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Abstract—Proper feature selection for unsupervised outlier de-
tection can improve detection performance but is very challenging
due to complex feature interactions, the mixture of relevant
features with noisy/redundant features in imbalanced data, and
the unavailability of class labels. Little work has been done on this
challenge. This paper proposes a novel Coupled Unsupervised
Feature Selection framework (CUFS for short) to filter out
noisy or redundant features for subsequent outlier detection in
categorical data. CUFS quantifies the outlierness (or relevance)
of features by learning and integrating both the feature value
couplings and feature couplings. Such value-to-feature couplings
capture intrinsic data characteristics and distinguish relevant
features from those noisy/redundant features. CUFS is further
instantiated into a parameter-free Dense Subgraph-based Feature
Selection method, called DSFS. We prove that DSFS retains a
2-approximation feature subset to the optimal subset.

Extensive evaluation results on 15 real-world data sets show
that DSFS obtains an average 46% feature reduction rate, and
enables three different types of pattern-based outlier detection
methods to achieve substantially better AUC improvements
and/or perform orders of magnitude faster than on the original
feature set. Compared to its feature selection contender, on
average, all three DSFS-based detectors achieve more than 20%
AUC improvement.

I. INTRODUCTION

Outliers are usually rare, i.e., those objects with rare combi-
nations of feature values, compared to the majority of objects.
Unsupervised outlier detection in categorical data is essential
for broad applications in various domains, such as fraud
detection, insider trading, intrusion detection and terrorist
detection. In these cases, categorical features are uniquely
available or indispensable in data objects [1].

Unsupervised outlier detection faces typical challenges such
as sophisticated interactions within and between features, the
mixture of relevant features with noisy/redundant features, and
the extreme imbalance between normal and outlying objects.
In such a complex problem nature, outliers are easily masked
as normal objects in noisy features - features for which normal
objects contain infrequent behaviours while outliers contain
frequent behaviours, and only detectable in a subset of features
[2], [3]. For example, in fraud detection, suspects may be
spotted by partial features, such as marital status, income level
and professional, while they may fake themselves as normal
with other features, such as gender and education. In addition,
many categorical data sets contain a large number of redundant

features - weakly relevant features that contribute very limited
capability, or none, for identifying outliers when combined
with other features.

In outlier detection, most unsupervised methods for cat-
egorical data (e.g., [4]–[9]) are pattern-based. They search
for outlying/normal patterns and employ pattern frequency
as a direct outlierness measure. However, these methods fail
to perform effectively and efficiently in data sets that have
the characteristics discussed above for three main reasons:
(i) noisy/redundant features are deeply mixed with relevant
features and make it difficult to distinguish outliers from
normal objects; (ii) many noisy features mislead the pattern
search and result in a large proportion of faulty patterns and a
high ‘false positive’ rate; and (iii) feature redundancy results
in numerous redundant patterns and downgrades the efficiency
of the pattern search and outlier detection.

Filtering out noisy and redundant features may therefore
substantially improve the effectiveness and efficiency of sub-
sequent outlier detection. However, it is very challenging to
recognise and remove these features when there are complex
interactions between noisy/redundant features and relevant
features in highly imbalanced data without class labels.

Little work has been designed to conduct feature selection
for unsupervised outlier detection in categorical data. Most
feature selection research focuses on classification, regression
and clustering [10]–[12]. Existing work on feature selection for
very imbalanced data, including studies in [13]–[15], concerns
imbalanced classification or supervised outlier detection. The
feature weighting method in [5] weights features for outlier de-
tection in categorical data, but it evaluates individual features
without considering feature interactions and fails to handle
noisy features.

In this paper, we propose a novel Coupled Unsupervised
Feature Selection framework (CUFS for short) to filter out
noisy and redundant features that are coupled with relevant
features for outlier detection in categorical data. CUFS first
estimates the outlierness of feature values by modelling the
low-level intra- and inter-feature value couplings. These value
couplings reflect the intrinsic data characteristics and facilitate
the differentiation between relevant and other features. We fur-
ther incorporate the value-level outlierness into feature outlier-
ness by learning value-to-feature interactions. This value-to-



feature outlierness is then mapped onto graph representations,
on which existing graph mining techniques will be used to
identify the desirable relevant feature subset.

We further instantiate CUFS to a Dense Subgraph-based
Feature Selection method called DSFS, which synthesises the
advantages of hierarchical couplings captured in CUFS and
the dense subgraph search theories. DSFS computes value
outlierness by integrating intra-feature value frequency devi-
ation and inter-feature value correlation and obtains feature
outlierness by a linear combination of value outlierness. The
max-relevance feature subset evaluation criterion, which is
equivalent to the maximum subgraph density of a feature
graph, and sequential search strategy are then used to identify
the relevant feature subset.

This work makes the following major contributions.
1) We propose a novel and flexible coupled unsupervised

feature selection (CUFS) framework for detecting out-
liers in categorical data, in which relevant features are
highly mixed with noisy and redundant features. CUFS
captures complex feature interactions by modelling the
outlierness (relevance) of features w.r.t. hierarchically
intra- and inter-feature couplings, which distinguish rel-
evant features from noisy and redundant features.

2) The performance of CUFS is verified by its instance,
i.e., a parameter-free feature subset selection method
DSFS. We prove that the feature subset selected by
DSFS has a 2-approximation to the optimal subset.
This demonstrates the flexibility of CUFS in enabling
state-of-the-art graph mining techniques to tackle the
feature selection challenge in unlabelled and imbalanced
categorical data.

Extensive experiments show that (1) DSFS obtains a large
average feature reduction rate (46%) on 15 data sets with a
variety of complexities, including different levels of noisy and
redundant features, and greatly improves three different types
of pattern-based outlier detectors in AUC and/or runtime per-
formance; (2) DSFS substantially defeats its feature weighting-
based contender (maximally 94% improvement on a data set);
and (3) DSFS achieves good scalability w.r.t. data size (linear
to data size, completing execution within one second for a data
set with over one million objects) and the number of features
(completing the execution within 20 seconds for a data set
with over 1000 features).

The rest of this paper is organised as follows. We discuss
related work in Section II. CUFS is detailed in Section III.
DSFS is introduced in Section IV. Empirical results are
provided in Section V. We conclude this work in Section VI.

