
ZFS and RAID-Z: The Über-FS?

Brian Hickmann and Kynan Shook
University of Wisconsin – Madison

Electrical and Computer Engineering Department
Madison, WI 53706

{bjhickmann and kashook} @ wisc.edu

Abstract

ZFS has been touted by Sun Microsystems as the

“last word in file systems”. It is a revolutionary file
system with several new features that improve its
reliability, manageability, and performance. ZFS also
contains RAID-Z, an integrated software RAID system
that claims to solve the RAID-5 write hole without
special hardware. While these claims are impressive,
very little information about ZFS and RAID-Z has been
published and no work has been done to verify these
claims. In this work, we investigate RAID-Z and ZFS
by examining the on-disk file layout. We also use a
kernel extension to intercept reads and writes to the
backing store and use this temporal information to
further understand the file system’s behavior. With
these tools, we were able to discover how RAID-Z lays
files out on the disk. We also verified that RAID-Z
both solved the RAID-5 write hole and maintains its
full-stripe write semantics even when the volume is full
or heavily fragmented. Finally, during our testing, we
uncovered serious performance degradation and
erratic behavior in ZFS when the disk is near full and
heavily fragmented.

1. Introduction

ZFS, a file system recently developed by Sun
Microsystems, promises many advancements in
reliability, scalability, and management. It stores
checksums to detect corruption and allows for the easy
creation of mirrored or RAID-Z volumes to facilitate
correcting errors. It is a 128-bit file system, providing
the ability to expand well beyond inherent limitations
in existing file systems. Additionally, ZFS breaks the
traditional barriers between the file system, volume
manager, and RAID controller, allowing file systems
and the storage pool they use to grow flexibly as
needed.

RAID-Z was also developed by Sun as an integral
part of ZFS. It is similar to RAID-5, with one parity
block per stripe, rotated among the disks to prevent any
one disk from being a bottleneck. There is also the
double-parity RAID-Z2, which is similar to RAID-6 in
that it can recover from two simultaneous disk failures
instead of one. However, unlike the standard RAID
levels, RAID-Z allows a variable stripe width. This
allows data that is smaller than a whole stripe to be
written to fewer disks. Along with the copy-on-write
behavior of ZFS, this allows RAID-Z to avoid the
read-modify-write of parity that RAID-5 performs
when updating only a single block on disk. Because of
the variable stripe width, recovery necessitates
reconstructing metadata in order to find where the
parity blocks are located. Although RAID-Z requires a
more intelligent recovery algorithm, this also means
that recovery time is much shorter when a volume has
a lot of free space. In RAID-5, because the RAID
controller is separate from the file system and has no
knowledge of what is on the disk, it must recreate data
for the entire drive, even if it is unallocated space.

While RAID-Z and ZFS make several exciting
claims, very little information is published on ZFS, and
even less on RAID-Z. Sun has published a draft On-
Disk Specification [3], however it barely mentions
RAID-Z. Nothing is published to indicate how data is
spread out across disks or how parity is written. Our
objective in this paper is to show some of the behavior
of RAID-Z that has not yet been documented.

In this paper, we cover a variety of topics relating to
the behavior of RAID-Z. We look at file and parity
placement on disk, including how RAID-Z always
performs full-stripe writes, preventing RAID-5’s read-
modify-write when writing a single block of data. We
discuss the RAID-5 write hole, and show how RAID-Z
avoids this problem. Additionally, we investigate the
behavior of RAID-Z when full or when free space is
fragmented, and we show how performance can
degrade for a full or fragmented volume.

2

2. RAID-Z and ZFS Background
Information

There are two pieces of ZFS’s and RAID-Z’s
architecture that are important to this work. The first is
ZFS’s Copy-on-Write (CoW) transactional model. In
this model any update to the file system, including both
metadata and data, is written in a CoW fashion to an
empty portion of disk. Old data or metadata is never
immediately overwritten in ZFS when it is being
updated. Once the updates have been propagated up
the file system tree and eventually committed to disk,
the 512-byte uberblock (akin to the superblock in ext3)
is updated in a single atomic write. This ensures that
the updates are applied atomically to the file system,
solving many consistent update problems. RAID-Z
must also follow this model and therefore guarantees to
always perform full-stripe writes of new data to empty
locations on the disk.

