PURDUE
 Department of $\mathrm{P}_{\text {hysics }}$

Physics 42200 Waves \& Oscillations

Lecture 31 - Geometric Optics
Spring 2013 Semester

Two Lens Systems

- Calculate $s_{i 1}$ using $\frac{1}{f_{1}}=\frac{1}{s_{o 1}}+\frac{1}{s_{i 1}}$
- Ignore the first lens, treat $s_{i 1}$ as the object distance for the second lens. Calculate $s_{i 2}$ using

$$
\frac{1}{f_{2}}=\frac{1}{s_{o 2}}+\frac{1}{s_{i 2}}
$$

- Overall magnification: $M=m_{1} m_{2}=\left(-\frac{s_{i 1}}{s_{o 1}}\right)\left(-\frac{s_{i 2}}{s_{o 2}}\right)$

Example: Two Lens System

An object is placed in front of two thin symmetrical coaxial lenses (lens 1 \& lens 2) with focal lengths $f_{1}=+24 \mathrm{~cm} \& f_{2}=+9.0 \mathrm{~cm}$, with a lens separation of $\mathrm{L}=10.0 \mathrm{~cm}$. The object is 6.0 cm from lens 1 . Where is the image of the object?

Example: Two Lens System

An object is placed in front of two thin symmetrical coaxial lenses (lens 1 \& lens 2) with focal lengths $f_{1}=+24 \mathrm{~cm} \& f_{2}=+9.0 \mathrm{~cm}$, with a lens separation of $\mathrm{L}=10.0 \mathrm{~cm}$. The object is 6.0 cm from lens 1 . Where is the image of the object?

(not really to scale...)

Example: Two Lens System

An object is placed in front of two thin symmetrical coaxial lenses (lens $1 \&$ lens 2) with focal lengths $f_{1}=+24 \mathrm{~cm}$ and $f_{2}=+9.0 \mathrm{~cm}$, with a lens separation of $d=10.0 \mathrm{~cm}$. The object is 6.0 cm from lens 1 . Where is the image of the object?
Lens 1:

$$
\frac{1}{f_{1}}=\frac{1}{s_{o 1}}+\frac{1}{s_{i 1}} \quad s_{i 1}=-8 \mathrm{~cm}
$$

Image 1 is virtual.
Lens 2: Treat image 1 as O_{2} for lens 2. O_{2} is outside the focal point of lens 2 . So, image 2 will be real $\&$ inverted on the other side of lens 2.

$$
\begin{array}{lc}
s_{o 2}=L+\left|s_{i 1}\right| \quad & s_{i 2}=18.0 \mathrm{~cm} \\
\frac{1}{f_{2}}=\frac{1}{s_{o 1}}+\frac{1}{s_{i 1}} \quad \text { Image } 2 \text { is real. } \\
\text { Magnification: } M_{T}=\left(-\frac{-8 c m}{6 c m}\right)\left(-\frac{18 c m}{18 c m}\right)=-1.33
\end{array}
$$

Another Example

- Parameters:
- Focal length: $f_{1}=10 \mathrm{~cm}, f_{2}=5 \mathrm{~cm}$
- Lens separation: $d=42 \mathrm{~cm}$
- Object distance: $s_{o 1}=15 \mathrm{~cm}$
- Problem:
- Calculate the image distance, $s_{i 2}$
- Calculate the transverse magnification

Another Example

- Step 1: calculate position of first image
- Thin lens equation: $\frac{1}{s_{01}}+\frac{1}{s_{i 1}}=\frac{1}{f_{1}}$
- Solve for $s_{i 1}$:
$s_{i 1}=\left(\frac{1}{f_{1}}-\frac{1}{s_{o 1}}\right)^{-1}=\left(\frac{1}{10 \mathrm{~cm}}-\frac{1}{15 \mathrm{~cm}}\right)^{-1}=30 \mathrm{~cm}$
- This is a positive number, so the image is to the right of the first lens.