II. RELATED WORK

Numerous outlier detection methods have been introduced,
e.g., distance-based methods, clustering-based methods, and
density-based methods [1], but most of them are proximity-
based and require a distance/similarity measure. Consequently,
they are ineffective for handling data sets with many irrelevant
or noisy features due to the curse of dimensionality [2], [3].
Also, it is difficult for proximity-based methods to define

an effective distance measure on categorical features with
unordered values [16].

Most methods for categorical data are pattern-based, to
address the discrete nature of this data. They can be generally
classified into three categories: association rule-based [6]–[8],
information theory-based [4], [5], and probability test-based
methods [9]. Typically, these methods first identify subspaces
that contain normal/outlying patterns and then define an outlier
score based on the pattern frequency in each subspace. Outlier
scores are assigned to objects based on the summation of the
outlier scores in subspaces. However, these methods identify
a large proportion of misleading patterns when a data set
has many noisy features, leading to a high ‘false positive’
rate. In addition, many pattern-based methods (e.g., [4]–[7])
have at least quadratic time complexity w.r.t. the number of
features. The presence of redundant features aggravates the
computational cost of pattern discovery and outlier detection
whereas detectors receive no improvement in accuracy.

Feature selection has been shown critical for removing
irrelevant and redundant features (note that all features that are
not relevant to learning tasks are defined as irrelevant features,
including noisy features [17]), but most existing methods
focus on regression, classification and clustering [10]–[12].
Very few feature selection methods have been specifically
designed for outlier detection. Some relate work has been
on feature selection for imbalanced data classification and
supervised outlier detection [13]–[15]. However, they fail in
the context without class label information or being costly
to obtain class labels. Unfortunately, many real-life outlier
detection applications fall in this scenario.

Even less work is available on unsupervised feature selec-
tion for outlier detection. Two related studies are [18] and
[5]. In [18], the partial augmented Lagrangian method simul-
taneously selects objects from the minority class and features
that are relevant to minority class detection. While it shows to
be effective in selecting features for unsupervised rare class
detection, as pointed out by its authors, this method assumes
that the objects of rare classes are strongly self-similar. This
assumption does not apply to the nature of outlier detection,
where many outliers are isolated objects and distributed far
away from each other in data space. The unsupervised entropy-
based feature weighting in [5] for categorical data is most
closely related to this paper. It weights features and highlights
strongly relevant features for subsequent outlier detection.
However, as shown in the experiments, it evaluates individual
features without considering underlying feature interactions,
and thus wrongly treats noisy features as relevant.

Recently, learning value-to-object coupling relationships has
shown valuable and been successfully applied to various prob-
lems, e.g., abnormal group behaviour detection [19] and simi-
larity learning [20]. This work builds on their methodology to
learn value-to-feature outlierness in unlabelled categorical data
and integrate the outlierness with graph mining techniques to
select features for unsupervised outlier detection.



III. THE CUFS FRAMEWORK

In this section, we introduce the CUFS framework. CUFS
builds and integrates two-level hierarchical couplings, i.e.,
feature value couplings and feature couplings, toward a proper
estimation of the feature relevance to outlier detection. Specif-
ically, it learns the intra- and inter-feature value couplings to
compute outlierness on the feature value level and constructs a
value graph with the outlierness being the edge weights. We
then feed the value graph to feature-level coupling analysis
and construct a feature graph by aggregating the value-
level outlierness. Our coupled feature selection framework for
unsupervised outlier detection (i.e., CUFS) is shown in Fig. 1.

Fig. 1: The Proposed CUFS Framework. VCA and FCA
are short for Value Coupling Analysis and Feature Coupling
Analysis, respectively.

The value coupling analysis captures the intrinsic inter-
actions between the values of data objects, which enables
a proper estimation of the value outlierness in data and
distinguish outlying values from noisy values. As the features
build their capability on their values, feature outlierness is
thus modelled by aggregating value outlierness in terms of
the value-to-feature interactions. Such feature couplings dis-
tinguish useful features from noisy and redundant features.

As a result of these factors, CUFS builds on the deep under-
standing of intrinsic data characteristics in outlying data, and
effectively combines the advantages of data-driven complex
feature relation analysis with unsupervised feature selection
and graph theories for outlier detection. It has the graph
properties and a feature subset search strategy as input to
search and select a feature subset for outlier detection. Table
I presents major notations used throughout this paper.

TABLE I: Symbols and Definitions

Symbol Definition

X A set of data objects with size N = |X |
F The set of D = |F| categorical features in X
V The whole set of feature values contained in F
S Feature subset of F with D′ = |S| features
G Value graph in which each node is a feature value
A The weighted adjacent matrix of G
G∗ Feature graph in which each node is a feature
A∗ The weighted adjacent matrix of G∗

A. Value Graph Construction
The outlying behaviours of a feature value are captured by

intra-feature and inter-feature value couplings. Accordingly,

we define value couplings and value graph as follows.
Definition 1 (Value Coupling): The couplings in a value

v of feature f are represented by a three-dimensional tuple
VC = (f, δ(·), η(·, ·)) , where
• f ∈ F , where F is the feature space.
• δ(·) captures the outlying behaviours of the value v w.r.t.

the value interactions within feature f . For example, δ(·)
may be a function of deviations of value frequencies from
the mode frequency or value similarities, etc.

• η(·, ·) captures the outlying behaviours of the value v
w.r.t. interactions with the values in the rest of features
in F . For example, η(·, ·) may be a function of value co-
occurrence frequency, conditional probabilities or other
value correlation quantisation methods.

With the value couplings of all feature values, a value graph
can be built to present their relationship.

Definition 2 (Value Graph): The value graph G is defined as
G =< V,A, g(δ(·), η(·, ·)) >, where a value v ∈ V represents
a node, the entry of the weighted adjacent matrix A(v, v′) (i.e.,
edge weight) is determined by function g(·, ·), which is a joint
function of δ(v) and η(v, v′), ∀v, v′ ∈ V .

The graph G can be an undirected or directed graph
depending on how the edge weight is defined.

