⁷⁶ .

Lipid and cholesterol biosynthesis

ATP citrate lyase	ATP citrate lyase inhibitors	Bempedoic acid SB 204990	Inhibits the conversion of acetyl-CoA from citrate in the citrate induced <i>de novo</i> lipogenesis mini pathway within the tricarboxylic acid cycle.	Clinical use: hypercholesterolemia (bempedoic acid). In vitro: EC ₅₀ : 5-20 μ M for WT and variants of SARS-CoV-2. In vivo: IP SB 204990 \downarrow viral load, virus titer, and viral antigen expression in hamsters ¹⁷⁷ .
DGAT	DGAT inhibitors	Xanthohumol	Inhibits DGAT-mediated lipid droplet formation.	<i>In vitro:</i> EC ₅₀ : 4.7 μ M (Caco-2 cells). <i>In vivo:</i> oral xanthohumol significantly reduces the viral loads, viral antigen expression, pro- inflammatory cytokines, and tissue pathology in Syrian hamsters ¹⁷⁸ .
Eicosanoids	PTGDR inhibitors	Asapiprant	Inhibits PTGDR-mediated eicosanoid signalling.	<i>In vivo</i> : \uparrow survival and \downarrow lung virus titers and tissue damage in mice infected with mouse-adapted SARS-CoV-2 ¹⁷⁹ .
РІКЗСЗ	PIK3C3 inhibitors	Autophinib ALLN PIK-III Compound-19	Increases cholesterol biosynthesis.	In vitro: \downarrow viral load (A549-ACE2 cells) ¹⁶¹ .
SREBPs	SREBP inhibitors	AM580 Tamibarotene	Inhibits SREBP-mediated lipogenesis essential for viral replication.	Clinical uses: acute promyelocytic leukemia In vitro: EC ₅₀ : 7.6 μ M (AM580 in VeroE6 cells) ⁵⁴ . In vivo: inhaled tamibarotene \downarrow clinical signs, lung viral load, virus titer, and tissue damage in Syrian hamsters ¹⁸⁰ .
Others				
Apoptosis	Caspase 6 inhibitors	z-VEID-fmk	Inhibits coronavirus nucleocapsid cleavage,	<i>In vitro:</i> EC ₅₀ : 3.3μ M (Calu-3 cells). <i>In vivo:</i> \downarrow lung viral load, virus titers, viral

			reduces IFN antagonism, and restricts virus replication.	antigens, and tissue damage in Syrian hamsters ¹⁸¹ .
Cyclophilins	Cyclophilin inhibitors	Alisporivir Cyclosporine A	Interaction of cyclophilins with CoV nsp1 and the calcineurin-NFAT pathway.	Clinical uses: HCV (alisporivir) and immunosuppression (cyclosporin A). <i>In vitro:</i> EC ₅₀ : 0.46 μ M (alisporivir in VeroE6 cells) ¹⁸² .
Virus-induced senescence	Senolytics	Dasatinib-quercetin Fisetin Navitoclax	Selective elimination of virus- induced senescent cells.	<i>In vitro:</i> selectively eliminates virus-induced senescent cells. <i>In vivo:</i> ↑ survival and ↓ lung tissue damage in Roborovski dwarf hamsters and K18-hACE2 mice ¹⁸³ .
Uncertain	Avermectins	Ivermectin	Likely acts on multiple targets.	Clinical uses: nematode and ectoparasite infection/infestation. <i>In vitro:</i> EC ₅₀ : <10µM (VeroE6 cells) ^{184,185} .
	Thiazolide	Nitazoxanide	Inhibition of proinflammatory cytokines and host enzymes to ↓ post-translational processing of viral proteins.	Clinical uses: <i>Cryptosporidium parvum</i> and <i>Giardia duodenalis</i> infections. <i>In vitro</i> : EC ₅₀ : 0.58-3.19 μ M (VeroE6 and Caco-2 cells) ⁵⁷ . <i>In vivo</i> : no significant viral load reduction in Syrian hamsters with suboptimal tissue concentrations of tizoxanide (the active metabolite of nitazoxanide) that were below the <i>in vitro</i> EC ₅₀ ¹⁸⁶ .

Abbreviations: ACA, N-(p-amylcinnamoyl)anthranilic acid; ARDS, acute respiratory distress syndrome; ASTEX, activated specialized tissue effector extracellular vesicles; ATP, adenosine triphosphate; BET, bromodomain and extraterminal; BRD2 and BRD4, bromodomain-containing proteins 2 and 4; BTK, Bruton's tyrosine kinase; CAR, chimeric antigen receptor; CD147; cluster of differentiation 147; CMK, decanoyl-RVKR-chloromethylketone; COPD, chronic obstructive pulmonary disease; CoV, coronavirus; CPE, cytopathic effects; DGAT, diacylglycerol acyltransferase; eEF1A, elongation factor-1A; eIF4A, eukaryotic initiation factor-4A; ER, endoplasmic reticulum; evACE2, extracellular vesicles expressing ACE2; GM-CSF, granulocyte-macrophage colony-stimulating factor; GVHD, graft-versus-host disease; hACE2, human angiotensin-converting enzyme 2; HAE, primary human airway epithelia; HBV, hepatitis B virus; HCV, hepatitis C virus; HDAC2, histone deacetylase 2; HDV, hepatitis D virus; HMGB1, high mobility group box 1; HSPGs, heparan sulfate proteoglycans; IFN, interferon; IFN, interferon; IL, interleukin; IP, intraperitoneal; JAK, Janus kinase; LMWH, low molecular weight heparin; mAb, monoclonal antibody; MEK/ERK, Ras/Raf/Mitogen-activated protein kinase/ERK kinase/extracellular-signal-regulated kinase; MIS-C, multisystem inflammatory syndrome; MMPRIN; extracellular matrix metalloproteinase induce; MMT-MMP, membrane-type matrix metalloproteinase; NF-κB, nuclear factor kappa B (NF-κB); NLRP3, nucleotide-binding oligomerization domain-, leucine-rich repeat-, and pyrin domain-containing protein 3; PI(3,5)P2, phosphatidyl-inositol-3,5-bisphosphate; PI3K/AKT/mTOR, phosphoinositide3-kinase/protein kinase B/mammalian target of rapamycin; PIK3C3, phosphatidylinositol 3-kinase catalytic

