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Abstract. We present a novel method for detecting rotated lungs in chest radiographs for quality control
and augmenting automated abnormality detection. The method computes a principal rib-orientation
measure using a generalized line histogram technique for quality control, and therefore augmenting
automated abnormality detection. To compute the line histogram, we use line seed filters as kernels to
convolve with edge images, and extract a set of lines from the posterior rib-cage. After convolving kernels
in all possible orientations in the range [0◦, 180◦), we measure the angle with maximum magnitude in the
line histogram. This measure provides an approximation of the principal chest rib-orientation for each
lung. A chest radiograph is upright if the difference between the orientation angles of both lungs with
respect to the horizontal axis is negligible. We validate our method on sets of normal and abnormal images
and argue that rib orientation can be used for rotation detection in chest radiographs as an aid in quality
control during image acquisition. It can also be used for training and testing data sets for computer aided
diagnosis research, for example. In our experiments, we achieve a maximum accuracy of approximately
90%.

Keywords. Chest radiographs · Automation · Pattern recognition · Quality control · Generalized line
histogram · Rib-orientation · Rotation detection.
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1. Introduction

1.1 Motivation

Automated quality control is a critical issue when large number of digital chest radiographs
(CXR) need to be acquired, such as during mass population automated screening Jaeger et al.
(2014). During image acquisition, CXRs need to be assessed for proper x-ray penetration,
adequate inspiration (inhaling) by the patient, proper angulation, and importantly, the image
should be devoid of any rotation Corne & Pointon (2010); Puddy & Hill (2007). Problems
with any of these can hinder the interpretive process. Unless the technical quality is checked
carefully, the CXR film may be misinterpreted (misread) Corne & Pointon (2010); Herring
(2011). Among these, rotation, in particular, can adversely affect the performance of subsequent
automated processing steps in screening algorithms or computer-aided diagnosis, such as lung
segmentation Iakovidis et al. (2009) and lateral one-to-one zone comparison, viz. upper, middle,
and lower between lung sections. In case of zone comparison, zone splitting horizontal lines
(with respect to x-axis that goes in accordance with the x-ray beam) may not equally crop zones
from both lung sections when the CXR is rotated.

While rotated chest radiographs may not necessarily be challenging for radiologists Folio (2012;
2014), machines that are operated in either a computer-assisted or a fully-automated fashion,
may not be capable of accurately processing rotated films (CXRs). An automatic method for
detecting rotated images is desirable to enable machines to detect a rotated CXR and alert a
human operator for closer inspection. Therefore, detecting rotation in chest radiographs is
the core theme of the paper. Since our focus is on quality control, we try to detect all rotated
radiographs that could cause problems for our automated screening system Jaeger et al. (2014).
This includes radiographs displaying diseases, such as scoliosis, or spinal fixations and other
surgery resulting in anatomic deformity that is not typically considered as rotation from the
radiologist point of view. In addition, most individuals have some degree of lateral curvature
of the spine, giving the appearance of a minor rotation. We also do not distinguish between
rotation along a single axis and multiple axes Folio (2010). Most rotations involve multiple axes
and pose harder problems for automatic processing than rotations involving only one axis, but
most of them pose no major reading problems for radiologists.

1.2 Context and our contribution

Rotation in CXRs is likely to occur in images acquired with portable machines in non-hospital
settings or under more challenging outdoor conditions, such as mobile screening stations in
rural areas. In addition to pathology-related rotations, misaligned body positions are more
frequent in these cases due to hardware limitations of the screening setup used, poorly-observed
screening protocols, or other factors caused by mass population screening stress Bongard et al.
(2008); Jaeger et al. (2013). To acquire an upright CXR, a radiology technician needs to align
the patient’s body (upper part of the body, more specifically) so that it is perpendicular to
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Fig. 1. A graphical illustration (cropped
CXR) of one method radiologists estimate
rotation in chest radiographs Corne &
Pointon (2010); Herring (2011).

