231
Views
61
CrossRef citations to date
0
Altmetric
Original Article

Reactions of Superoxide Radicals with Curcumin: Probable Mechanisms by Optical Spectroscopy and EPR

, , , &
Pages 355-362 | Received 15 Aug 2003, Accepted 08 Dec 2003, Published online: 07 Jul 2009
 

Abstract

Reactions of superoxide-crown ether complex with curcumin have been studied in acetonitrile. Optical absorption spectra showed that curcumin on reaction with superoxide forms a blue color intermediate absorbing at 560 nm, which subsequently decayed in a few hours with the development of the absorption band corresponding to the parent curcumin. The regeneration was 100% at low superoxide concentrations (1:1, or 1:2 or 1:3 of curcumin:superoxide) but reduced to 60% at high superoxide concentration (>1:5). The regeneration of curcumin is confirmed by HPLC analysis. Stopped-flow studies in acetonitrile following either the decay of parent curcumin at 420 nm or formation of 560 nm absorption have been used to determine the rate constant for the reaction of superoxide with curcumin. EPR studies confirmed the disappearance of characteristic superoxide signal in presence of curcumin with the formation of new featureless signal with g=2.0067. Based on these studies it is concluded that at low superoxide concentrations curcumin effectively causes superoxide dismutation without itself undergoing any chemical change. At higher concentrations of superoxide, curcumin inhibits superoxide activity by reacting with it.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.