subunit type 3; PIK-fyve, phosphatidylinositol 3-phosphate 5-kinase; PTGDR, prostaglandin D₂ receptor; S1P, sphingosine-1-phosphate; sc, subcutaneous; SERMs; selective estrogen receptor modulators; SREBPs, sterol regulatory-element binding proteins; SSRI, selective serotonin reuptake inhibitor; TMPRSS2, transmembrane protease, serine 2; TOP1, topoisomerase 1; TPC2, two-pore channel 2; TRPMLs, transient receptor potential mucolipin channels; UPR, unfolded protein response.

References

1. Chen, Y., et al., Broadly neutralizing antibodies to SARS-CoV-2 and other human coronaviruses. Nat Rev Immunol, 2022.

2. Xiang, R., et al., Neutralizing monoclonal antibodies against highly pathogenic coronaviruses. Curr Opin Virol, 2022. 53: p. 101199.

3. Chan, J.F., et al., Simulation of the Clinical and Pathological Manifestations of Coronavirus Disease 2019 (COVID-19) in a Golden Syrian Hamster Model: Implications for Disease Pathogenesis and Transmissibility. Clin Infect Dis, 2020. 71(9): p. 2428-2446.

4. Takamatsu, Y., et al., Highly Neutralizing COVID-19 Convalescent Plasmas Potently Block SARS-CoV-2 Replication and Pneumonia in Syrian Hamsters. J Virol, 2022. 96(4): p. e0155121.

5. McMahan, K., et al., Correlates of protection against SARS-CoV-2 in rhesus macaques. Nature, 2021. 590(7847): p. 630-634.

6. Valero, J., et al., A serum-stable RNA aptamer specific for SARS-CoV-2 neutralizes viral entry. Proc Natl Acad Sci U S A, 2021. 118(50).

7. Yang, G., et al., Identification of SARS-CoV-2-against aptamer with high neutralization activity by blocking the RBD domain of spike protein 1. Signal Transduct Target Ther, 2021. 6(1): p. 227.

8. Cao, L., et al., De novo design of picomolar SARS-CoV-2 miniprotein inhibitors. Science, 2020. 370(6515):426-431.

9. Ohashi, H., et al., Potential anti-COVID-19 agents, cepharanthine and nelfinavir, and their usage for combination treatment. iScience, 2021. 24(4): p. 102367.

10. Fan, H.H., et al., Repurposing of clinically approved drugs for treatment of coronavirus disease 2019 in a 2019-novel coronavirus-related coronavirus model. Chin Med J (Engl), 2020. 133(9): p. 1051-1056.

11. Wang, X., et al., The anti-influenza virus drug, arbidol is an efficient inhibitor of SARS-CoV-2 in vitro. Cell Discov, 2020. 6: p. 28.

12. Shuster, A., et al., Clinical Antiviral Drug Arbidol Inhibits Infection by SARS-CoV-2 and Variants through Direct Binding to the Spike Protein. ACS Chem Biol, 2021. 16(12): p. 2845-2851.

13. Shytaj, I.L., et al., The FDA-Approved Drug Cobicistat Synergizes with Remdesivir To Inhibit SARS-CoV-2 Replication In Vitro and Decreases Viral Titers and Disease Progression in Syrian Hamsters. mBio, 2022. 13(2): p. e0370521.

14. Xia, S., et al., Peptide-based pan-CoV fusion inhibitors maintain high potency against SARS-CoV-2 Omicron variant. Cell Res, 2022. 32(4): p. 404-406.

15. Zhao, H., et al., A broad-spectrum virus- and host-targeting peptide against respiratory viruses including influenza virus and SARS-CoV-2. Nat Commun, 2020. 11(1): p. 4252.

16. Zhao, H., et al., Cross-linking peptide and repurposed drugs inhibit both entry pathways of SARS-CoV-2. Nat Commun, 2021. 12(1): p. 1517.

17. de Vries, R.D., et al., Intranasal fusion inhibitory lipopeptide prevents direct-contact SARS-CoV-2 transmission in ferrets. Science, 2021. 371(6536): p. 1379-1382.

18. Xia, S., et al., Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion. Cell Res, 2020. 30(4): p. 343-355.

19. Rothenberger, S., et al., The trispecific DARPin ensovibep inhibits diverse SARS-CoV-2 variants. Nat Biotechnol, 2022.

20. Jeon, S., et al., Identification of Antiviral Drug Candidates against SARS-CoV-2 from FDA-Approved Drugs. Antimicrob Agents Chemother, 2020. 64(7).

21. Braga, L., et al., Drugs that inhibit TMEM16 proteins block SARS-CoV-2 spike-induced syncytia. Nature, 2021. 594(7861): p. 88-93.

22. Technology, P. Daewoong finds niclosamide effective against Covid-19 in animal tests. 2020; Available from: https://www.pharmaceutical-technology.com/news/daewoong-niclosamide-animal-data/.

23. Chan, J.F., et al., A molecularly engineered, broad-spectrum anti-coronavirus lectin inhibits SARS-CoV-2 and MERS-CoV infection in vivo. Cell Rep Med, 2022. 3(10): p. 100774.