the x-ray beam (principal axis). Deviation from this position often results in a rotated CXR.
The degree of rotation in a CXR can be computed by analyzing the relationship of the medial
heads of the clavicles to adjacent appearing vertebral spinous processes in the upper thorax
region Folio (2012). Normally, the spinous processes lie equidistant from the medial heads of
the clavicles Corne & Pointon (2010); Puddy & Hill (2007) (see Fig. 1). If one clavicle is nearer
than the other then the CXR is rotated and the lung on that side will appear whiter Corne &
Pointon (2010); Herring (2011). Therefore, it is necessary to first detect the clavicles and the
adjacent vertebra in the spinous processes, and then compute the distance between them. From
a practical point of view, the automatic detection of clavicle heads and spinous processes needs
to be precise since a small deviation with respect to the actual boundary can adversely affect the
decision process. When compared with human performance, automatic state-of-the-art methods
do not provide satisfactory clavicle boundary detection performance due to the large variation
in intensity distributions in the clavicle region, the presence of shadows, and other pathology
such as nodules Horváth et al. (2009); van Ginneken et al. (2006). Therefore, Suzuki et al. (2006)
recommend that the automatic systems be trained on large datasets.

In contrast, when clavicles do not provide necessary information, we observe that radiologists
can reliably determine if a CXR is rotated by using other contextual information, e.g. patient
details. While there are instances where the spinous process and clavicles are discordant with
rib rotation, we assume in the following that a rotated lung affects the positions of clavicles and
ribs in a consistent way for the vast majority of cases (see Fig. 2). Motivated by this, we determine
rotation in chest radiographs based on the rib-orientation. Computing the rib-vertebra angle i.e.,
the angle between a rib and its corresponding vertebra is not a new concept and it has been
a clinically accepted method since the 1970’s Grivas et al. (1992); Mehta (1972). These works
used radiographs of scoliosis patients for which they computed the rib-vertebra angle difference
(RVAD) from all ribs to examine the influence of the infantile growth spurt and to stress the
importance of early diagnosis and treatment. Similarly, interval change detection between two
CXRs based on the difference in anterior-posterior inclination angles has been reported as an
image registration method Matsuo et al. (2005). As with clavicle detection performance, low
accuracy in rib detection has been reported in de Souza (1983); Karargyris et al. (2011); Suzuki
et al. (2006); Wechsler (1977). This means that an automated method should not rely on a
complete rib cage detection as not all 12 pairs of ribs (including false and floating ribs) are
necessarily visible in a typical radiograph. The latter issue can be considered as the major
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Fig. 2. Samples of chest radiographs in the order of increasing degree of rotation, from left to right (a –
e). Radiologists do not consider sample (a) as rotated since there is a very small difference in the distance
from the medial heads of the clavicles to the adjacent vertebral in the spinous processes (see Fig. 1).

drawback of the state-of-the-art methods since they require all pairs of ribs. Therefore, we
propose a new method for computing the principal rib-orientation from both lungs. Missing
a pair of ribs does not negatively affect the output of our method because the visible subset
is sufficient to compute the principal rib-orientation. As a result, our method is more stable.
Further, principal rib-orientation minimizes false positive detection caused by overlapping
densities in a rotated radiograph. Our contributions1 can be enumerated as follows.

1. We develop a novel generalized line histogram method to compute rib-orientations.

2. We apply this method as a decision making tool for rotation detection and quality control
in acquisition of CXRs, particularly in remote rural areas during mass population automated
screening.

3. Therefore, we overcome the limitations of highly sensitive clavicle detection methods since
our method does not require any information about clavicles.

The remainder of this paper is organized as follows. We start with detailing our proposed
method in Section 2. This includes lung segmentation, line seed filter (kernel) development,
line histogram computation, and rotation decision. In Section 3, we evaluate the approach. We
conclude the paper in Section 4 with a summary of our results.