Another Example

- Step 2: Calculate the second object distance, $s_{o 2}$

$$
\begin{gathered}
\mid \\
s_{i 1}-d \xrightarrow{*} \rightarrow \\
s_{o 2}=d-s_{i 1}=42 \mathrm{~cm}-10 \mathrm{~cm} \\
s_{o 2}=12 \mathrm{~cm}
\end{gathered}
$$

Another Example

- Step 3: calculate position of second image
- Thin lens equation: $\frac{1}{s_{o 2}}+\frac{1}{s_{i 2}}=\frac{1}{f_{2}}$
- Solve for $s_{i 2}$:

$$
s_{i 2}=\left(\frac{1}{f_{2}}-\frac{1}{s_{o 2}}\right)^{-1}=\left(\frac{1}{5 \mathrm{~cm}}-\frac{1}{12 \mathrm{~cm}}\right)^{-1}=8.6 \mathrm{~cm}
$$

- This is a positive number, so the image is to the right of the second lens.

Another Example

- Step 4: calculate the transverse magnification
- Magnification of the first lens:

$$
m_{T 1}=-\frac{s_{i 1}}{s_{o 1}}=-\frac{30 \mathrm{~cm}}{15 \mathrm{~cm}}=-2
$$

- Magnification of the second lens:

$$
m_{T 2}=-\frac{s_{i 2}}{s_{o 2}}=-\frac{8.6 \mathrm{~cm}}{12 \mathrm{~cm}}=-0.72
$$

- Total magnification:

$$
m_{T}=m_{T 1} m_{T 2}=(-2)(-0.72)=+1.44
$$

Two Lens Equation

- Can we derive an equation that expresses $s_{i 2}$ in terms of $s_{o 1}, f_{1}, f_{2}$ and d ?
- Thin lens equation:

$$
\frac{1}{s_{o 2}}+\frac{1}{s_{i 2}}=\frac{1}{f_{2}} \quad s_{i 2}=\left(\frac{1}{f_{2}}-\frac{1}{s_{o 2}}\right)^{-1}=\frac{f_{2} s_{o 2}}{s_{o 2}-f_{2}}
$$

- Relation between $s_{o 2}$ and $s_{i 1}$:

$$
s_{o 2}=d-s_{i 1}=d-\frac{f_{1} s_{o 1}}{s_{o 1}-f_{1}}
$$

- Two lens equation:

$$
s_{i 2}=\frac{f_{2} d-f_{2} f_{1} s_{o 1} /\left(s_{o 1}-f_{1}\right)}{d-f_{2}-f_{1} s_{o 1} /\left(s_{o 1}-f_{1}\right)}
$$

Two Lens Equation

$$
s_{i 2}=\frac{f_{2} d-f_{2} f_{1} s_{o 1} /\left(s_{o 1}-f_{1}\right)}{d-f_{2}-f_{1} s_{o 1} /\left(s_{o 1}-f_{1}\right)}
$$

- Can we describe the two-lens system in terms of a focal length?
- Yes, but the front and back focal lengths are different.
- Front focal length: $s_{i 2} \rightarrow \infty$ or $1 / s_{i 2} \rightarrow 0$
- Outgoing rays parallel to optical axis

$$
\begin{gathered}
\frac{d-f_{2}-f_{1} s_{o 1} /\left(s_{o 1}-f_{1}\right)}{f_{2} d-f_{2} f_{1} s_{o 1} /\left(s_{o 1}-f_{1}\right)}=0 \\
s_{o 1}=\text { f.f.l. }=\frac{f_{1}\left(d-f_{2}\right)}{d-\left(f_{1}+f_{2}\right)}
\end{gathered}
$$

Two Lens Equation

$$
s_{i 2}=\frac{f_{2} d-f_{2} f_{1} s_{o 1} /\left(s_{o 1}-f_{1}\right)}{d-f_{2}-f_{1} s_{o 1} /\left(s_{o 1}-f_{1}\right)}
$$