24. Liu, Y.M., et al., A Carbohydrate-Binding Protein from the Edible Lablab Beans Effectively Blocks the Infections of Influenza Viruses and SARS-CoV-2. Cell Rep, 2020. 32(6): p. 108016.

25. Cai, Y., et al., Griffithsin with A Broad-Spectrum Antiviral Activity by Binding Glycans in Viral Glycoprotein Exhibits Strong Synergistic Effect in Combination with A Pan-Coronavirus Fusion Inhibitor Targeting SARS-CoV-2 Spike S2 Subunit. Virol Sin, 2020. 35(6): p. 857-860.

26. Ahan, R.E., et al., A Highly Potent SARS-CoV-2 Blocking Lectin Protein. ACS Infect Dis, 2022. 8(7): p. 1253-1264.

27. Yuan, S., et al., Targeting papain-like protease for broad-spectrum coronavirus inhibition. Protein Cell, 2022. 13(12): p. 940-953.

28. Zhao, Y., et al., High-throughput screening identifies established drugs as SARS-CoV-2 PLpro inhibitors. Protein Cell, 2021. 12(11): p. 877-888.

29. Shin, D., et al., Papain-like protease regulates SARS-CoV-2 viral spread and innate immunity. Nature, 2020. 587(7835): p. 657-662.

30. Klemm, T., et al., Mechanism and inhibition of the papain-like protease, PLpro, of SARS-CoV-2. EMBO J, 2020. 39(18): p. e106275.

31. Swaim, C.D., et al., 6-Thioguanine blocks SARS-CoV-2 replication by inhibition of PLpro. iScience, 2021. 24(10): p. 103213.

32. Owen, D.R., et al., An oral SARS-CoV-2 M(pro) inhibitor clinical candidate for the treatment of COVID-19. Science, 2021. 374(6575): p. 1586-1593.

33. Zhang, L., et al., Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved alpha-ketoamide inhibitors. Science, 2020. 368(6489): p. 409-412.

34. Vandyck, K., et al., ALG-097111, a potent and selective SARS-CoV-2 3chymotrypsin-like cysteine protease inhibitor exhibits in vivo efficacy in a Syrian Hamster model. Biochem Biophys Res Commun, 2021. 555: p. 134-139.

35. CISION PR Newswire. Ascletis Announces 3CLpro Inhibitor ASC11 Demonstrated Potential to be Effective Treatment for COVID-19. 2022; Available from: https://www.prnewswire.com/news-releases/ascletis-announces-3clpro-inhibitor-asc11demonstrated-potential-to-be-effective-treatment-for-covid-19-301527722.html.

36. Balakrishnan, A., et al. Molecular Basis for Antiviral Action of EDP - 235: A Potent and Selective SARS - CoV - 2 3CLpro Inhibitor for the Treatment of Covid 19. 2022; Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9347656/.

37. Kuroda, T., et al. Efficacy comparison of 3CL protease inhibitors ensittelvir and nirmatrelvir against SARS-CoV-2 in vitro and in vivo. J Antimicrob Chemother, 2023. 78(4):946-952.

38. Sasaki, M., et al. S-217622, a SARS-CoV-2 main protease inhibitor, decreases viral load and ameliorates COVID-19 severity in hamsters. Sci Transl Med, 2023. 15(679):eabq4064.

39. Unoh, Y., et al., Discovery of S-217622, a Noncovalent Oral SARS-CoV-2 3CL Protease Inhibitor Clinical Candidate for Treating COVID-19. J Med Chem, 2022. 65(9): p. 6499-6512.

40. Vuong, W., et al., Feline coronavirus drug inhibits the main protease of SARS-CoV-2 and blocks virus replication. Nat Commun, 2020. 11(1): p. 4282.

41. Global Health Drug Discovery Institute, GHDDI Announces Advancement of a Novel Oral Antiviral Candidate for COVID-19 in Its Investigational New Drug Studies. 2022; Available from: http://121.42.169.1/en/node/409.

42. Dai, W., et al., Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease. Science, 2020. 368(6497): p. 1331-1335.

43. Chen, X., et al., Inhibition mechanism and antiviral activity of an α-ketoamide based SARS-CoV-2 main protease inhibitor. bioRxiv, 2023. https://doi.org/10.1101/2023.03.09.531862

44. Qiao, J., et al., SARS-CoV-2 M(pro) inhibitors with antiviral activity in a transgenic mouse model. Science, 2021. 371(6536): p. 1374-1378.

45. Kearney, B.P., et al. PBI-0451 an orally administered 3CL protease inhibitor of SARS-CoV_2 for COVID-19. Topics in Antiviral Medicine, 2022. 30(1 Suppl):179-180. Available from: https://pesquisa.bvsalud.org/global-literature-on-novel-coronavirus-2019-ncov/resource/pt/covidwho-1880428?lang=en

46. de Vries, M., et al., A comparative analysis of SARS-CoV-2 antivirals characterizes 3CL(pro) inhibitor PF-00835231 as a potential new treatment for COVID-19. J Virol, 2021. 95(7): e01819-20.

47. Jin, Z., et al., Structure of M(pro) from SARS-CoV-2 and discovery of its inhibitors. Nature, 2020. 582(7811): p. 289-293.

48. Jiang, X., et al., Structure-based development and preclinical evaluation of the SARS-CoV-2 3C-like protease inhibitor simnotrelvir. Nat Commun, 2023. 14(1): 6463.

49. Quan, B.X., et al., An orally available M(pro) inhibitor is effective against wild-type SARS-CoV-2 and variants including Omicron. Nat Microbiol, 2022. 7(5): p. 716-725.