One major benefit of mapping the value couplings to the
value graph is that we can utilise the value graph properties
(e.g., ego-network, shortest path, node centrality, or random
walk distance [21]) to infer deeper value interactions and to
further explore feature interactions by building the following
feature graph.

B. Feature Graph Construction

The feature couplings are derived from the value couplings
to capture the value-to-feature interactions.

Definition 3 (Feature Coupling): The couplings within a
feature f are described as a three-dimensional tuple FC =
(dom(f), δ∗(·), η∗(·, ·)), where
• dom(f) is the domain of the feature f , which consists

of a finite set of possible feature values contained in f .
• δ∗(·) computes the outlying degree of f based on its value

outlierness δ(·). For example, δ∗(f) may be a linear or
non-linear function for combining all δ(v), ∀v ∈ dom(f).

• η∗(·, ·) captures the outlying degree of f w.r.t. its value
interactions with other features in F . Specifically, given
∀f ′ ∈ F \ f , η∗(f, f ′) may be a linear or non-linear
function for incorporating η(v, v′) for ∀v ∈ dom(f) and
∀v′ ∈ dom(f ′).

These couplings are then mapped into a feature graph G∗.
Definition 4 (Feature Graph): The feature graph G∗ is

defined as G =< F ,A∗, h(δ∗(·), η∗(·, ·)) >, where a feature
f ∈ F represents a node and the entry of the weighted adjacent
matrix A∗(f, f ′) is determined by h(·, ·), a function combining
δ∗(f) and η∗(f, f ′) for ∀f, f ′ ∈ F .

With the feature graph, existing graph mining algorithms
and theories (e.g., dense subgraph discovery, graph partition
and frequent graph pattern mining [21]) can then be applied to



identify the most relevant feature subset for outlier detection.
As presented in Section IV, by utilising dense subgraph
discovery theories, the CUFS instance can efficiently retain
a 2-approximation feature subset.

C. Feature Subset Selection

Our goal here is to find a feature subset, i.e., a subgraph of
the feature graph, which reserves feature nodes with high out-
lierness while at the same time reduces redundancy between
the reserved features.

The feature subset searching contains two major ingredients:
search strategy and objective function (i.e., subset evalua-
tion criteria) [22]. Typical search strategies include complete
search, sequential forward or backward search, and random
search. Complete search can obtain an optimal feature subset,
but its runtime is prohibitive for high-dimensional data. Se-
quential search and random search are heuristic and result in
a suboptimal subset, but they are more practical than complete
search as they have much better efficiency.

A generic objective function for this context is:

max J(S) (1)

where J(·) is a function evaluating the outlierness in the
feature subset S, which needs to be specified based on the
chosen search strategy.

As illustrated in Fig. 1, we may need to iteratively update
the value graph and feature graph during the subset searching,
e.g., when adding or removing features in sequential search,
before obtaining an optimal subset.

IV. THE CUFS INSTANCE: DSFS

The CUFS framework can be instantiated by first specifying
the three functions δ, η and g for constructing the value graph
and the other three functions δ∗, η∗ and h for building the
feature graph. A subset search strategy can then be formed by
utilising the graph properties of the feature graph to identify
the desired feature subset.

We illustrate the instantiation of CUFS by identifying the
dense subgraph of the feature graph, i.e., DSFS. DSFS uses
the recursive backward elimination search with the subgraph
density as the objective function.

A. Specifying Functions δ, η and g for the Value Graph

Per the definition of outliers, the frequencies of values
are closely related to the degree of outlierness. Hence, the
outlierness of feature values is dependent on its intra-feature
frequency distribution and inter-feature value co-occurrence
frequencies. Motivated by this, we specify the intra- and inter-
feature value outlierness in terms of frequency deviation and
confidence values [23].

Definition 5 (Intra-feature Value Outlierness δ): The intra-
feature outlierness δ(v) of a feature value v ∈ dom(f) is
defined as the extent to which its frequency deviates from the
frequency of the mode:

δ(v) =
freq(m)− freq(v) + ε

freq(m)
(2)

where m is the mode of the feature f , freq(·) is a frequency
counting function and ε = 1

N .
In Equation (2), the mode frequency is used as a benchmark,

and the more the frequency of a feature value deviates from the
mode frequency, the more outlying the value is. We use ε = 1

N
to estimate the outlierness of the mode, which is proportional
to the data size. δ(·) makes the outlierness of values from dif-
ferent frequency distributions more comparable, which differs
from many existing work [4], [6], [7] in which the outlierness
of each pattern is measured without considering its associated
frequency distributions.

Definition 6 (Inter-feature Value Outlierness η): The inter-
feature outlierness η(v, v′) of a value v ∈ dom(f) and another
value v′ ∈ dom(f ′) is defined as follows:

η(v, v′) = δ(v)conf (v, v′)δ(v′) (3)

where conf (v, v′) = freq(v,v′)
freq(v′) .

The component δ(v)conf (v, v′) can be interpreted as the
outlierness of the value v′ w.r.t. its coupling with the value v.
That is, a value has high outlierness if it has strong correlation
with outlying values. For example, taking obese persons as
outliers compared with persons of average weights, if someone
has an overweight friend, his/her chance of becoming obese
increases by 57% [24].

Definition 7 (Edge Weighting Function g for Value Graph
G): The edge weight of the value graph G, i.e., the entry
(v, v′) of the weight matrix A, is defined as follows:

A(v, v′) = g(v, v′) =

{
δ(v), v = v′

η(v, v′), otherwise
(4)

We have δ(·) ∈ (0, 1) and η(·, ·) ∈ [0, 1) according to
Equations (2) and (3), and thus δ(v)η(v, v′)δ(v′) ∈ [0, 1). That
is, the edge weight would be zero iff two distinctive nodes v
and v′ have no association.

Note that although the two cases in Equation (4) are in
slightly different ranges, they will be used independently in the
next section to avoid incomparable issues. We will also discuss
in Section IV-D how this function helps us to distinguish noisy
features from relevant features.

Overall, the value graph G has the following properties.
1) G is a directed graph with self loops, as A(v, v′) 6=

A(v′, v) and A(v, v) 6= 0.
2) Its adjacent matrix A is a value outlierness matrix,

representing outlying degree of individual values and
pairs of distinctive values. The larger a matrix entry is,
the higher the outlierness of the incoming value node is.