2. Materials and method

2.1 Lung section segmentation

To effectively compute the rib-cage edge distribution, it is necessary to segment right and left
lung sections from the whole image. Lung segmentation has a rich state-of-the-art literature. In
this work, we apply our automatic algorithm which is based on graph-cut algorithm guided
by a patient-specific atlas model Candemir et al. (2014). The system first builds a subset of

1 The paper is a significant extension of the work presented in 27th IEEE Intl. Sympo. on Computer Based Medical Systems (CBMS) 2014, NY, USA Santosh et al.
(2014).
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atlases (which are expert delineations of lung boundaries of several patients) by choosing the
most similar x-rays in terms of shape similarity of lungs. Then, it warps these selected atlases to
the target CXR using a registration algorithm. We use the scale invariant feature transform (SIFT)
flow (i.e., SIFT-flow) registration approach Liu et al. (n.d.), which computes the corresponding
pixels of image pairs according to their SIFT feature similarity. The spatial difference between
the corresponding pixels is used to warp the masks from training CXRs to build a lung model
for the target CXR. The lung model and intensity information of the target CXR are combined by
using the following objective function,

E(f) = αdEd(f) + αsEs(f) + αmEm(f), (1)

where

1. the data term Ed forces the segmentation to consider intensity information of the chest
radiographs;

2. the smoothness term Es ensures a smooth solution; and

3. the model term Em guides the algorithm to produce segmentation results similar to the patient
lung model.

Their corresponding scalar weights αd, αs and αm are empirically determined. For more details
about energy terms, we refer the reader to the work presented in Candemir et al. (2014). The
final lung boundary is computed by solving the objective function with a graph cut energy
minimization approach Boykov et al. (2001). Fig. 3 shows output examples using our method,
where the detected right and left lung sections are separately illustrated.

2.2 Generalized line histogram

The main idea in this section, is to approximate principal rib-orientations of both lung sections
(as described in Section 2.1) for all possible angles: [0, 180◦) in terms of line histograms by using
line segment detector (via kernel convolution).

2.2.1 Kernels

To detect key lines from the image Ye et al. (2010), we design line seed filter kernels that are
defined in a normal Gaussian distribution. We compute probability density functions (pdf) at
each of the values in X using the normal distribution,

f (x, µ, σ) =
1

σ
√

2π
exp

(
−(x− µ)2

2σ2

)
, (2)

where σ = 1, µ = 0 and X is a vector and its values are confined in the range [−σ, σ]. In the
discrete case, a structuring element can be represented as a set of pixels on a grid, assuming the
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(a) Input image (b) Lung segmentation (c) Right lung (d) Left lung

Fig. 3. Two examples showing the complete process of segmenting lung sections (right and left) using
graph-cut algorithm.

values 1 if the pixel belongs to the structuring element or 0, otherwise Hendriks & Vliet (2003);
Serra (1983). Based on this, we define a binary kernel representing a line of any particular length
len and angle θ i.e., f (‘line′, len, θ). To generate a kernel that represents the ‘bell-shaped’ Gaussian
distribution g, we perform an element-wise multiplication of the binary kernel with the values
obtained from Eq. (2),

g = f
(
‘line′, len, θ

)
◦ f
(
[−σ :

2σ

len− 1
: σ], µ, σ

)
. (3)

The following example shows how kernels are made, for a particular angle θ and line length
len = 5.

g at 30◦ = f
(
‘line′, 5, 30

)
◦ f
(
[−1 :

2× 1
5− 1

: 1], 0, 1
)

=

0 0 0 1 1
0 0 1 0 0
1 1 0 0 0

 ◦ [0.24 0.35 0.39 0.35 0.24]

=

 0 0 0 0.35 0.24
0 0 0.39 0 0

0.24 0.35 0 0 0

 .

Note that the kernel matrix size depends on the length of the line. In order to avoid discretization
errors and to get more precision, a larger matrix is required for small step angle differences in
the range of [0◦, 180◦). For example, in Fig. 4, kernels representing line filters in six different
orientations are shown, where the kernel matrix size is 9 × 9. While creating the kernel, its
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Fig. 4. Kernels representing linear structuring element i.e., line filters in six different orientations, defined
in a 1D Gaussian distribution.

matrix size can be varied with the window size of the image, as well as with the application. For
line drawing images as an example, the matrix size can be increased to exploit less but prominent
lines. The larger the size of the kernel matrix, the fewer the number of lines.

