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Generation of Finite Difference Formulas

on Arbitrarily Spaced Grids

By Bengt Fornberg

Abstract. Simple recursions are derived for calculating the weights in compact finite

difference formulas for any order of derivative and to any order of accuracy on one-

dimensional grids with arbitrary spacing. Tables are included for some special cases (of

equispaced grids).

1. Introduction. Previously published methods to generate finite difference

weights (e.g., references [l]-[5]) have been of considerable complexity and often

been limited to derivatives of low order on equidistantly spaced grids. The most

ambitious attempt to tabulate weights for many orders of derivatives and to high

orders of accuracy appears to be the work by Keller and Pereyra [4]. However,

their algorithms (limited to equispaced grids) were very involved, and the resulting

tables contain both isolated and systematic errors.

In the present study we describe two simple recursion relations which give the

weights for any order of derivative (including the Oth derivative, corresponding

to interpolation), approximated to any order of accuracy on an arbitrary grid in

one dimension. Since, in general, only four arithmetic operations are needed to

determine each weight, the main anticipated application of the present method is

to dynamically changing grids. However, the method is also well suited to generate

tables of weights. Such tables (in the special case of equispaced grids, up to the 4th

derivative and up to 9 weights) are included in the cases of one-sided and centered

approximations at a grid point and at a 'half-way point' between grid points.

2. Notation, Algorithm. Given M > 0, the order of the highest derivative we

wish to approximate, and a set of N + 1 grid points (at i-coordinates q0, ..., a^;

N > 0), the problem is to find all the weights such that the approximations

n

88 J2èn,uliau),       m = 0,1,...,M; n = m,m +1,...,N,
x=xo       i/=o

become of optimal formal order of accuracy (in general of order n-m + 1, although

it can be higher in special cases). The following algorithm achieves this:
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Enter M, N, x0, a0,ai,a2,. ..,o/v

68,o ■■= 1
cl := 1

for n := 1 to TV do

c2:=l

for v := 0 to n — 1 do

c3 := an - Oiv

c2 := c2 ■ c3

if n < M then <5£_j v := 0

for m := 0 to min(n, M) do

W,u ■■= (K - *o)C-l,„ - <l!J/c3
next m

next v

for m := 0 to min(n, M) do

Cn := Càimèn-l,n-l " K-l - *o)C-l,„-l)

next m

cl := c2

next n

Notes.   1.   If the array ¿^ initially is zero, the statement "if n < M then

$i-i,t/ := 0" can ^e omitted.

2. In the case of m = 0 (corresponding to interpolation formulas), expressions

of the form 'zero*(undefined number)' occur. The result is assumed to be zero.

3. The order in which the av (all distinct) are given is significant (since the

weights corresponding to all leading subsets of the a„'s are calculated). There is

no restriction on xq coinciding with any a„.

3. Derivation of the Algorithm. For simplicity, assume we seek to approx-

imate the derivatives at the point in = 0. Let {ao,ot\,... ,a¡^) be distinct real

numbers and denote
n

(3.1) wn(x) := J|(x-afc).
k=0

The polynomial

(3-2) FnAx) ■■=    , , ""(X)-v

is the one of minimal degree which takes the value 1 at x = au and 0 at x = ak,

0 < k < n, k t¿ v. For an arbitrary function f(x) and nodes x = a„, Lagrange's

interpolation polynomial becomes

n

(3.3) p(x):=J2FnAx)f (<*»)■
i/=0

The desired weights express how the values of [dmp(x)/dxm]x=o vary with changes

in f(au). Since only one term in p(x) is influenced by changes in each f(au), we

find

d"
(3-4) C/ =

dxr
■FnAx)

lx=0
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Therefore, the nth degree polynomial Fn,v(x) can also be expressed as

"   6m

(3-5) Fn,„(x) = £ -^f *m
m=0

From (3.2) follow (noting that u>(x) = (x — an)w„_i(i) implies u>'n(x) = (x -

an)u'n-lix) + Un-l(x))

(3.6) FnAx) = ^^Fn-lAx)
a„ - an

and

to n\       r>      I   \ wn-l(z) <*>n-2(û!n-l), , .
(3.7) F„,„ (x) =-^4-=-—r^(x-an_i)Fn_i,„_i(a;) n>l.