B. Specifying Functions δ∗, η∗ and h for the Feature Graph

For simplicity and the consideration of common scenar-
ios, we assume that the intra-feature and inter-feature value
outlierness measures are linearly dependent. Accordingly, we
estimate the intra- and inter-feature outlierness of a feature
and their integration for feature-level outlierness by simply
summing its associated δ and η values.



Definition 8 (Intra-feature Outlierness δ∗): The intra-feature
outlierness of a feature f ∈ F is specified below:

δ∗(f) =
∑

v∈dom(f)

δ(v) (5)

Definition 9 (Inter-feature Outlierness η∗): The inter-feature
outlierness of a feature f w.r.t. feature f ′ is quantified as:

η∗(f, f ′) =
∑

v∈dom(f),v′∈dom(f ′)

η(v, v′) (6)

Similar to g, we specify the function h using intra-feature
outlierness as diagonal entries and inter-feature outlierness as
off-diagonal entries in the weight matrix A∗.

Definition 10 (Edge Weighting Function h for Feature
Graph G∗): The edge weight A∗(f, f ′) of the feature graph
G∗, i.e., the entry (f, f ′) of A∗, is measured as:

A∗(f, f ′) = h(f, f ′) =

{
δ∗(f), f = f ′

η∗(f, f ′), otherwise
(7)

Note that, to make the entries in A∗ comparable, δ∗ and
η∗ are normalised into the same range [0, 1] for further use in
feature subset searching.

The feature graph G∗ has the following key properties.
1) G∗ is a complete graph with self loops, as δ∗(·) > 0

and η∗(·, ·) > 0.
2) G∗ is an undirected graph, as we always have

A∗(f, f ′) = A∗(f ′, f) for ∀f ′, f ∈ F .
3) Its adjacent matrix A∗ is a feature outlierness matrix,

representing outlying degree of features and their combi-
nations. Larger values in A∗ indicate higher outlierness.

4) The total edge weight of a feature node f is large if
both of its intra- and inter-feature outlierness are high.

C. The Search Strategy

Our target is to find a subset of features with the highest
relevance to outlier detection, i.e., with the highest outlierness.
A feature has high outlierness if it has large edge weights in
the feature graph G∗, according to the properties (3) and (4) of
G∗. However, simply selecting the top-ranked k features does
not necessarily obtain the best feature subset, since the out-
lierness of a feature also depends on its coupled features. This
distinguishes our design from most of the existing methods,
which overlook hierarchical feature interactions.

Motivated by the max-relevance idea in [25], the following
max-relevance objective function is designed to search for the
most relevant feature subset S.

max
1

|S|
∑
f∈S

∑
f ′∈S

A∗(f, f ′) (8)

In other words, we specify J(·) in Equation (1) as J(S) =
1
|S|

∑
f∈S

∑
f ′∈S A

∗(f, f ′).
Searching the exact S is computationally intractable for high

dimensional (D) data, as the search space is 2D. A heuris-
tic sequential search strategy, namely Recursive Backward
Elimination (RBE), is used to search for an approximately

best subset. RBE conducts an iterative search as shown in
Algorithm 1. In the next section, we prove that the resultant
subset is a 2-approximation to the optimum.

Algorithm 1 RBE (F)

Input: F - full feature set
Output: S - the feature subset selected

1: while |F| > 0 do
2: for f ∈ F do
3: Compute J(F \ f)
4: end for
5: Remove the feature f that results in the largest J(F\f)
6: end while
7: return Return the subset with the largest J(·) as S

D. Theoretical Analysis

Theoretical analysis is provided for DSFS in the first
subsection and we then discuss why DSFS can handle noisy
and redundant features in the remaining two subsections.

1) Approximation: Following the definition of subgraph
density for unweighted graphs in [26], [27], we define the
subgraph density for weighted graphs by replacing the total
number of edges with the total weight defined in our graph.

Definition 11 (Subgraph Density): The density of an undi-
rected weighted subgraph S is its average weighted degree:

den(S) = vol(S)
|S|

(9)

where vol(S) =
∑

f∈S
∑

f′∈S A∗(f,f ′)

2 is the volume of S.
With Equations (8) and (9), we have the following lemma.
Lemma 1 (Equivalence to the Densest Subgraph Discovery):

Equation (8) is equivalent to calculating the maximum of
den(S), i.e., the densest subgraph of the feature graph G∗.

Proof: It is easy to see that Equation (8) is equivalent to
2den(S), and thus the densest subgraph of G∗ is the exact
solution S to Equation (8).

We show below that the RBE search with quadratic time
complexity can be simplified to an equivalent procedure with
linear time complexity. Following theorems of dense subgraph
discovery in unweighted graphs [26], [27], we further prove
that the RBE search on the weighted graph G∗ achieves a
feature subset with a 2-approximation to the optimum.

Lemma 2 (Search Strategy Equivalence): Steps (2-5) of RBE
in Algorithm 1 are equivalent to the removal of the feature
node f with the smallest weighted degree.

Proof: If the feature node f has the smallest weighted
degree, then

∑
f ′∈F\f

∑
f ′′∈F\f A

∗(f ′, f ′′) is the largest in
the current iteration. Since 1

|F\f ′| is the same ∀f ′ ∈ F , the
removal of f results in the largest J(·).

Instead of recursively computing J(·) for each feature in
each iteration, we therefore remove the feature node with the
smallest weighted degree to achieve the same result, which
avoids the inner loop and has linear time complexity.

Theorem 1 (2-Approximation): The feature subset S created
by the RBE search is a 2-approximation to the optimal subset.



Proof: Let Sopt be the set of feature nodes in the densest
subgraph. According to Lemma 1, below we show den(S) ≥
den(Sopt)

2 to prove the theorem.
Since Sopt forms the densest subgraph, we have

den(Sopt) =
vol(Sopt)
|Sopt|

≥ vol(Sopt)− d(f)
|Sopt| − 1

, ∀f ∈ Sopt

, where d(f) =
∑

f ′∈Sopt A
∗(f, f ′) denotes the weighted

degree of a feature node. After some replacements we have
d(f) ≥ den(Sopt), ∀f ∈ Sopt, i.e., every node in Sopt has
weighted degree at least den(Sopt).