50. Baker, J.D., et al., A drug repurposing screen identifies hepatitis C antivirals as inhibitors of the SARS-CoV2 main protease. PLoS One, 2021. 16(2): p. e0245962.

51. Mahmoud, A., et al., Telaprevir is a potential drug for repurposing against SARS-CoV-2: computational and in vitro studies. Heliyon, 2021. 7(9): p. e07962.

52. Fintelman-Rodrigues, N., et al., Atazanavir, Alone or in Combination with Ritonavir, Inhibits SARS-CoV-2 Replication and Proinflammatory Cytokine Production. Antimicrob Agents Chemother, 2020. 64(10).

53. Chaves, O.A., et al., Atazanavir Is a Competitive Inhibitor of SARS-CoV-2 M(pro), Impairing Variants Replication In Vitro and In Vivo. Pharmaceuticals (Basel), 2021. 15(1).

54. Yuan, S., et al., Broad-Spectrum Host-Based Antivirals Targeting the Interferon and Lipogenesis Pathways as Potential Treatment Options for the Pandemic Coronavirus Disease 2019 (COVID-19). Viruses, 2020. 12(6).

55. Park, S.J., et al., Antiviral Efficacies of FDA-Approved Drugs against SARS-CoV-2 Infection in Ferrets. mBio, 2020. 11(3).

56. Jang, W.D., et al., Drugs repurposed for COVID-19 by virtual screening of 6,218 drugs and cell-based assay. Proc Natl Acad Sci U S A, 2021. 118(30).

57. Wang, M., et al., Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res, 2020. 30(3): p. 269-271.

58. Williamson, B.N., et al., Clinical benefit of remdesivir in rhesus macaques infected with SARS-CoV-2. Nature, 2020. 585(7824): p. 273-276.

59. Cao, L., et al., The adenosine analog prodrug ATV006 is orally bioavailable and has preclinical efficacy against parental SARS-CoV-2 and variants. Sci Transl Med, 2022. 14(661): p. eabm7621.

60. Cox, R.M., et al., Oral prodrug of remdesivir parent GS-441524 is efficacious against SARS-CoV-2 in ferrets. Nat Commun, 2021. 12(1): p. 6415.

61. Lo, M.K., et al., Broad-Spectrum In Vitro Antiviral Activity of ODBG-P-RVn: An Orally-Available, Lipid-Modified Monophosphate Prodrug of Remdesivir Parent Nucleoside (GS-441524). Microbiol Spectr, 2021. 9(3): p. e0153721.

62. Schooley, R.T., et al., Rethinking Remdesivir: Synthesis, Antiviral Activity, and Pharmacokinetics of Oral Lipid Prodrugs. Antimicrob Agents Chemother, 2021. 65(10): p. e0115521.

63. Xie, Y., et al., Design and development of an oral remdesivir derivative VV116 against SARS-CoV-2. Cell Res, 2021. 31(11): p. 1212-1214.

64. Qian, H.J., et al., Safety, tolerability, and pharmacokinetics of VV116, an oral nucleoside analog against SARS-CoV-2, in Chinese healthy subjects. Acta Pharmacol Sin, 2022.

65. Taylor, R., et al., Activity of Galidesivir in a Hamster Model of SARS-CoV-2. Viruses, 2021. 14(1).

66. Zhou, S., et al., beta-d-N4-hydroxycytidine Inhibits SARS-CoV-2 Through Lethal Mutagenesis But Is Also Mutagenic To Mammalian Cells. J Infect Dis, 2021. 224(3): p. 415-419.

67. Toots, M., et al., Characterization of orally efficacious influenza drug with high resistance barrier in ferrets and human airway epithelia. Sci Transl Med, 2019. 11(515).

68. Rosenke, K., et al., Orally delivered MK-4482 inhibits SARS-CoV-2 replication in the Syrian hamster model. Nat Commun, 2021. 12(1): p. 2295.

69. Wahl, A., et al., SARS-CoV-2 infection is effectively treated and prevented by EIDD-2801. Nature, 2021. 591(7850): p. 451-457.

70. Cox, R.M., J.D. Wolf, and R.K. Plemper, Therapeutically administered ribonucleoside analogue MK-4482/EIDD-2801 blocks SARS-CoV-2 transmission in ferrets. Nat Microbiol, 2021. 6(1): p. 11-18.

71. Shahab, S. and M. Sheikhi, Triazavirin - Potential Inhibitor for 2019-nCoV Coronavirus M Protease: A DFT Study. Curr Mol Med, 2021. 21(8): p. 645-654.

72. Pharmaceuticals, A. COVID-19 AND BEMNIFOSBUVIR: In Vitro Results Against COVID-19 Variants. 2020; Available from: https://ateapharma.com/covid-19/bemnifosbuvir/.

73. Sacramento, C.Q., et al., In vitro antiviral activity of the anti-HCV drugs daclatasvir and sofosbuvir against SARS-CoV-2, the aetiological agent of COVID-19. J Antimicrob Chemother, 2021. 76(7): p. 1874-1885.

74. Zhang, J.L., et al., Azvudine is a thymus-homing anti-SARS-CoV-2 drug effective in treating COVID-19 patients. Signal Transduct Target Ther, 2021. 6(1): p. 414.

75. Bai, X., et al., Identifying Small-Molecule Inhibitors of SARS-CoV-2 RNA-Dependent RNA Polymerase by Establishing a Fluorometric Assay. Front Immunol, 2022. 13: p. 844749.

76. Elli, S., et al., Enisamium Inhibits SARS-CoV-2 RNA Synthesis. Biomedicines, 2021.9(9).

77. Driouich, J.S., et al., Favipiravir antiviral efficacy against SARS-CoV-2 in a hamster model. Nat Commun, 2021. 12(1): p. 1735.