The second relevant part of ZFS to this work is how
it manages free space. Since ZFS is a 128-bit file
system, it can scale to extremely large volumes.
Traditional methods of managing free space, such as
bitmaps, do not scale to these large volumes due to
their large space overhead. ZFS therefore uses a
different structure called a space map to manage free
space [9]. Each device in a ZFS volume is split into
several hundred metaslabs, and each metaslab has an
associated space map that contains a log of all
allocations and frees performed within that metaslab.
At allocation time, this log is replayed in order to find
free space available in the metaslab. The space map is
also condensed at this time and written to disk. Space
maps save significant space, especially when the
metaslab is nearly full; a completely full metaslab is
represented by a single entry in the log. Their
downside, however, is the time overhead needed to
replay the log to find free space and condense it for
future use. This overhead becomes noticeable when
the disk is nearly full.

3. Methodology

In order to investigate the properties of RAID-Z we
used binary files as backing stores, instead of actual
disks. This had several advantages. First, we did not
need to use separate disks or disk partitions to create
our RAID-Z volumes. This allowed us to easily test
configurations with different numbers or sizes of
backing stores. Second, it also allowed us to easily
observe the backing stores while they were in use with
a normal binary editor. Finally, the use of binary files

as backing stores allowed us to place them on a special
disk image and write a kernel extension to intercept all
reads and writes to this disk image.

Our kernel extension fits in the storage driver
hierarchy pictured in Figure 1 and is based off of
sample code from the Apple Developer Connection
website [7]. It acts as a media filter driver, consuming
and producing a media object which represents a single
write or read on the disk. It sits below the file system,
so there is no concept of files or directories. The
kernel matches this type of driver based on one of
several properties of the media objects. Our kernel
extension matched on the content hint key, which is set
by the disk formatting utility when the volume is
created. We then created a custom disk image with our
content hint so that the kernel extension would be
called only for traffic to this disk image.

This kernel extension allowed us to easily monitor
file system activity to the ZFS backing stores.
However, it does have various limitations. Because
writing to a file from within the kernel is very difficult
due to the potential for deadlock, we used the system
logging facility to record the output of our kernel
extension. However, this has a limited buffer size,
causing some events to get missed during high periods
of activity. To avoid this, we only printed messages
relevant to our reads and writes, which we recognized
from a repeating data pattern. Also, because the driver
is in the direct path of all reads and writes, if the
extension takes too long to run, it can cause the file
system to become too slow to even mount in a
reasonable amount of time. In one particular example,
we attempted to scan through all the data being written
to the disk image, but this caused the mount operation
to take longer than an hour.

In order to facilitate directly examining the backing
stores, we wrote repeating data patterns to the disk that

Figure 1: Storage Driver Stack [1]

3

we could search for using a binary file editor. We
always wrote the pattern in multiples of 512-byte
chunks to match the logical block size of the “disks” in
our system. In order to be able to distinguish the parity
blocks from the data blocks in our test files, we used a
32-bit pattern that was rotated and periodically
incremented after each write to guarantee that the
parity block would always be unique. The use of a 32-
bit repeating pattern also allowed us to filter the reads
and writes reported by our kernel extension by looking
for writes or reads that had a 4-byte pattern repeating
for at least 512 bytes.

We performed our testing on two separate
environments. The first was Mac OS 10.5 using the
recently released ZFS beta version 1.1. We also
developed our kernel extension described above for
MacOS 10.5, which was enabled during nearly all of
our tests. The second environment we used was
OpenSolaris 10 Developer Edition running inside a
VMWare Workstation 6.0.1 virtual machine. We
repeated several of our tests within this environment to
try and eliminate any effects that could be caused by
implementation-specific details or bugs. This
environment did not have the benefit of the kernel
extension and so all tests done here simply examined
the backing store.