Let Ti be the set of feature nodes left after the i-th node is
removed. Considering the iteration of RBE, let Tj be the set of
remaining nodes when the first node f contained in the optimal
subset Sopt is removed, so Tj−1 is the set of remaining nodes
before the node f is removed, which indicates that d(f) ≥
den(Sopt), ∀f ∈ Tj−1, according to Lemma 2. Since G∗ is a
complete graph with self loops, we have

2vol(Tj−1) ≥ den(Sopt)|Tj−1|+
∑

f∈Tj−1

A∗(f, f)

. We then have

vol(Tj−1)
|Tj−1|

≥ den(Sopt)
2

+

∑
f∈Tj−1

A∗(f, f)

2|Tj−1|

, and accordingly

den(Tj−1) =
vol(Tj−1)
|Tj−1|

≥ den(Sopt)
2

. Since RBE returns the feature subset S with the largest
subgraph density over all iterations and Tj−1 is one of the
feature subset candidates, den(S) has at least den(Sopt)

2 .
2) Handling Noisy Features: According to Equation (4),

a value node has high outlierness if δ and η are high.
Given a noisy feature value that occurs infrequently but is
contained by normal objects, since it has low frequency, its
intra-feature value outlierness δ is high. However, since these
noisy values tend to be more frequently or only contained by
normal objects, they are presumed to have stronger couplings
with normal values versus weak/no couplings with outlying
values. On the other hand, truly outlying values have high
outlierness in terms of both δ and η, because the frequency is
low and the couplings with other outlying values are strong,
and thus the overall value outlierness is often much higher
than that of noisy feature values. Since the intra- and inter-
feature outlierness is linearly correlated to intra- and inter-
feature value outlierness respectively, the intra- and inter-
feature outlierness of outlying features is also higher than that
of noisy features. As a result, the noisy features are removed
during the iterative procedure in RBE, while the relevant
features are reserved in order to maximise J(·).

3) Handling Redundant Features: Many redundant features
are often only weakly relevant to outlier detection and have
very limited or no capability for identifying outliers when
they are combined with strongly relevant features. In other

words, their intra-feature outlierness is quite high, but its inter-
feature outlierness is low. This results in a low overall feature
outlierness, and consequently these features are not retained
in S since all the features in S have high outlierness.

Algorithm 2 DSFS (X )

Input: X - data objects
Output: S - the feature subset selected

1: Initialise A as a |V | × |V | matrix
2: for f ∈ F do
3: Compute δ(v) for each v ∈ dom(f)
4: for f ′ ∈ F do
5: A(v, v′)← g(v, v′), ∀v′ ∈ dom(f ′)
6: end for
7: end for
8: Initialise A∗ as a |D| × |D| matrix
9: for f ∈ F do

10: for f ′ ∈ F do
11: A∗(f, f ′)← h(f, f ′)
12: end for
13: end for
14: Set S ← F and s← den(A∗)
15: for i = 1 to D do
16: Find f that has the smallest weighted degree in A∗

17: F ← F \ f and update A∗

18: S ← F and s← den(A∗) if s ≤ den(A∗)
19: end for
20: return S

E. The DSFS Algorithm
Algorithm 2 presents the procedures of the proposed instan-

tiation DSFS. Steps (1-7) and (8-13) construct the value graph
G and the feature graph G∗, respectively. Steps (14-19) obtain
the feature subset S. As proved in Lemma 2, Steps (16-17)
are equivalent to Steps (2-5) in RBE in Algorithm 1.

DSFS requires only one database scan to compute the intra-
and inter-feature value outlierness in Steps (1-7), and thus
has O(N). DSFS has O(D2), as two loops are required in
order to generate the adjacent matrices of the value graph and
the feature graph. However, the computation within the inner
loop, i.e., Steps (5) and (11), is a very simple multiplication
and value assignment, enabling it to complete the execution
quickly in high dimensional data. Hence, DSFS has good
scalability w.r.t. data size and the number of features.

V. EXPERIMENTS AND EVALUATION

A. Data Sets
Due to the lack of benchmark data for performance evalua-

tion in outlier detection, balanced or imbalanced classification
data is transformed to create outlier and normal classes for the
evaluation in literature [4], [28]–[30]. Following the above, 15
publicly available real-world data sets 1 are used, which cover

1aPascal and CelebA are available at http://vision.cs.uiuc.edu/attributes/ and
http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html, respectively. Sylva is avail-
able at http://www.agnostic.inf.ethz.ch/datasets.php. The other 12 data sets are
from the UCI machine learning repository at http://archive.ics.uci.edu/ml/.



diverse domains, e.g., intrusion detection, image object recog-
nition, advertising and marketing, population and ecological
informatics, as shown in Table II. Eleven of these data sets
are directly transformed from highly imbalanced data, where
the smallest class is treated as outliers and the rest of classes as
normal [28], [30]. For the other four data sets, Probe and U2R
are derived from the KDDCUP99 data sets which integrates
multiple types of probing and user-to-root attacks as outliers;
following [4], [29], we transform two balanced classification
data sets (i.e., Mushroom, and Optdigits with classes ‘1’ and
‘7’) by sampling a small subset of the small class as outliers,
resulting in 5% outliers in the created data sets. The above
transformation methods guarantee that the outlier class chosen
is either a rare class or a class with outlying semantics.

All data sets are used with categorical features only. Fea-
tures with only one feature value are removed. Missing values
are replaced with the mode.

B. Baselines and Settings

We first evaluate the feature selection method DSFS by
examining its capability of improving the effectiveness and
efficiency of unsupervised outlier detectors. Three different
types of representative pattern-based outlier detection methods,
MarP [9], Comprex (denoted by COMP) [4] and FPOF [6],
are compared.

• MarP is a probabilistic method. It uses the inverse of
marginal probabilities of feature values of individual fea-
tures as an outlier measure. It has linear time complexity
w.r.t. the number of features and is parameter-free.

• COMP is an information-theory-based method. It com-
bines minimum description length models with informa-
tion gain to automatically partition the features and builds
coding tables based on feature groups to detect objects
with high compression cost as outliers. It has quadratic
time complexity w.r.t. the number of features and requires
no parameter settings.