78. Idris, A., et al., A SARS-CoV-2 targeted siRNA-nanoparticle therapy for COVID-19. Mol Ther, 2021. 29(7): p. 2219-2226.

79. Chang, Y.C., et al., A siRNA targets and inhibits a broad range of SARS-CoV-2 infections including Delta variant. EMBO Mol Med, 2022. 14(4): p. e15298.

80. Khaitov, M., et al., Silencing of SARS-CoV-2 with modified siRNA-peptide dendrimer formulation. Allergy, 2021. 76(9): p. 2840-2854.

81. Yuan, S., et al., Metallodrug ranitidine bismuth citrate suppresses SARS-CoV-2 replication and relieves virus-associated pneumonia in Syrian hamsters. Nat Microbiol, 2020. 5(11): p. 1439-1448.

82. Zeng, J., et al., Identifying SARS-CoV-2 antiviral compounds by screening for small molecule inhibitors of nsp13 helicase. Biochem J, 2021. 478(13): p. 2405-2423.

83. Wang, X., et al., Combination of antiviral drugs inhibits SARS-CoV-2 polymerase and exonuclease and demonstrates COVID-19 therapeutic potential in viral cell culture. Commun Biol, 2022. 5(1): p. 154.

84. Kim, Y., et al., Tipiracil binds to uridine site and inhibits Nsp15 endoribonuclease NendoU from SARS-CoV-2. Commun Biol, 2021. 4(1): p. 193.

85. El Hassab, M.A., et al., In silico identification of novel SARS-COV-2 2'-Omethyltransferase (nsp16) inhibitors: structure-based virtual screening, molecular dynamics simulation and MM-PBSA approaches. J Enzyme Inhib Med Chem, 2021. 36(1): p. 727-736.

86. Hamre, J.R., 3rd and M.S. Jafri, Optimizing peptide inhibitors of SARS-Cov-2 nsp10/nsp16 methyltransferase predicted through molecular simulation and machine learning. Inform Med Unlocked, 2022. 29: p. 100886.

87. Yuan, S., et al., Clofazimine broadly inhibits coronaviruses including SARS-CoV-2. Nature, 2021. 593(7859): p. 418-423.

88. Lo, H.S., et al., Simeprevir Potently Suppresses SARS-CoV-2 Replication and Synergizes with Remdesivir. ACS Cent Sci, 2021. 7(5): p. 792-802.

89. Bafna, K., et al., Hepatitis C virus drugs that inhibit SARS-CoV-2 papain-like protease synergize with remdesivir to suppress viral replication in cell culture. Cell Rep, 2021. 35(7): p. 109133.

90. Jin, Z., et al., Structural basis for the inhibition of SARS-CoV-2 main protease by antineoplastic drug carmofur. Nat Struct Mol Biol, 2020. 27(6): p. 529-532.

91. Ma, C., et al., Ebselen, Disulfiram, Carmofur, PX-12, Tideglusib, and Shikonin Are Nonspecific Promiscuous SARS-CoV-2 Main Protease Inhibitors. ACS Pharmacol Transl Sci, 2020. 3(6): p. 1265-1277.

92. Chen, T., et al., Synergistic Inhibition of SARS-CoV-2 Replication Using Disulfiram/Ebselen and Remdesivir. ACS Pharmacol Transl Sci, 2021. 4(2): p. 898-907.

93. Fink, K., et al., Amantadine Inhibits SARS-CoV-2 In Vitro. Viruses, 2021. 13(4).

94. Toft-Bertelsen, T.L., et al., Amantadine has potential for the treatment of COVID-19 because it inhibits known and novel ion channels encoded by SARS-CoV-2. Commun Biol, 2021. 4(1): p. 1347.

95. Breitinger, U., et al., Inhibition of SARS CoV Envelope Protein by Flavonoids and Classical Viroporin Inhibitors. Front Microbiol, 2021. 12: p. 692423.

96. Ambike, S., et al., Targeting genomic SARS-CoV-2 RNA with siRNAs allows efficient inhibition of viral replication and spread. Nucleic Acids Res, 2022. 50(1): p. 333-349.

97. Wu, R. and K.Q. Luo, Developing effective siRNAs to reduce the expression of key viral genes of COVID-19. Int J Biol Sci, 2021. 17(6): p. 1521-1529.

98. Schlesinger, N., B.L. Firestein, and L. Brunetti, Colchicine in COVID-19: an Old Drug, New Use. Curr Pharmacol Rep, 2020. 6(4): p. 137-145.

99. GlobeNewswire. VERU-111 Suppresses Key Cytokines Responsible for Severe Acute Respiratory Distress Syndrome in COVID-19. 2020; Available from:

https://www.globenewswire.com/news-release/2020/08/04/2072487/11676/en/VERU-111-Suppresses-Key-Cytokines-Responsible-for-Severe-Acute-Respiratory-Distress-Syndromein-COVID-19.html

100. Ye, Z.W., et al., Beneficial effect of combinational methylprednisolone and remdesivir in hamster model of SARS-CoV-2 infection. Emerg Microbes Infect, 2021. 10(1): p. 291-304.

101. Matsuyama, S., et al., The Inhaled Steroid Ciclesonide Blocks SARS-CoV-2 RNA Replication by Targeting the Viral Replication-Transcription Complex in Cultured Cells. J Virol, 2020. 95(1).

102. Ye, F., et al., Novaferon Effectively Inhibits Ancestral SARS-CoV-2 and Omicron Variant in Vitro, 2022. China CDC Wkly, 2022. 4(23): p. 509-512.