We know that the Gaussian kernel is normalized to make the integral over the exponential
function unity for every σ. As a consequence, the shape of the kernel remains the same,
irrespective of σ. Further, the behavior of the kernel function is the same for all directions
(isotropic). Gaussian kernel therefore, maximizes the filter response in the middle, which means
that the line extraction addresses our key issue especially when it emphasizes continuous lines
and curves (see Fig. 5). This makes Gaussian kernels different from binary. In a similar fashion,
Hough transform Hough (1959) may not be useful to our application since it requires to fix
several parameters like Hough peaks, line segment length and gap between the line segments.
Additionally, like binary kernels, extracting continuous lines and curves is not trivial, which is
our key issue.

Considering a set Θ of possible different orientations {θk} which are specified in the range
[0◦, 180◦), we have a set K of kernels {gk},

K = {gk}k=1,...,K, and θk =
180◦

bink
(k− 1). (4)

The index k associated with kernel g determines the orientation angle i.e., θk. As an example,
any orientation angle θ for different values of k and bin = 6 will be (cf. Fig. 4), θ1 = 0◦ when k =

1, . . . , θ6 = 150◦ when k = 6.

2.2.2 Line histogram via convolution

Given an edge image edgI(m, n) of size M×N, our idea is to perform convolution with the kernel
g. Note that the edge image results from Canny edge detector after global histogram equalization.
Convolution in general, can be expressed as o(m, n) = g⊗ edgI

o(m, n) = ∑I
i=1 ∑J

j=1 g(i, j)edgI(m− i, n− j). (5)

For each pixel (m, n) in the image, the convolution output value o(m, n) is calculated by
translating the convolution mask to pixel (m, n) in the image, and then taking the weighted
sum of the pixels in the neighbourhood about (m, n), where the individual weights are the
corresponding values in the convolution mask. Such a convolution produces prominent lines
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Fig. 5. Resulting lines after convolving the edge image with kernels in six different orientation angles (i.e.,
0◦, 30◦, . . . , 150◦), which are defined in 1D Gaussian distribution (cf. Fig. 4).

that are found in the lung section. Considering a complete set K of kernels (defined in Eq. (4)),
convolution will produce a complete set L of lines `k,

L = K⊗ edgI = {`k}k=1,...,K, (6)

Such sets of lines result from the edges of rib cages and their neighbourhood pixels. Fig. 5 shows
a few examples. In this illustration, different numbers and sizes of lines are extracted from
six different kernels (based on the orientation angle i.e, θ = {0◦, 30◦, . . . , 150◦}). Any `k can
be represented by a tuple: total number of lines (noL) and total length of the lines (loL) i.e.,
` = 〈noL, loL〉. While computing histograms, either noL or loL can be used for any particular k.
Since lengths of the lines vary from one line to another (Fig. 5), without loss of generality, it is
interesting to take its length. Based on this, we can express it in terms of histogram h of lines in
every convolution, designated by kernel gk,

H = [h̄1, . . . , h̄k, . . . , h̄K] and h̄k =
1

max(hk)
hk, hk = loLk. (7)

Overall, to compute a single histogram from any image, time complexity, T can be expressed as
T(K) = O(K), where K is the total number of kernels that are used for convolution.
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Fig. 6. An example (cf. sample 1 in Fig. 3),
illustrating the way to compute chest
radiograph rotation based on principal
rib-orientations, by separately analyzing
two lung sections: left and right.

2.3 Chest radiograph rotation

Following Eq. (7), principal chest rib-orientation can roughly be computed as, arg maxk(h̄k), k =

1, . . . , K, where k determines at what angle the kernel has been used (cf. Eq. (4)). This means
that the principal chest rib-orientation is the angle from which the maximum magnitude of line
histogram results. Based on this, we set up a global decision process to decide whether the CXR
is rotated.

Consider two lung sections: right and left, and kernels at several different θ values, the CXR
is said to be upright if their orientation angle difference ∆ is zero or negligible (see Fig. 6),
∆α1,2 = |α1 − α2| ≈ 0, where α1 = θ1 and α2 = 180 − θ2 respectively represent the principal
rib-orientation angles from right and left lung sections. For practical use, since ∆α1,2 6= 0 (it is
typically greater than zero), our decision relies on a small tolerance (tol.) to generate a binary
response,

decision =

{
1 (for rotation) if ∆α1,2 ≥ ∆tol.