• FPOF is an association rule-based method. It uses the
inverse of the frequencies of frequent patterns as an
outlier measure. It has exponential time complexity w.r.t.
the number of features. Following [6], FPOF is set with
the minimum support threshold supp = 0.1 and the
maximum pattern length l = 5.

We further compare DSFS with the entropy-based feature
weighting method (denoted by ENFW) [5] for outlier detection
by the above three detectors. Feature weighting methods only
assign relevance weights to features and require a decision
threshold to select a feature subset. To have a fair comparison,
the top-ranked k features are selected, where k is the number
of features in the feature subset selected by DSFS.

The scalability of DSFS w.r.t. data size and the number
of features is evaluated on six subsets of the two UCI data
sets LINK and AD, which have the largest number of objects
and features in our data sets. For LINK, the smallest subset
contains 1,000 objects, and subsequent subsets are increased
by a factor of four until the largest subset which contains

1,024,000 objects. For AD, the data with the smallest fea-
ture subset contains 40 features, and subsequent subsets are
increased by a factor of two, until the largest feature subset
which contains 1,280 features.

DSFS, ENFW, FPOF and MarP were implemented in JAVA
in WEKA [31]. COMP was obtained from the authors of [4]
in MATLAB. All the experiments were performed at a node
in a 3.4GHz Phoenix Cluster with 32GB memory.

C. Performance Evaluation Method

We measure the detector effectiveness in terms of the area
under ROC curve (AUC). All the three outlier detectors assign
an outlier score to each data object and thus rank all objects
w.r.t. their degree of outlierness. AUC is then computed based
on the ranking using the Mann-Whitney-Wilcoxon test [32].
Higher AUC indicates better detection accuracy.

The unsupervised detectors are trained and evaluated on the
same data set, but the class labels are not employed in training;
rather they are used in testing for computing AUC.

The runtime of feature selection and outlier detection is
recorded to evaluate their efficiency. Here runtime is the time
for executing the core algorithms, excluding the runtime for
data loading and outputting results.

Two data indicators are introduced to describe the underly-
ing data characteristics, which are sensitive to the performance
of learning methods. They provide some insights into our
design, and their quantisation is reported in Table II.
• Feature noise level κnos. Based on the AUC measured

by using MarP for each feature, a feature is regarded as
noisy if AUC is less than 0.5. We report the percentage
of noisy features as κnos.

• Feature redundancy level κrdn. Features are retained if
their corresponding AUC is more than 0.5 (i.e., redundant
features need to be relevant features). The pairs of se-
lected features are checked to compare the AUC by using
pairwise feature combinations with that using individual
features. One feature is thought to be redundant to another
if the AUC difference is less than 0.01. We report the
percentage of such combinations as κrdn.

Having an accurate estimation of the data complexity itself
is a very challenging task. Although the above two indicators
are based on low-order information only, they assist us in
understanding data complexity and our empirical results.

D. Findings and Analysis

The feature selection results are presented in the first
subsection. The next two subsections discuss the AUC perfor-
mance and runtime of three outlier detectors with or without
using DSFS and compare DSFS with its contender ENFW,
respectively. Lastly, a scale-up test is conducted.

1) Large Average Feature Reduction Rate: We record the
number of selected features by DSFS, D′, and the reduction
rate, RED. The reduction rate is defined as the rate of the
reduced number of features in the feature subset selected by
DSFS to that in the full feature set, which is shown in the
last column in Table II. The results show that DSFS leads to a



significant reduction rate, ranging from 13% up to 97% across
15 data sets. On average, DSFS obtains 46% reduction rate.

The two data indicators κnos and κrdn demonstrate that
nearly all data sets have a large proportion of noisy or
redundant features. These noisy and redundant features make
the three types of pattern-based outlier detectors less effective
and efficient. We show in the next section that proper feature
selection is essential for enabling the detectors to handle the
data complexities.

2) Improving Three Different Types of Pattern-based Outlier
Detectors in AUC and/or Efficiency: The AUC performance
and runtime of three detectors: MarP, COMP and FPOF
compared with their editions by incorporating DSFS: MarP∗,
COMP∗ and FPOF∗ are presented in Table III 2. On average,
MarP∗, COMP∗ and FPOF∗ obtain 7%, 4% and 4% AUC
improvements respectively while they only use averagely 54%
features compared to their counterparts. In particular, MarP∗

achieves maximally 42% improvement on aPascal, COMP∗

makes maximally 33% improvement on aPascal, and FPOF∗

gains maximally 18% on Census. It is interesting to see
that less improvement is made on UCI data sets, which is
understandable as UCI data sets tend to be highly manipulated
and simpler.

TABLE II: Feature Selection Results on Data Sets with
Different Characteristics. The data sets are sorted by κnos.
The middle horizontal line roughly separates data sets with
many noisy features (i.e., κnos > 35%) from other data sets.
RED = D−D′

D (%) denotes the reduction rate by DSFS. N is
the number of data objects in a data set, D is the number of
features, and D′ is the number of reserved features by DSFS.
Avg. indicates the averaged figure.

Data Set Acronym κnos κrdn N D D′ RED

BankMarketing BM 90% 0% 41188 10 7 30%
aPascal - 81% 0% 12695 64 20 69%
Sylva - 78% 0% 14395 87 66 24%
Census - 58% 0% 299285 33 10 70%
CelebA - 49% 4% 202599 39 34 13%
CMC - 38% 4% 1473 8 5 38%
CoverType CT 34% 22% 581012 44 5 89%
Chess - 33% 0% 28056 6 4 33%
U2R - 17% 7% 60821 6 3 50%
SolarFlare SF 9% 0% 1066 11 8 27%
Optdigits DIGIT 8% 26% 601 64 46 28%
Mushroom MRM 5% 2% 4429 22 13 41%
Advertisements AD 5% 78% 3279 1555 49 97%
Linkage LINK 0% 0% 5749132 5 4 20%
Probe - 0% 7% 64759 6 2 67%
Avg. 34% 10% 470986 131 18 46%

With regard to efficiency, MarP∗, COMP∗ and FPOF∗ run
orders of magnitude faster than their counterparts as they work
on the highly reduced feature subsets. For example, FPOF∗

2All runtime refers to the runtime of the detectors only, excluding that of
DSFS, but our empirical results show that the runtime of DSFS is within one
second in most data sets and that is almost negligible in practice.

runs six orders of magnitude faster than FPOF on CT. DSFS
enables COMP and FPOF to perform outlier detection on high
dimensional data, such as Sylva with 87 features and AD with
1555 features, where these detectors are otherwise prohibitive
in terms of runtime and/or space requirements.