103. Bessiere, P., et al., Intranasal type I interferon treatment is beneficial only when administered before clinical signs onset in the SARS-CoV-2 hamster model. PLoS Pathog, 2021. 17(8): p. e1009427.

104. Heuberger, J., et al., Epithelial response to IFN-gamma promotes SARS-CoV-2 infection. EMBO Mol Med, 2021. 13(4): p. e13191.

105. Karki, R., et al., Synergism of TNF-alpha and IFN-gamma Triggers Inflammatory Cell Death, Tissue Damage, and Mortality in SARS-CoV-2 Infection and Cytokine Shock Syndromes. Cell, 2021. 184(1): p. 149-168 e17.

106. Dinnon, K.H., 3rd, et al., A mouse-adapted model of SARS-CoV-2 to test COVID-19 countermeasures. Nature, 2020. 586(7830): p. 560-566.

107. Chong, Z., et al., Nasally delivered interferon-lambda protects mice against infection by SARS-CoV-2 variants including Omicron. Cell Rep, 2022. 39(6): p. 110799.

108. Souza-Moreira, L., et al., Poly(I:C) enhances mesenchymal stem cell control of myeloid cells from COVID-19 patients. iScience, 2022. 25(5): p. 104188.

109. Tamir, H., et al., Induction of Innate Immune Response by TLR3 Agonist Protects Mice against SARS-CoV-2 Infection. Viruses, 2022. 14(2).

110. Acharya, A., et al., PI3K-alpha/mTOR/BRD4 inhibitor alone or in combination with other anti-virals blocks replication of SARS-CoV-2 and its variants of concern including Delta and Omicron. Clin Transl Med, 2022. 12(4): p. e806.

111. Gilham, D., et al., Bromodomain and Extraterminal Protein Inhibitor, Apabetalone (RVX-208), Reduces ACE2 Expression and Attenuates SARS-Cov-2 Infection In Vitro. Biomedicines, 2021. 9(4).

112. Stebbing, J., et al., COVID-19: combining antiviral and anti-inflammatory treatments. Lancet Infect Dis, 2020. 20(4): p. 400-402.

113. Hoang, T.N., et al., Baricitinib treatment resolves lower-airway macrophage inflammation and neutrophil recruitment in SARS-CoV-2-infected rhesus macaques. Cell, 2021. 184(2): p. 460-475 e21.

114. Rosen, D.A., et al., Modulation of the sigma-1 receptor-IRE1 pathway is beneficial in preclinical models of inflammation and sepsis. Sci Transl Med, 2019. 11(478).

115. Hashimoto, Y., T. Suzuki, and K. Hashimoto, Mechanisms of action of fluvoxamine for COVID-19: a historical review. Mol Psychiatry, 2022. 27(4): p. 1898-1907.

116. Gordon, D.E., et al., A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature, 2020. 583(7816): p. 459-468.

117. Mukherjee, R., et al., Famotidine inhibits toll-like receptor 3-mediated inflammatory signaling in SARS-CoV-2 infection. J Biol Chem, 2021. 297(2): p. 100925.

118. Mastellos, D.C., et al., Complement C3 vs C5 inhibition in severe COVID-19: Early clinical findings reveal differential biological efficacy. Clin Immunol, 2020. 220: p. 108598.

119. Declercq, J., et al., Zilucoplan in patients with acute hypoxic respiratory failure due to COVID-19 (ZILU-COV): A structured summary of a study protocol for a randomised controlled trial. Trials, 2020. 21(1): p. 934.

120. Vlaar, A.P.J., et al., Anti-C5a antibody IFX-1 (vilobelimab) treatment versus best supportive care for patients with severe COVID-19 (PANAMO): an exploratory, open-label, phase 2 randomised controlled trial. Lancet Rheumatol, 2020. 2(12): p. e764-e773.

121. McEneny-King, A.C., et al., Pharmacokinetic and Pharmacodynamic Evaluation of Ravulizumab in Adults with Severe Coronavirus Disease 2019. Infect Dis Ther, 2021. 10(2): p. 1045-1054.

122. Ho, J.S.Y., et al., TOP1 inhibition therapy protects against SARS-CoV-2-induced lethal inflammation. Cell, 2021. 184(10): p. 2618-2632 e17.

123. van de Sand, L., et al., Glycyrrhizin Effectively Inhibits SARS-CoV-2 Replication by Inhibiting the Viral Main Protease. Viruses, 2021. 13(4).

124. Gowda, P., et al., Glycyrrhizin prevents SARS-CoV-2 S1 and Orf3a induced high mobility group box 1 (HMGB1) release and inhibits viral replication. Cytokine, 2021. 142: p. 155496.

125. Takahashi, Y., et al., Histone deacetylase inhibitors suppress ACE2 and ABO simultaneously, suggesting a preventive potential against COVID-19. Sci Rep, 2021. 11(1): p. 3379.

126. Smith, C.D., et al., Recent Progress in the Development of Opaganib for the Treatment of Covid-19. Drug Des Devel Ther, 2022. 16: p. 2199-2211.

127. Wysocki, J., et al., A Novel Soluble ACE2 Variant with Prolonged Duration of Action Neutralizes SARS-CoV-2 Infection in Human Kidney Organoids. J Am Soc Nephrol, 2021.

128. Hassler, L., et al., A Novel Soluble ACE2 Protein Provides Lung and Kidney Protection in Mice Susceptible to Lethal SARS-CoV-2 Infection. J Am Soc Nephrol, 2022. 33(7): p. 1293-1307.

129. Ikemura, N., et al., An engineered ACE2 decoy neutralizes the SARS-CoV-2 Omicron variant and confers protection against infection in vivo. Sci Transl Med, 2022. 14(650): p. eabn7737.