4. Investigating File Placement in
RAID-Z

The first aspect of RAID-Z that we investigated
was how it places the file data on disk. Here we
wanted to see how RAID-Z laid out data and parity on
blocks on the disk, how it chose to rotate parity across
the disks, and how it guaranteed to always perform
full-stripe writes. To investigate this, we tried writing
files with known data patterns to the RAID-Z volume
and examined the resulting on-disk contents. We
experimented with writing small, medium, and large
files using the rotating pattern described above in a
simple C program using a single write() system call.
We also tested using several write() system calls, but
this had no effect on our results due to the caching
within ZFS. Most of our testing was performed using
a 5-disk system, however we also verified our results
using 3-disk and 7-disk systems.

4.1. Results

The basic layout of a medium-sized file on a 5-disk
RAID-Z system is depicted in Figure 2. In this
particular example, we wrote a single file with sixteen
512-byte blocks. As can be seen in the figure, the data
for the file is split evenly across the 4 data disks in the

Figure 2: Medium File Layout

Figure 3: Realistic Medium File Layout

4

system. On each disk, the data is written using
sequential 512-byte blocks from the file. The final disk
contains all of the file’s parity blocks. The first parity
block protects data blocks 1, 5, 9, 13, the second
protects data blocks 2, 6, 10, 14, and so on.

While the file depicted in Figure 2 was written with
the first blocks on the first disk, the more common case
is for the file to start on one of the other disks in the
RAID-Z volume as depicted in Figure 3. In this case,
the data is again split equally across all disks and
written in a sequential fashion on each disk. However,
since we now start writing on a different disk, when the
data wraps around to the first disk in the system a 512-
byte offset is introduced as shown in the figure.
Generally, this small offset area is filled with other
data or metadata, and hence the data on these disks is
offset by one sector. These small chunks of data are
possible in RAID-Z due to its partial-stripe write
policy where a write does not need to span all disks in
the system. The other diagrams in this paper will
ignore this small offset for simplicity.

Next, Figure 4 depicts how a small file with six
512-byte blocks is laid out on a RAID-Z volume. An
important feature to notice about this example is that
the number of blocks in the file is not a multiple of the
number of data disks used and hence illustrates how
RAID-Z does partial stripe writes. Here, RAID-Z
divides the data blocks as evenly as possible among all
data disks and any remaining data blocks are spread
evenly across a subset of the data disks. Within each
data disk, data is again written as sequentially as
possible, with data blocks 1 and 2 being written
sequentially to disk 1 in this example. Here, parity
block 1 covers data blocks 1, 3, 5, and 6 while parity
block 2 covers blocks 2 and 4 only. This second parity
block represents a partial stripe write that covers disks
1, 2, and 5 while allowing disks 3 and 4 to be used for
a different stripe.

Finally, the results of writing a single large file can
be seen in Figure 5. Please note that in this figure, the
size of a single block has changed from 512 bytes to 32
kilobytes. Another important observation is that if

Figure 4: Small File Layout

Figure 5: Large File Layout

5

sufficient data is written to a RAID-Z volume, it will
perform writes in multiples of 128KB chunks which
coincides with the default logical block size of ZFS.
These 128KB chunks are split evenly across the data
disks in the system. For 5 disks, this implies that each
disk receives a 32KB sequential piece of the chunk. If
the 128KB chunk is not evenly divisible across the
number of disks, some of the data disks will have
pieces that are 512 bytes shorter than other disks in the
system in order to handle the remainder from the
division across the disks. Also, even though each
128KB chunk is written sequentially, separate 128KB
chunks can be scattered across the disk. We were
unable to determine any pattern of how these 128KB
chunks were distributed on disk, but we presume that
128KB are placed around the disk to ensure that no
single metaslab becomes too full.