A more straightforward benefit is that the simplest detector
MarP empowered by DSFS can obtain the AUC performance
that is the same as, or very competitive with, that of the two
other detectors COMP and FPOF, while at the same time
saving several orders of magnitude runtime. However, COMP
and FPOF have much higher time and spaces complexities in
complex data sets (e.g., aPascal, CMC and AD).

Next two subsections further explore the performance of
these three detectors in data sets with many noisy or redundant
features, respectively.

2.1) Substantially Enhancing both AUC and Runtime on
Data Sets with High Feature Noise Level: In data with many
noisy features, e.g., BM (90% w.r.t. κnos), aPascal (81%),
Sylva (78%), Census (58%), CelebA (49%) and CMC (38%)
(see Table II), on average, DSFS removes 43% features
and enables MarP, COMP and FPOF to respectively obtain
14%, 10% and 9% AUC improvements as shown in Table
III, compared to their counterparts. This is because DSFS
successfully removes many noisy features from these highly
noisy data, and enables pattern-based detectors to work on
much cleaner data, which thus perform more effectively.

In other data sets (e.g., Sylva and CelebA) where feature
reduction rates are smaller, resulting in a number of noisy
features retained in the selected feature subset, it is very dif-
ficult to separate them from the relevant features. As a result,
the detectors make very limited, or none, AUC improvements.
This shows that such tough noisy features are deeply mixed
with the outlier-discriminative features, and generate higher
outlierness than truly outlying features. In these cases, it is too
difficult for DSFS to distinguish them from outlying features.

In addition to the AUC improvement, the DSFS-enabled
detectors can also have a significant speedup due to the
significant feature reduction rate, e.g., FPOF runs 409 times
slower than FPOF∗ on Census.

2.2) Achieving a Substantial Speedup on Data Sets with
High Feature Redundancy Level: In data sets with a high
feature redundancy level, e.g., CT (22% w.r.t. κrdn) and AD
(78% w.r.t. κrdn), DSFS generates a very aggressive feature
reduction, removing 89% and 97% features, respectively.
Although this massive feature reduction might result in little
loss in terms of AUC, e.g., 1% on CT, the outlier detectors
can obtain up to six orders of magnitude speedup by working
on a substantially smaller feature set, e.g., FPOF on CT and
COMP on AD. On the other hand, MarP using DSFS obtains
6% AUC improvement on AD even if it works on the data
with only 3% original features left.

For data sets such as U2R, SF, MRM, Probe and LINK, the
reduction rates are more than the sum of κnos and κrdn. It
should be noted that we only have a conservative estimation
of κnos and κrdn, so the true feature noise and redundancy
levels might be much higher than the estimated values. This



TABLE III: AUC and Runtime of the Three Detectors with or without DSFS. Three baseline detectors are MarP, COMP and FPOF.
Their editions using DSFS are MarP∗, COMP∗ and FPOF∗, respectively. IMP and SU indicate the AUC improvement and runtime
speedup of the detectors combined with DSFS. Avg. indicates the averaged figure.

AUC Performance Runtime (s)

MarP MarP∗ IMP COMP COMP∗ IMP FPOF FPOF∗ IMP MarP MarP∗ SU COMP COMP∗ SU FPOF FPOF∗ SU
BM 0.56 0.59 5% 0.63 0.64 2% 0.55 0.59 7% 0.17 0.15 1 212.46 170.43 1 0.85 0.57 1
aPascal 0.62 0.88 42% 0.66 0.88 33% ◦ 0.88 ◦ 0.31 0.12 3 451.36 41.00 11 ◦ 53.29 ◦
Sylva 0.96 0.96 0% 0.95 0.96 1% ◦ ◦ ◦ 0.21 0.20 1 1137.07 498.59 2 ◦ ◦ ◦
Census 0.59 0.69 17% 0.64 0.71 11% 0.61 0.72 18% 1.62 0.51 3 18174.49 12878.14 1 30790.78 75.23 409
CelebA 0.74 0.74 0% 0.76 0.76 0% 0.74 0.75 1% 0.89 0.82 1 1647.47 1169.27 1 159377.51 50188.65 3
CMC 0.54 0.66 22% 0.57 0.66 16% 0.56 0.65 16% 0.14 0.01 11 5.14 2.42 2 0.10 0.06 2
CT 0.98 0.97 -1% 0.98 0.97 -1% 0.98 0.97 -1% 3.14 0.36 9 3914.33 341.98 11 410016.55 1.09 377547
Chess 0.64 0.64 0% 0.64 0.63 -2% 0.62 0.61 -2% 0.12 0.08 1 95.35 49.30 2 0.42 0.18 2
U2R 0.88 0.92 5% 0.99 0.99 0% 0.92 0.97 5% 0.28 0.13 2 318.95 255.28 1 0.39 0.22 2
SF 0.84 0.85 1% 0.85 0.86 1% 0.86 0.86 0% 0.02 0.01 1 6.33 4.40 1 0.39 0.09 4
DIGIT 0.95 0.95 0% 0.97 0.97 0% 0.96 0.94 -2% 0.04 0.03 1 217.10 111.51 2 10196.85 31.99 319
MRM 0.89 0.89 0% 0.93 0.94 1% 0.91 0.91 0% 0.07 0.07 1 48.72 32.18 2 19.32 2.70 7
AD 0.70 0.74 6% • 0.75 • ◦ 0.74 ◦ 0.85 0.10 9 • 126.35 • ◦ 54088.52 ◦
Probe 0.98 0.98 0% 0.98 0.98 0% 0.99 0.98 -1% 0.28 0.11 3 576.08 456.00 1 0.47 0.20 2
LINK 1.00 1.00 0% 1.00 1.00 0% 1.00 1.00 0% 2.74 2.27 1 6365.26 5203.67 1 23.56 17.93 1
Avg. 7% 4% 4% 3 3 31525

‘◦’ indicates out-of-memory exceptions.
‘•’ indicates that we cannot obtain the results within four weeks, i.e., 2,419,200 seconds.

explains why the three detectors empowered by DSFS can still
perform equally well or very competitively on these data sets,
compared to their counterparts not using DSFS.