130. Chen, Y., et al., Engineered ACE2-Fc counters murine lethal SARS-CoV-2 infection through direct neutralization and Fc-effector activities. Sci Adv, 2022. 8(28): p. eabn4188.

131. Davies, S.P., et al., The Hyperlipidaemic Drug Fenofibrate Significantly Reduces Infection by SARS-CoV-2 in Cell Culture Models. Front Pharmacol, 2021. 12: p. 660490.

132. Zhang, Q., et al., Heparan sulfate assists SARS-CoV-2 in cell entry and can be targeted by approved drugs in vitro. Cell Discov, 2020. 6(1): p. 80.

133. Bermejo-Jambrina, M., et al., Infection and transmission of SARS-CoV-2 depend on heparan sulfate proteoglycans. EMBO J, 2021. 40(20): p. e106765.

134. Bertini, S., et al., Pentosan Polysulfate Inhibits Attachment and Infection by SARS-CoV-2 In Vitro: Insights into Structural Requirements for Binding. Thromb Haemost, 2022. 122(6): p. 984-997.

135. Zhang, F., et al., Potential Anti-SARS-CoV-2 Activity of Pentosan Polysulfate and Mucopolysaccharide Polysulfate. Pharmaceuticals (Basel), 2022. 15(2).

136. Hu, Y., et al., Brilacidin, a COVID-19 drug candidate, demonstrates broad-spectrum antiviral activity against human coronaviruses OC43, 229E, and NL63 through targeting both the virus and the host cell. J Med Virol, 2022. 94(5): p. 2188-2200.

137. Hu, Y., et al., The in vitro antiviral activity of lactoferrin against common human coronaviruses and SARS-CoV-2 is mediated by targeting the heparan sulfate co-receptor. Emerg Microbes Infect, 2021. 10(1): p. 317-330.

138. Wang, K., et al., CD147-spike protein is a novel route for SARS-CoV-2 infection to host cells. Signal Transduct Target Ther, 2020. 5(1): p. 283.

139. Hoffmann, M., et al., Camostat mesylate inhibits SARS-CoV-2 activation by TMPRSS2-related proteases and its metabolite GBPA exerts antiviral activity. EBioMedicine, 2021. 65: p. 103255.

140. Hoffmann, M., et al., Nafamostat Mesylate Blocks Activation of SARS-CoV-2: New Treatment Option for COVID-19. Antimicrob Agents Chemother, 2020. 64(6).

141. Li, K., et al., The TMPRSS2 Inhibitor Nafamostat Reduces SARS-CoV-2 Pulmonary Infection in Mouse Models of COVID-19. mBio, 2021. 12(4): p. e0097021.

142. Shapira, T., et al., A TMPRSS2 inhibitor acts as a pan-SARS-CoV-2 prophylactic and therapeutic. Nature, 2022. 605(7909):340-348.

143. Sun, Y. J., et al., Structure-based phylogeny identifies avoralstat as a TMPRSS2 inhibitor that prevents SARS-CoV-2 infection in mice. J Clin Invest, 2021. 131(10):e147973.

144. Maggio, R. and G.U. Corsini, Repurposing the mucolytic cough suppressant and TMPRSS2 protease inhibitor bromhexine for the prevention and management of SARS-CoV-2 infection. Pharmacol Res, 2020. 157: p. 104837.

145. Leach, D.A., et al., The antiandrogen enzalutamide downregulates TMPRSS2 and reduces cellular entry of SARS-CoV-2 in human lung cells. Nat Commun, 2021. 12(1): p. 4068.

146. Zhao, M.M., et al., Cathepsin L plays a key role in SARS-CoV-2 infection in humans and humanized mice and is a promising target for new drug development. Signal Transduct Target Ther, 2021. 6(1): p. 134.

147. Ou, X., et al., Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun, 2020. 11(1): p. 1620.

148. Wang, G., et al., Dalbavancin binds ACE2 to block its interaction with SARS-CoV-2 spike protein and is effective in inhibiting SARS-CoV-2 infection in animal models. Cell Res, 2021. 31(1): p. 17-24.

149. Liu, J., et al., Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discov, 2020. 6: p. 16.

150. Shang, C., et al., Inhibitors of endosomal acidification suppress SARS-CoV-2 replication and relieve viral pneumonia in hACE2 transgenic mice. Virol J, 2021. 18(1): p. 46.

151. Rosenke, K., et al., Hydroxychloroquine prophylaxis and treatment is ineffective in macaque and hamster SARS-CoV-2 disease models. JCI Insight, 2020. 5(23).

152. Maisonnasse, P., et al., Hydroxychloroquine use against SARS-CoV-2 infection in non-human primates. Nature, 2020. 585(7826): p. 584-587.

153. Huang, L., et al., Berbamine inhibits SARS-CoV-2 infection by compromising TRPMLs-mediated endolysosomal trafficking of ACE2. Signal Transduct Target Ther, 2021. 6(1): p. 168.

154. Burkard, C., et al., ATP1A1-mediated Src signaling inhibits coronavirus entry into host cells. J Virol, 2015. 89(8): p. 4434-48.

155. Zhang, Z.R., et al., A cell-based large-scale screening of natural compounds for inhibitors of SARS-CoV-2. Signal Transduct Target Ther, 2020. 5(1): p. 218.

156. Jin, Y.H., et al., Broad Spectrum Antiviral Properties of Cardiotonic Steroids Used as Potential Therapeutics for Emerging Coronavirus Infections. Pharmaceutics, 2021. 13(11).

157. Cho, J., et al., Antiviral activity of digoxin and ouabain against SARS-CoV-2 infection and its implication for COVID-19. Sci Rep, 2020. 10(1): p. 16200.