- Front focal length: $s_{i 2} \rightarrow \infty$ or $1 / s_{i 2} \rightarrow 0$

$$
s_{o 1}=\text { f.f.l. }=\frac{f_{1}\left(d-f_{2}\right)}{d-\left(f_{1}+f_{2}\right)}
$$

- Back focal length: $s_{o 1} \rightarrow \infty$ or $1 / s_{o 1} \rightarrow 0$
- Incoming rays parallel to optical axis

$$
s_{i 2}=\text { b.f.l. }=\frac{f_{2}\left(d-f_{1}\right)}{d-\left(f_{1}+f_{2}\right)}
$$

Two Lens Equation

- Front focal length:

$$
\text { f. f.l. }=\frac{f_{1}\left(d-f_{2}\right)}{d-\left(f_{1}+f_{2}\right)}
$$

- Back focal length:

$$
\text { b. f. l. }=\frac{f_{2}\left(d-f_{1}\right)}{d-\left(f_{1}+f_{2}\right)}
$$

- If the lenses are close together, $d \rightarrow 0$ and we have

$$
\text { f.f.l. }=\text { b.f.l. }=f=\frac{f_{1} f_{2}}{f_{1}+f_{2}}=\left(\frac{1}{f_{1}}+\frac{1}{f_{2}}\right)^{-1}
$$

- In general, for several closely spaced thin lenses

$$
\frac{1}{f}=\frac{1}{f_{1}}+\frac{1}{f_{2}}+\frac{1}{f_{3}}+\cdots
$$

Apertures and Stops

Field stop - an element limiting the size, or angular breadth of the image (for example film edge in camera)

Aperture stop - an element that determines the amount of light reaching the image

- Field stop determines the field of view and limits the size of objects that can be imaged.
- Aperture determines amount of light only

Entrance Pupil

- How big does the aperture stop appear when viewed from the position of the object?

Entrance Pupil

- If the cornea were removed, the pupil would appear smaller
- The cornea magnifies the image of the pupil

Exit Pupil

- How big does the aperture stop appear when viewed from the image plane?

(Aperture stop is in front of the lens)

Chief and marginal rays

Marginal ray: the ray that comes from point on object and marginally passes the aperture stop

Chief ray: any ray from an object point that passes through the middle of the aperture stop
It is effectively the central ray of the bundle emerging from a point on an object that can get through the aperture.
Importance: aberrations in optical systems

Vignetting

The cone of rays that reaches image plane from the top of the object is smaller than that from the middle. There will be less light on the periphery of the image - a process called vignetting
Example: entrance pupil of the eye can be as big as 8 mm . Telescopes are designed to have exit pupil of 8 mm for maximum brightness of the image

Relative Aperture

- The area of the entrance pupil determines how much light will reach the image plane.
- Pupils are typically circular: the area varies as the square of the
 diameter, D.
- The image area varies as the square of the lateral dimension, $A \sim f^{2}$
- Light intensity at the image plane varies as $(D / f)^{2}$
- (D / f) is called the relative aperture

Relative Aperture

- Relative aperture: $f / D=$ (focal length/diameter)
- For optical equipment (camera lenses) this is usually labeled as $f / \#$
- Example:

$$
\left.\begin{array}{l}
-f=50 \mathrm{~mm} \\
-D=25 \mathrm{~mm}
\end{array}\right\} \quad f / D=2 \operatorname{denoted} \text { " } f / 2^{\prime \prime}
$$

- This provides a standard way to reference the intensity of light shining on film or other photosensitive material.

f-number of a camera lens

Change in neighboring numbers is $\sqrt{2}$ Intensity is $\sim 1 /(f / \#)^{2}$: changing diaphragm from one label to another changes light intensity on film 2 times

Depth of Field

Depth of Field

- Extreme case is the pinhole camera