3) Defeating the Feature Weighting-based Contender:
The performance comparison between two feature selection
methods ENFW and DSFS in terms of the three detectors
is shown in Table IV. On average, MarP, COMP and FPOF
using DSFS obtain 24%, 26% and 24% AUC improvements,
compared to MarP, COMP and FPOF using ENFW, respec-
tively. Impressively, DSFS-empowered MarP gains maximally
91% improvement over ENFW-based MarP on aPascal, DSFS-
empowered COMP makes maximally 94% improvement over
ENFW-based COMP on CT, and DSFS-empowered FPOF
achieves maximally 91% improvement over ENFW-based
FPOF on aPascal.

3.1) Beating ENFW in Data Sets with Noisy Features: We
further explore the power of DSFS on noisy features. As
shown in IV, DSFS generally performs much better than
ENFW on almost all data sets, as long as a data set con-
tains noisy features. This is mainly because ENFW evaluates
features independently and wrongly takes noisy features as
relevant features. However, DSFS estimates the outlierness
of features based on the intra- and inter-feature couplings
embedded within/between features, thus can much better filter
out noisy features than ENFW.

The exceptional cases are on CelebA (with 39 features) and
Chess (with 6 features), where DSFS and ENFW perform
equally well. This is because both DSFS and ENFW cannot
remove a sufficient number of noisy features, and as a result
the three detectors not using DSFS and ENFW obtain equally
good performance as their counterparts using either DSFS or
ENFW. This also shows the significant challenge of identifying
intrinsic characteristics and sophisticated interactions between

TABLE IV: AUC Performance Comparison of the Three
Detectors Using ENFW and DSFS respectively. IMP denotes
the improvement of DSFS over ENFW.

MarP COMP FPOF

ENFW DSFS IMP ENFW DSFS IMP ENFW DSFS IMP
BM 0.53 0.59 12% 0.56 0.64 15% 0.53 0.59 12%
aPascal 0.46 0.88 91% 0.46 0.88 92% 0.46 0.88 91%
Sylva 0.82 0.96 17% 0.82 0.96 18% ◦ ◦ ◦
Census 0.43 0.69 61% 0.43 0.71 65% 0.46 0.72 55%
CelebA 0.74 0.74 0% 0.76 0.76 0% 0.75 0.75 0%
CMC 0.50 0.66 31% 0.52 0.66 27% 0.51 0.65 28%
CT 0.51 0.97 90% 0.50 0.97 94% 0.51 0.97 90%
Chess 0.64 0.64 0% 0.63 0.63 0% 0.61 0.61 0%
U2R 0.86 0.92 8% 0.83 0.99 20% 0.86 0.97 13%
SF 0.81 0.85 5% 0.82 0.86 5% 0.83 0.86 4%
DIGIT 0.93 0.95 2% 0.95 0.97 2% 0.93 0.94 1%
MRM 0.89 0.89 1% 0.93 0.94 1% 0.90 0.91 0%
AD 0.56 0.74 33% 0.56 0.75 35% 0.56 0.74 33%
Probe 1.00 1.00 0% 1.00 1.00 0% 1.00 1.00 0%
LINK 0.93 0.98 6% 0.88 0.98 12% 0.93 0.98 5%
Avg 24% 26% 24%

‘◦’ indicates out-of-memory exceptions.

features for outlier detection.

4) Good Scalability: The scalability test results of DSFS
against ENFW as a baseline are illustrated in Fig. 2. As
expected, DSFS has linear time complexity with respect to data
size and is quadratic to the number of features. Although DSFS
runs slower than ENFW, it still has quite good scalability with
respect to both data size and the number of features, given that
DSFS completes its execution within one second for the largest
data set with 1,024,000 objects and less than 20 seconds for
the high-dimensional data with 1,028 features.
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Fig. 2: Scale-up Test Results of DSFS against ENFW w.r.t.
Data Size and the Number of Features.

VI. CONCLUSIONS

This paper proposes a novel and flexible unsupervised
feature selection framework for outlier detection (CUFS).
Unlike existing feature selection and unsupervised outlier
detection, CUFS effectively captures the low-level hierarchical
interactions embedded in relevant features which are mixed
with noisy and redundant features. We further introduce a
parameter-free instantiation (DSFS) of the CUFS framework.
DSFS combines the advantage of CUFS with graph-based
strategies. We prove that the feature subset selected by DSFS
achieves a 2-approximation to the optimum.

Our extensive evaluation results show that, on average, (i)
DSFS obtains 46% feature reduction rate on 15 data sets
with different levels of noisy features and redundant features,
and (ii) DSFS enables three different types of pattern-based
outlier detectors (i.e., MarP, COMP and FPOF) to respectively
obtain 7%, 4% and 4% AUC improvements compared to their
counterparts not using DSFS.

On data sets with high noise level, in particular, DSFS is
able to remove a large proportion of noisy features, resulting
in higher AUC improvements of the three detectors (14%, 10%
and 9%, respectively). Moreover, by working on data sets with
significantly smaller feature subsets, COMP and FPOF, which
have at least quadratic time complexity with respect to the
number of features, perform orders of magnitude faster than
on the original full feature set.

Compared to its feature selection contender ENFW, DSFS
performs substantially better in most data sets with noisy
features. On average, all three DSFS-based detectors obtain
more than 20% AUC improvements compared to ENFW.

As expected, DSFS has linear time complexity to data size
and completes the outlier scanning of a data set containing
1,024,000 objects within one second. Although DSFS has
quadratic time complexity to the number of features, it com-
pletes the data set containing 1,280 features within 20 seconds.
This enables DSFS to scale up well with respect to data size
and the number of features.

We are working on enhancing CUFS and DSFS by deeply
understanding the sophisticated interactions between relevant
and noisy/redundant relations to address the challenges in
extremely imbalanced data with highly noisy features.
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