Another important feature to notice in Figure 5 is
that parity is rotated around the disks, but without any
distinguishable pattern. We ran several tests to
investigate how the parity disk was chosen and
determined that it does not directly relate to either the
current disk offset or the current file offset. We also
examined the source code for RAID-Z found on the
OpenSolaris website [8] and the code seems to imply
that the parity disk should rotate based on the disk
offset of the write. However, there were also in-line
comments implying that the algorithm in the code was
incorrect and had created an “implicit on-disk format”
of rotating the parity disk if a write was larger than 1
MB. Thus the chosen parity disk depends on both the
offset of a write and the size of the write. We believe
that since data and metadata may be combined into a
single write to disk, the location of the parity disks
depends on how RAID-Z structures writes internally
and hence that is why the parity disk seems to be
randomly selected when looking only at the output of
data blocks on disk.

4.2. Derived File Layout Algorithm

From the figures above as well as additional testing,
we believe we are able to accurately describe RAID-
Z’s algorithm for placing file data onto the disk. First,
we assume that for each write we know the currently
selected parity disk number and which disk and disk
offset where we want to start writing. There are three
cases based on the number of 512-byte blocks that
must be written. After the execution of each case, the
current disk, disk offset, and parity disk may need to be
updated before performing the next write.

The first case is if the number of blocks to be
written is less than the number of data disks in the
system, where the number of data disks is the total

number of disks in the system minus the one disk for
parity. In this case, we check and see if we will reach
the current parity disk during our write of this small
file. If not, we write the parity to our current disk,
otherwise we start writing the file data to the disks in
the system in succession and write the parity when we
reach the current parity disk.

The second case is when the number of blocks to
write is greater than the number of disks in the system
but less than 128KB. In this case, we do an integer
division of the number of blocks in the write with the
number of data disks. This gives us the number of data
blocks N we will write sequentially to each disk. We
also calculate the remainder from this division and use
this number to handle writing out any extra blocks.
Next we loop through the disks starting with the
currently selected disk. If the current disk matches the
current parity disk number, we simply write the parity
information for the entire file. If not, we write the data
blocks. If there are any blocks left from our remainder
calculation, we write N+1 data blocks from the file to
the current disk and decrement the remainder number,
otherwise we write just N data blocks. If, while
looping through the disks, we wrap around to the first
disk, we increment the current disk address by 512
bytes to avoid overwriting any data that was written
previously.

The final case is when the write is larger than
128KB. Here we write the first 128KB split as evenly
as possible across the data disks in the system using an
algorithm similar to case 2. Once this first 128KB is
written we then check the number of blocks that still
need to be written and use either case 1, case 2, or case
3 to complete the write.

5. Investigating the RAID-5 Write
Hole

Next, we wanted to investigate the claim that
RAID-Z solves the so called RAID-5 write hole. The
next two sections describe the RAID-5 write hole, our
methodology for investigating it with RAID-Z, and our
results and conclusions.

5.1. Problem Statement and
Methodology

The RAID-5 write hole or consistent update
problem is a well known problem with RAID designs.
A good description of this problem along with an
investigation into the vulnerability of RAID system to
this problem can be found in [4]. The problem stems
from the inability of RAID systems to update all disks

6

in the system atomically. Therefore, if there is a
system crash or power failure during an update to a
RAID system, the parity information in the RAID
system can become inconsistent with the data. To
solve this problem, RAID system manufacturers often
include expensive hardware such as NVRAM or
battery-backed caches to ensure that all issued writes
actually reach the disk platters in the case of a system
crash.

RAID-Z, on the other hand, is supposed to solve the
consistent update problem without the need for
expensive hardware solutions. It does so by leveraging
the Copy-on-Write (CoW) transactional semantics of
ZFS. RAID-Z will write all the needed data, metadata,
and parity information to new locations on disk using
full-stripe writes, never performing a read-modify-
write as is done in RAID-5. Once this data has reached
the disk, the uberblock is then written to disk. Since
the uberblock is only a single 512-byte structure that is
written to only one device in the system, this can be
done atomically, also making the updated data live in a
single atomic action. If we have a system crash at any
point before the uberblock is written, then the file
system is still consistent because the updated data did
not overwrite live data.