Wn-l(«n) Wn.i(an)

By substituting the expansion (3.5) into (3.6) and (3.7), and by equating powers of

x, the desired recursion relations between the weights are obtained:

(3-8) C = -^— KC-1,1/ - mC-tJ

and

(3.9) <„ = ^(";-;)Kffi-t1 - a„-iC-i,„-i).

The relation

Vf = J1'
m > 0,(3-10) ¿«V = (o

i/=0 *■   '

could be used instead of (3.9) to obtain ¿>™n. However, this would increase the

operation count and might also cause a growth of errors in the case of floating-

point arithmetic.

4. Description of the Tables. Special cases which commonly occur are cen-

tered and one-sided approximations on equidistant grids. The particular choices of

ctu used for Tables 1-4 correspond to grid spacings Ax = 1. For other values of

Ax, these coefficients should be divided by (Ax)m (where m, as before, is the order

of the derivative).
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TABLE 1

Some weights for centered approximations at a grid point (generated by setting M

4, TV = 8, xo = 0 and av = {0,1, -1,2, -2,3, -3,4, -4}).

0

Approximations at x = 0;

i-coordinates at nodes:

_1
280

-1

560

-7

240

_7
240

-1

60
-4

105

1
90

8
315

1
8

_3
10

-1

6

^2
5

-2

1
12

_3
20

1
5

1

2

169
60

-1

2
-_2

3

^3
4

5

1

4
3

3
2

8
5

-1

12
-3
20
-1

5

-1

2

_1

-169

120

13
8

§i
30

-4

-13

2
-122

15

0

0

0

0

-2

2
-49

18
-205

72

0

0

0

6
28

3

Si
8

1
2

2
3

3
4

4
5

-1

-13

8
-61

30

-4
-13

2
-122

15

-1

12

^3
20
-1

5

^1
12
-3

20
-1

5

2

169
120

1

2

169
60

1
60

_4
105

_1
90

8
315

1    ^
-I

8

^3
10

-1

280

-1

560

7
240

_7
240
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TABLE 2

Some weights for centered approximations at a 'half-way' point (generated by setting

M = 4, N = 7, x0 = 0 and av = {1/2,-1/2,3/2,-3/2,5/2,-5/2,7/2,-7/2}).

o
dv
e a
r t

°v
f e

O
r a

ÎC
r V

?ca
f y

Approximations at x = 0;

x-coordinates at nodes:

-7/2  -5/2 -3/2 -1/2   1/2 3/2 5/2  7/2

0

-1

16
-25
256

1
2

_9
16

75
128

2048

3
256

49   -245   1225
2048   2048   2048

1
2

_9
16

75
128

1225
2048

-1

16
-25

256
-245
2048

3
256

49
2048 2048

_5
7168

1
24

25
384

245
3072

-1

-9

8
-75

64
-1225

1024

1

9
8

ZI
64

1225
1024

-1

24
-25

384
-245

3072

3
640

49
5120 7168

^5
48

259   -499
11520   2304

1
2

13
16

1299
1280

= 1
2

-17

24
-1891

2304

2

il
24

1891
2304

1
2

13
16

1299
1280

-5

48
-499

2304   11520
259

-37
1920

-7

48

1
8

499
1920

1
2

59
48

-1

-13

8
-1299

640

^3
2

-45

16

3

11
4

1891
384

83
48

-3
-17

4
-1891

384

1
13
8

1299
640

1  -s
83
48

3
2

-45

16

-1

8
-499

1920

1
2

59
48

37
1920

-7

48
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TABLE 3

Some weights for one-sided approximations at a grid point (generated by setting

M = 4, N = 8, x0 = 0 and au = {0,1,2,3,4,5,6,7,8}).

d v
e a
r   t

°v
f  e

Approximations at x = 0;

i-coordinates at nodes:

1 2 3

1

-1

^3
2

-11

6
-25

12
-137

60
-49

20
-363

140
-761

280

-1

2

^3
2

-14

10
3

20
3

35
3

56
3

5i\J —o
O A

-15

2
-21

2

1
4

-5

4
-15

4
-35

4

-35

2

1
5

6
5

21
5

56
5

-1

6
-7

6
-14

3

1

2

35
12

Ü
4

203
45

469
90

29531
5040

-2

-5

-26

3
-77

6
-87

5
-223

10
-962

35

1

4

19
2

107
6

117
4

879
20

621
10

-14

3

-13

-254

9
-949

18
-4006

45

11
12

61
12

33
2

41

691
8

=5
6

-27

5
-201

10
-282

5

137
180

1019
180

2143
90

-7

10
-206

35
363
560

-1

-5

2
-17

4
-49

8
-967

120
-801

80

11
4

29

638
15

349
6

-3

-12

-59
2

-461

8
-3929

40
-18353

120

1

7

49
2

62

389
3

2391
10

-3
2

-41

4
-307

8
-2545

24
-1457

7
4

13

268
5

4891
30

-15

8
-1849

120
-561

29
15

527
30

-469

240

1

3

35
6

28
3

1069
80

-4

-14

-31

-111

2
-1316

15

6

26
137

2

142

15289
60

-4

-24

-242

3
-1219

6
-2144

1

11

107
2

176

10993
24

-2

-19

-185

2
-4772

15

il
6

82
3

2803
20

-7

2

-536

15
967
240



GENERATION OF FINITE DIFFERENCE FORMULAS 705

TABLE 4

Some weights for one-sided approximations at a 'half-way'' point (generated by set-

ting M=4, N=8, x0=0 andav = {-l/2, 1/2,3/2, 5/2, 7/2,9/2,11/2,13/2,15/2}).

d v
e a

f  è

O
r  a

ÎÎ
r  ¥

0?
f y

Approximations at x = 0;

i-coordinates at nodes:

-1/2 1/2 3/2   5/2 7/2 9/2   11/2   13/2   15/2

7
256

77
512

-21

1024

33
2048

32768

1001 -273
2048 2048

5005 -4095    495
409G 8192

-429

4096  32768

-1

-23

24
-11

12
-563

640
-1627

1920
-88069
107520
-1423

1792

1

7
8

17
24

67
128

211
640

2021
15360
-491

7168

1
8

3
8

143
192

59
48

28009
15360

7753
3072

-1

24

^5
24

-37

64
-235

192
-6803

3072
-18509

_1
24

29
128

91
128

5227
3072

3535
1024

-71

1920
-443

1920
-12673

15360
-2279

31
960

3539  -3043
15360 107520

953  -1637
7168  107520

3
2

12
24

95
48

12139
5760

25333
11520

81227

-7

2
-14

3
-269

48
-6119

960
-80813

11520
-67681

8960

1

5
2

17
4

49
8

3091
384

2553
256

34151
2880

-1

2
-5

3
-85

24
-1759

288
-21457

2304
-16747

_7
24

59
48

1211
384

14651
2304

5669
512

^3
16

-919

960
-3687

1280
-76621

11520

739
5760

11520

1699
640

-211

2304
-5647  21719

8960 322560

-1

-2

-23

8
-29

8
-8197

1920
-2317

480

3

7

91

127
8

39139
1920

47707
1920

-9

-71

4

-29

-27219

1

5

55
4

115
4

19699
384

7
8

43

640
-7443  158471

128 1920

-15043

384
-30037

384

12099 -10099 1237
640 1920 1920

32091 -40087 1961
640 1920 384

-357

640

1

5
2

101
24

287
48

14861
1920

-4

-23

2
-87

4
■1639

48
-1447

30

21

373

1341
16

21299
160

-4

-19

-319

6
-5527

48
-25651

'.'73

8

4613
48

2
-47

4
-783

16
-2951

20

ii
24

677
48

-85

48
-1903

120
1127
640
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