α1,2

0 (for non-rotation) otherwise, (8)

where ∆tol.
α1,2

is designed based on the observations. In this work, we do not use the fixed tolerance
value but, we tune it (within the provided range) to seek for the optimal performance. This will
further be discussed in our experimental tests (Section 3.4).

3. Experiments

3.1 Datasets

We used two chest x-ray image datasets in our test: 1) Indiana (IN) and 2) Montgomery County
(MC). The IN dataset is a large collection of over 4000 frontal radiographs covering a wide range
of lung abnormalities. The images were collected from various hospitals affiliated with the
Indiana University School of Medicine. From this dataset, we have selected rotated (50 samples)
and a subset of 100 non-rotated samples. The MC dataset contains 138 frontal radiographs, where
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several abnormal radiographs show manifestations of Tuberculosis and have abnormal lung
shapes. The images were acquired within the tuberculosis control program of the Department of
Health and Human Services of Montgomery County in Maryland, USA.

Both datasets2 have been de-identified at source and are exempted by the respective IRBs at the
source organizations and the National Institutes of Health (NIH).

3.2 Evaluation protocol

Since it is difficult to provide an accurate rotation angle for the expert, our evaluation protocol
follows a qualitative response: rotated or non-rotated. In this testing protocol, the response
returned from our algorithm is correct if it matches the expert’s response.

For evaluation, considering the whole dataset size B, we compute accuracy (acc.) of the
algorithm’s response (AR) with respect to the expert’s response (ER) as,

acc. =
∑B

b=1 ARb ∧ ERb

B
, and AR∧ ER =

{
1 if AR = ER

0 otherwise, (9)

where responses ER and AR are binary sequences i.e., ERb, ARb ∈ {0, 1}.

3.3 Illustrative examples

Before reporting an overall performance of our algorithm, we first illustrate its operation through
an example shown in Fig. 7. Here,

1. the solid horizontal line (in black) separates the line histograms from right and left lung
sections;

2. the solid red lines represent the principal rib-orientation angles; and

3. different number of bins (quantization) are used to evaluate their effect on decision.

We remind the reader that the number of bins depends on the convolution angle interval (cf.
Eq. (4)). In this example, for different number of bins viz. 6, 12 and 180, ∆α1,2 is always zero.
These results show that the decision remains unchanged (i.e., up-right chest radiograph) even
when number of bins vary. This, however, does not hold for all CXRs and ∆α1,2 can be bigger
when using less number of bins. Furthermore, we observe that larger the number of bins, better
the histogram’s precision. Therefore, we use angular steps of 1◦ for convolution, in all tests
(Fig. 8).

2 • The image datasets are available on request via http:ceb.nlm.nih.gov
• Indiana collection images may be viewed on NLM’s Openi system http:openi.nlm.nih.gov

http:ceb.nlm.nih.gov
http:openi.nlm.nih.gov
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Fig. 7. An example showing line histograms from (a) a chest radiograph with three different number of
bins: (b) 6 (at 30◦ see Fig. 5, for instance), (c) 12 (at 15◦) and (d) 180 (at 1◦), for making decisions. The
sample, taken from the Indiana dataset has been decided to be fully up-right chest radiograph. In the
example, rib-orientation angle difference ∆α12 = |11− 11| = 0 when bin = 180.

3.4 Results and analysis

Results from a range of tolerance values were obtained and the best result was selected. Separate
tests have been made for rotated and non-rotated CXRs, and shown in Fig. 9. The results are
based on the evaluation protocol described in Eq. (9) that follows decision criterion Eq. (8). In
Fig. 9, the observation can be summarized as follows. With respect to the increasing tolerance
value, starting from ∆tol.

α1,2
= 0,

1. rejection of the rotated CXRs is gradually decreased; and

2. in contrast, there is a gradual increment of the acceptance of the non-rotated CXRs.

As shown in the reported results (Fig. 9), our aim is not to reject/accept 100%
rotated/non-rotated CXRs. Therefore, we have studied their trade-off by maintaining the
satisfactory performance, and the optimal results have been achieved in the range 5 – 14. This
means that the algorithm cannot make a clear distinction between rotated and non-rotated
samples outside that range. Further, since there always exists a small rib-orientation angle
difference even from the up-right (non-rotated) CXRs, a smaller threshold ∆tol.