To verify that RAID-Z maintains the necessary
CoW semantics and always performs full-stripe writes,
we ran tests to observe how RAID-Z handled the CoW
semantics of ZFS. To perform this investigation, we
added additional fsync() calls in between calls to
write() in our C program. The program also waited for
30 seconds after each fsync() call to ensure we
bypassed any internal buffering within ZFS. We ran

this program for various file sizes to ensure that full-
stripe write and the CoW semantics were maintained in
all cases.

5.2. Results and Conclusions

The results from one of our experiments can be
seen in Figure 6. In this experiments, we called fsync()
after writing each 512-byte block of an eight block file.
The figure shows only four of the CoW copies for
brevity. Region 1 shows the copy of the file that
resulted from calling fsync() after writing only one
data block, region 2 is after writing blocks one through
four, region 3 is after writing blocks one through five,
and region 4 is the final live version of the data placed
on disk after writing all eight data blocks.

In both the example above and in our other tests,
RAID-Z always maintained its full-stripe write
semantics even when fsync() is called often, using
partial stripes to handle writes smaller than the number
of disks. Also, we always found all of the copies of the
data that would be expected given the CoW semantics
of ZFS. These tests, as well as information published
about ZFS [2,3], indicate that RAID-Z appears to solve
the consistent update problem without the need for
expensive hardware solutions.

6. Investigating Disk Fragmentation
and Full Disk Behavior

Finally, we wanted to investigate how RAID-Z
maintained its guarantee of full-stripe writes when the

Figure 6: Medium File Layout with Multiple fsync() Calls

7

disk was heavily fragmented or nearly full. In order to
see how RAID-Z handled a fragmented file system, we
first created a new empty RAID-Z volume. We then
wrote several thousand small files to the disk, usually
512 bytes or 1 KB in size. Once these files had been
copied onto the volume, we then went back and deleted
a widely-scattered subset of these files. This left many
small holes of free space throughout the file system.
We then attempted to write several larger files to the
volume to investigate how ZFS maintained its full-
stripe write semantics. We repeated this experiment
for different size volumes, different numbers of small
files, and different levels of fullness.

6.1. Fragmentation Results

The primary result from our tests is that RAID-Z
does in fact maintain full-stripe writes in all of our
fragmentation tests by reordering the data on the disks.
Using our kernel extension, we were able to observe
that RAID-Z rewrote the previously fragmented data to
different locations on disk in order to create space for
the new write. In our tests, RAID-Z always created
holes in multiples of 128KB, the logical block size of
the volume, and wrote the new data using full-stripe
writes to these locations.

In order to investigate if there was a threshold after
which this cleaning was done, we performed a similar
experiment in which we started with a fragmented
volume and slowly filled it with files a few megabytes
in size. After writing each large file we examined the
output of our kernel extension to see if cleaning had
been performed. We performed this experiment for a
few different volume sizes.

As the result of these experiments, we determined
that there is no single threshold point after which
cleaning is performed. The cleaning process was
always performed when space for the new file was
being allocated; we never observed the cleaning
process working in the background while the disk
volume was idle. There was very little pattern as to
when cleaning was performed and appeared to happen
regardless of how full the disk was, although it was
more likely to happen as disk got near full. It appears
that cleaning is performed if the metaslab where space
is allocated is heavily fragmented, and is not based on
how full the disk is.