158. Plaze, M., et al., Inhibition of the replication of SARS-CoV-2 in human cells by the FDA-approved drug chlorpromazine. Int J Antimicrob Agents, 2021. 57(3): p. 106274.

159. Riva, L., et al., Discovery of SARS-CoV-2 antiviral drugs through large-scale compound repurposing. Nature, 2020. 586(7827): p. 113-119.

160. Kang, Y.L., et al., Inhibition of PIKfyve kinase prevents infection by Zaire ebolavirus and SARS-CoV-2. Proc Natl Acad Sci U S A, 2020. 117(34): p. 20803-20813.

161. Daniloski, Z., et al., Identification of Required Host Factors for SARS-CoV-2 Infection in Human Cells. Cell, 2021. 184(1): p. 92-105 e16.

162. Clementi, N., et al., Naringenin is a powerful inhibitor of SARS-CoV-2 infection in vitro. Pharmacol Res, 2021. 163: p. 105255.

163. Chu, H., et al., Host and viral determinants for efficient SARS-CoV-2 infection of the human lung. Nat Commun, 2021. 12(1): p. 134.

164. Hoffmann, M., H. Kleine-Weber, and S. Pohlmann, A Multibasic Cleavage Site in the Spike Protein of SARS-CoV-2 Is Essential for Infection of Human Lung Cells. Mol Cell, 2020. 78(4): p. 779-784 e5.

165. Peacock, T.P., et al., The furin cleavage site in the SARS-CoV-2 spike protein is required for transmission in ferrets. Nat Microbiol, 2021. 6(7): p. 899-909.

166. Cheng, Y.W., et al., Furin Inhibitors Block SARS-CoV-2 Spike Protein Cleavage to Suppress Virus Production and Cytopathic Effects. Cell Rep, 2020. 33(2): p. 108254.

167. Chan, J.F., et al., Altered host protease determinants for SARS-CoV-2 Omicron. Sci Adv, 2023. 9(3):eadd3867.

168. Yuan, S., et al., Viruses harness YxxO motif to interact with host AP2M1 for replication: A vulnerable broad-spectrum antiviral target. Sci Adv, 2020. 6(35): p. eaba7910.

169. Bojkova, D., et al., Proteomics of SARS-CoV-2-infected host cells reveals therapy targets. Nature, 2020. 583(7816): p. 469-472.

170. White, K.M., et al., Plitidepsin has potent preclinical efficacy against SARS-CoV-2 by targeting the host protein eEF1A. Science, 2021. 371(6532): p. 926-931.

171. Zhang, X., et al., hnRNP C modulates MERS-CoV and SARS-CoV-2 replication by governing the expression of a subset of circRNAs and cognitive mRNAs. Emerg Microbes Infect, 2022. 11(1): p. 519-531.

172. Mullen, P.J., et al., SARS-CoV-2 infection rewires host cell metabolism and is potentially susceptible to mTORC1 inhibition. Nat Commun, 2021. 12(1): p. 1876.

173. Ibrahim, A.G., et al., Engineered extracellular vesicles antagonize SARS-CoV-2 infection by inhibiting mTOR signaling. Biomater Biosyst, 2022. 6: p. 100042.

174. Rajasekharan, S., et al., Inhibitors of Protein Glycosylation Are Active against the Coronavirus Severe Acute Respiratory Syndrome Coronavirus SARS-CoV-2. Viruses, 2021. 13(5).

175. Karade, S.S., et al., N-Substituted Valiolamine Derivatives as Potent Inhibitors of Endoplasmic Reticulum alpha-Glucosidases I and II with Antiviral Activity. J Med Chem, 2021. 64(24): p. 18010-18024.

176. Belouzard, S., et al. Clofoctol inhibits SARS-CoV-2 replication and reduces lung pathology in mice. PLoS Pathog. 2022. 18(5):e1010498.

177. Yuen, T.T., et al., Targeting ACLY efficiently inhibits SARS-CoV-2 replication. Int J Biol Sci, 2022. 18(12): p. 4714-4730.

178. Yuan, S., et al., SARS-CoV-2 exploits host DGAT and ADRP for efficient replication. Cell Discov, 2021. 7(1): p. 100.

179. Wong, L.R., et al., Eicosanoid signalling blockade protects middle-aged mice from severe COVID-19. Nature, 2022. 605(7908): p. 146-151.

180. Liao, Q., Yuan, S., Cao, J., Tang, K., Qiu, Y., Seow, H. C., Man, R. C., Shao, Z., Huang, Y., Liang, R., Chan, J. F., Yuen, K. Y., Lam, J. K., Inhaled Dry Powder Formulation of Tamibarotene, a Broad-Spectrum Antiviral against Respiratory Viruses Including SARS-CoV-2 and Influenza Virus. Advanced Therapeutics, 2021.

181. Chu, H., et al., Coronaviruses exploit a host cysteine-aspartic protease for replication. Nature, 2022. 609(7928): p. 785-792.

182. Softic, L., et al., Inhibition of SARS-CoV-2 Infection by the Cyclophilin Inhibitor Alisporivir (Debio 025). Antimicrob Agents Chemother, 2020. 64(7).

183. Lee, S., et al., Virus-induced senescence is a driver and therapeutic target in COVID-19. Nature, 2021. 599(7884): p. 283-289.

184. Delandre, O., et al., Antiviral Activity of Repurposing Ivermectin against a Panel of 30 Clinical SARS-CoV-2 Strains Belonging to 14 Variants. Pharmaceuticals (Basel), 2022. 15(4).

185. Caly, L., et al., The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Res, 2020. 178: p. 104787.

186. Driouich, J.S., et al., Pre-clinical evaluation of antiviral activity of nitazoxanide against SARS-CoV-2. EBioMedicine, 2022. 82: p. 104148.