α1,2
= 5, for

instance can only accept approximately 42% up-right CXRs. But at the same time, it can reject
approximately 95% of rotated CXRs. On the other hand, after ∆tol.

α1,2
= 10, the rejection rate of

rotated CXRs has been decreased to approximately 40% while accepting more than 92% up-right
CXRs. This suggests that severely rotated CXRs are only detected when the threshold increases.
For more clarity, Fig. 8 illustrates more examples, where our algorithm reports that all samples
are rotated when ∆tol.

α12 = 5◦ but, samples (a), (e) and (f) are not considered as rotated when
∆tol.

α12 = 10◦.

For discussion, additional issues include 1) convolution angle-range, and 2) precision in
rib-orientation. While mathematical formulation allows all possible angles from 0◦ − 180◦,
practical implementations do not need to compute beyond 60◦. This helps to reduce the
execution time. Our algorithm does not precisely provide an individual rib-orientation, but an
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Fig. 8. Examples illustrating whether chest radiographs are rotated based on principal chest
rib-orientation, when taking tolerance, ∆tol.

α12 = 5◦.

approximated single value for all ribs appearing in any particular lung section. This makes our
computation is robust (cf. Fig. 8, sample (b)) even when some ribs are not visible or when there
are false positives due to over-segmentation (cf. Fig. 3, sample (b)).

3.5 Performance with error-prone lung segmentation

Erroneous lung segmentation may not change the principal rib-orientation values as long
as a large lung volume (approximately equal in both lung sections) remains within it.
Additionally, to see how robust the algorithm is, another test has been made by using
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free-hand lung segmentation that can either over or under-segment (not limited to just a small
leakage/elongation as shown in Fig. 3, sample 2). Like before, we start by generating line
histogram illustrations for each segmentation (see Fig. 10). In case of under-segmentation, we
observe that the rib-orientation angles are more precise in comparison to over-segmentation
because curve-like rib cage regions are avoided. Therefore, in our test, under-segmentation is
found to be effective. But, the algorithm’s decision is highly influenced if we apply both over
and under-segmentation in a single CXR. Therefore, no such samples have been used in the test.

To determine the interest and to evaluate the robustness of the free-hand segmentation,
comparison has been made with automatic lung segmentation, and shown in Fig. 11, where the
curve (in blue) is the average performance from Fig. 9. The comparison shows similar behavior.

4. Summary and future work
In this paper, we have presented a method for detecting rotation in frontal CXRs by developing
a generalized line histogram based rib-orientation detector. The method uses a line seed filter
kernel to convolve with an edge image that produces a set of lines in several different possible
directions, ranging from 0◦ to 180◦. The angle for which the magnitude of the histogram is
maximum is the principal rib-orientation angle. Considering both (left and right) lung sections,
from our experimental tests, we have observed that the proposed method can distinguish
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Fig. 10. Resulting line histograms based on the corresponding free-hand lung segmentation: (a) under
and (b) over segmentation.
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Fig. 11. Performance comparison
(in average, including both
rotated and non-rotated samples)
between automatic and free-hand
lung segmentation.
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severely rotated CXRs from non-rotated ones, and achieved a maximum overall accuracy of
89.1%.

The proposed method, on the other hand, does not extract sufficient line segments from those
CXRs having lung sections where ribs are not clearly visible due to pleural effusion, for instance
and other diseases such as pneumonia. Similarly, line histograms are affected when anterior ribs
are pronounced than posterior ones, which is still a rare case. Fig. 12 shows some examples.
Furthermore, as discussed in Section 3.5, the algorithm fails when over-segmentation has been
made in one lung section and under-segmentation in another. In such context, decisions are
affected from non-rotated CXRs but they remain valid for rotated CXRs.

As future work, we aim to integrate texture-based filtering techniques for pre-processing CXRs
to minimize problems due to intensity variations Zuo et al. (2013). Such a feature (1D line
histogram) can also be useful for detecting abnormalities via symmetric similarity. Computing
lung symmetry (reflective symmetry) based on the rib distribution is another plan in order to
detect abnormalities in CXRs. For an immediate understanding, in Fig. 7, the line histograms
can help to estimate the reflective symmetric similarity between right and left lung sections.
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