6.2. Full Disk Results

We also investigated how RAID-Z and ZFS
behaved as the disk became full. We first ran a very
basic performance test of copying a 100 MB file to
both a fragmented and unfragmented volume, varying

how full the RAID-Z volume was. The results of these
tests can be found in Figures 7 and 8. In the
unfragmented case in Figure 7 we can see that it can
take up to twice as long to perform the copy when the
disk is 99% full as compared to when the disk is
empty. When the disk is fragmented, however, this
can take up to four times as long as when the disk is
empty as shown in Figure 8. We believe that the
lengthy copy times are most likely due to the need to
replay the allocation log in order to find the many
small chunks of free space, as well as overheads in
moving data to make space for full-stripe writes. In
addition to the lengthened copy time, when the disk is
fragmented the copy times become extremely erratic as
seen in Figure 8, ranging from 10.9 to 19.5 seconds
when the disk is 99% full. We believe this erratic
behavior stems from the need to move varying
amounts of fragmented data around in order to make
space for full-stripe writes.

An additional performance problem that we noticed
is that failed writes can take an extremely long time to

Figure 7: Time to Complete 100MB Copy on an
Unfragmented Disk

Figure 8: Time to Complete 100MB Copy on a
Fragmented Disk

0

2.5

5

7.5

10

empty 80% 95% 99%

Se
co

nd
s

Space Filled

0

5

10

15

20

empty 80% 95% 99%

Se
co

nd
s

Space Filled

8

return with a failure message. In one case, we
attempted to write a 1 MB file to a nearly full
fragmented volume and the file system took 14
minutes to return a failure message. During this time
we noticed several tens of megabytes of writes to the
disk as the file system tried to find space for the file.
Other failed writes, while not as extreme, also took a
significant amount of time to fail. Performing a large
write on a standard Mac OS 10.5 HFS+ volume with a
small amount of fragmented free space caused the
write to fail immediately.

Finally, during all of our tests when the disk was
nearly full, we also noticed that the free space reported
was extremely erratic and often did not match the
actual space available. Specifically, any failed write
always caused the file system to report that it had no
free space available. Despite this, subsequent small
writes actually succeeded and reset the free space to be
a non-zero value. This made it extremely difficult to
judge the actual amount of free space available. Noël
Dellofano, a developer on Apple’s ZFS team, indicated
that this may be a result of assumptions made
elsewhere in the OS that doesn’t apply to ZFS’s pool-
based storage model. However, ZFS itself reports
more free space than can be filled with user data. We
also observed a single write of 50 KB failing
repeatedly, while we were able to successfully write
six 25 KB files to the file system afterwards.
Furthermore, some of these writes did not reduce the
amount of space reported to be available. From these
tests, we conclude that ZFS has difficulty determining
the exact amount of free space available on a volume.
This may be a performance optimization, since there is
no central data structure keeping track of free space,
and replaying hundreds of logs is probably not a
reasonable way to determine the free space remaining.

7. Recurring Data Pattern
Investigation

During the course of our investigations, we also
discovered a recurring data pattern on disk, written
almost every time any operation was performed on the
disk. The pattern was a series of 16 bytes of 0xFC42
repeating, followed by a single byte of 0xFF. This
pattern would usually repeat several times. We never
saw more than several hundred bytes of this pattern,
however, it was scattered widely across the disk. A
very lightly-used test disk used in a 5-disk RAID-Z
had over 28 thousand copies of the 0xFC42 pattern.
By corrupting these, then scrubbing the volume to
restore consistency, we found that about 7 thousand of
these were part of active data.

There is no published work that mentions this
pattern in ZFS, nor is there any reference to it on the
public internet. According to Jeff Bonwick, who leads
Sun’s ZFS development, this pattern is an artifact of
the ZFS compression algorithm he designed, LZJB. In
the current implementation, metadata written to disk is
always compressed, and a series of zeros is compressed
to this particular pattern. He also noted that this is an
area that is still being developed, and that they are
working on improving the algorithm to compress a
long series of zeros more efficiently.

8. Related Work

There is relatively little published academic work
on ZFS at this time. However, there are several papers
that discuss reliability issues that are interesting in a
RAID-Z context.

A presentation [2] written by Sun’s CTO of Storage
Systems, Jeff Bonwick, gives a good introduction of
ZFS and RAID-Z. It covers administration, reliability,
and several important concepts about the ZFS design
that differ from existing storage systems. The ZFS On-
Disk Specification [3] includes many details of ZFS,
but is limited to the on-disk format, so the actual
behavior of ZFS is not discussed.

In [4], a number of failure modes are enumerated.
They discuss some commonly used protections against
corruption, including RAID, checksums, and
scrubbing, all of which are part of ZFS. They do not
specifically address the mechanisms that ZFS uses,
however RAID-Z would appear to solve many of the
issues related to consistency by writing checksums
separately from data, and by replicating important
metadata. Sun has reported that they have forced over
a million crashes without losing data integrity or
leaking a single block [2]. They do not claim zero data
loss, however. We expect that occasional data loss
from ZFS is possible, such as when data has been
written to disk, but the uberblock or other metadata in
the tree of pointers leading to the new data has not
been rewritten. The CoW mechanisms of ZFS simply
prevent such a scenario from corrupting the existing
data.

The insertion of kernel-level code to intercept traffic
between the file system and disk has been performed
by others, such as [5]. This paper also demonstrates
how a disk with more knowledge about what the file
system is doing can implement additional features.
This is similar in many ways to the way ZFS breaks
the usual barriers between a file system, volume
manager, and RAID controller, sharing information
that might not be shared in other systems to enable
improved features, performance and reliability.

9

9. Conclusions

We have uncovered some of the details about the
algorithm that ZFS uses to place data and parity on a
RAID-Z volume. These details have not been exposed
through Sun’s specifications or other sources. We
verified the use of full-stripe writes for a variety of
data sizes and verified that RAID-Z only writes as
many blocks of data as are needed using partial stripe
writes. Although it does not perform a read-modify-
write of parity, it will read a data block smaller than
128 KB if adding data to it to avoid writing too many
small fragments on disk. When a volume’s remaining
free space is too fragmented to allow a whole 128 KB
block to be written as a stripe, we found that the file
system will clean up the fragments to get larger
fragments of free space. Finally, we also discovered
that ZFS performance can degrade when the storage
pool is nearly full. This performance degradation is
especially severe when the free space is very
fragmented. Performance on a fragmented volume is
also highly variable when full. These observations
shed some light on the behaviors of RAID-Z, which
were previously largely unpublished.

10. References

[1] Apple Inc., Mass Storage Device Driver Programming
Guide. Cupertino, CA : 2007.

[2] J. Bonwick, “ZFS: The last word in file systems,”
Available: http://www.opensolaris.org/os/community/zfs/
docs/zfs_last.pdf

[3] Sun Microsystems, Inc., ZFS On-Disk Specification.
Santa Clara, CA : 2007.

[4] A. Krioukov, L. Bairavasundaram, A. Arpaci-Dusseau,
and R. Arpaci-Dusseau. “Parity Lost and Parity Regained,”
Proceedings of FAST ’08: 6th USENIX Conference on File
and Storage Technologies, to be published February 2008.

[5] M. Sivathanu, V. Prabhakaran, F. Popovici, T. Denehy,
A. Arpaci-Dusseau, and R. Arpaci-Dusseau. “Semantically-
Smart Disk Systems,” Proceedings of FAST ’03: 2nd
USENIX Conference on File and Storage Technologies, pp.
73-88, March 2003.

[6] T. Denehy, A. Arpaci-Dusseau, and R. Arpaci-Dusseau.
“Journal-guided Resynchronization for Software RAID,”
Proceedings of FAST ’05: 4th USENIX Conference on File
and Storage Technologies, pp. 87-100, December 2005.

[7] Apple Developer Connection, “SampleFilterScheme”
Cupertino, CA: Apple Inc., 2006. Available:
http://developer.apple.com/samplecode/SampleFilterScheme/

[8] Sun Microsystems, Inc., OpenSolaris Community
Website, “ZFS Source Tour”. Available:
http://www.opensolaris.org/os/community/zfs/source/

[9] J. Bonwick, “Space Maps,” Available:
http://blogs.sun.com/bonwick/entry/space_maps

