
xStream: Outlier Dete‘x’ion in Feature-Evolving Data Streams
Emaad Manzoor

H. John Heinz III College
Carnegie Mellon University

emaad@cmu.edu

Hemank Lamba
School of Computer Science
Carnegie Mellon University

hlamba@cs.cmu.edu

Leman Akoglu
H. John Heinz III College

Carnegie Mellon University
lakoglu@andrew.cmu.edu

ABSTRACT

This work addresses the outlier detection problem for feature-
evolving streams, which has not been studied before. In this setting
both (1) data points may evolve, with feature values changing, as
well as (2) feature space may evolve, with newly-emerging features
over time. This is notably different from row-streams, where points
with fixed features arrive one at a time.

We propose a density-based ensemble outlier detector, called
xStream, for this more extreme streaming setting which has the fol-
lowing key properties: (1) it is a constant-space and constant-time
(per incoming update) algorithm, (2) it measures outlierness at mul-
tiple scales or granularities, it can handle (3i) high-dimensionality
through distance-preserving projections, and (3ii) non-stationarity
via O (1)-time model updates as the stream progresses. In addition,
xStream can address the outlier detection problem for the (less
general) disk-resident static as well as row-streaming settings.

We evaluate xStream rigorously on numerous real-life datasets
in all three settings: static, row-stream, and feature-evolving stream.
Experiments under static and row-streaming scenarios show that
xStream is as competitive as state-of-the-art detectors and particu-
larly effective in high-dimensions with noise. We also demonstrate
that our solution is fast and accurate with modest space overhead
for evolving streams, on which there exists no competition.

ACM Reference Format:

Emaad Manzoor, Hemank Lamba, and Leman Akoglu. 2018. xStream: Out-
lier Dete‘x’ion in Feature-Evolving Data Streams . In KDD ’18: The 24th
ACM SIGKDD International Conference on Knowledge Discovery & Data Min-
ing, August 19–23, 2018, London, United Kingdom. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3219819.3220107

1 INTRODUCTION

How can we detect outlier data points in a stream, which “evolves”
over time, that is a stream where not only new points arrive over
time but also (i) the feature values of the points may change and
(ii) previously unseen features may arrive?

Outlier detection has numerous key applications in finance, se-
curity, etc. and has been studied vastly [2]. All of existing work for
point outlier detection can be categorized to one of two settings:

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
KDD ’18, August 19–23, 2018, London, United Kingdom
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5552-0/18/08. . . $15.00
https://doi.org/10.1145/3219819.3220107

Ti
m

e

Known Features

Incoming
Points Ti

m
e

Updates to existing
feature & point

New Emerging
Features

Evolving Features

(a) row-stream (b) feature-evolving stream

Figure 1: Row-streaming data [all prior work] vs. Feature-

evolving data stream [this paper] (colors indicate unique

ids): in (a) points arrive, get scored for outlierness, and dis-

carded one-at-a-time, vs. in (b) not only new points (rows) ar-

rive over the stream, but also (i) feature space evolves with

newly-emerging features (columns), and (b) id’s evolve with

feature-value updates arriving in an interleaved fashion. As

such, (b) is inherently a more challenging setting.

(1) static (d , n known): when the full n ×d data matrixD is given,
containing n points in d dimensions, and

(2) row-streaming (d known, n unknown): when d-dimensional
rows of D arrive over time—one by one.

In this work we consider a (3)rd, new setting that has not been
addressed before in any prior work: when indices of D arrive
arbitrarily in time over a stream where both n and d are unknown
apriori. Concretely, triplets of the form (id, f ,δ) arrive over the
stream, where id is the unique identifier for a data point, f is a
unique feature name and δ is the amount of update (positive or
negative) to the value of feature f for point id . Here both id and
f may be previously unseen or seen, i.e. both new rows as well as
new columns can be added to the data or values of existing indices
can be updated over the stream. In this paper, we introduce the
term feature-evolving stream (or evolving stream in short) to refer
to such a data stream. These settings are substantially different as
illustrated in Figure 1 (see caption).

We propose a new algorithm for the outlier detection problem
in evolving streams, called xStream, to handle this (3)rd, more
extreme (hence the name xStream) setting. xStream can also
handle settings (1) and (2) above, as (3) is more general as well as
more challenging.

A key challenge is the need to maintain not only the outlier
detection model but also the data points in memory for the timely

https://doi.org/10.1145/3219819.3220107
https://doi.org/10.1145/3219819.3220107

processing of the stream. That is, we cannot simply process and
discard the points one at a time as they arrive over the stream as
in setting (2), since those points may “evolve” in two key ways:
(i) their feature values may change, and/or (ii) new features may
emerge. Second, both n and d are unknown; as such, if we were to
maintain the data points in memory, space should be dynamically
allocated for growing n and d , both of which could be extremely
large. A space cap could cause spillover to disk and as a result
“thrashing”. Third, a very fast technique is needed to accommodate
a likely high-frequency arrival rate of delta-updates per point per
feature. Those are specific challenges associated with the (3)rd
setting. Other typical challenges include non-stationarity of the
data stream, curse of dimensionality, outliers at multiple scales (or
granularities) or different subspaces. With xStream, we address all
of these challenges above.

While the (3)rd setting for outlier detection has not been con-
sidered before, likely because of the challenges associated with
evolving data points with potentially high yet unknown dimension-
ality, the practical cases for this setting are abound. We give three
real world examples as follows.

• Data centermonitoring: Jobs arriving to a data center over time
may evolve, where features like syscall counts, memory usage,
#threads, etc. may change or new features like files/repos/URLs
accessed or applications run may emerge.
• Customer behavior tracking: Users arriving to a host website
over time may evolve, where features like page visit counts,
#clicks, etc. may change and new features involving e.g. se-
quence of visited page types may emerge.
• Usermonitoring: Active users logging on Twitter/Facebook/etc.
over time may evolve, where features like hashtag counts, frac-
tion of posts with URL, URL domain counts, etc. may change
and new hashtags or domains may emerge.

In a nutshell, xStream operates on projections of the data points,
which it maintains on-the-fly, seamlessly accommodating newly-
emerging features. These projections are lower dimensional, fixed
size, and preserve the distances between the pointswell. xStream per-
forms outlier detection via density estimation, through an ensem-
ble of randomized partitions of the data. These partitions are con-
structed recursively, where the data is split into smaller and smaller
bins, which allows us to find outliers at different granularities. Tem-
poral shifts are handled by a window-based approach where bin
counts accumulated in the previous window are used to score points
in the current window, with windows sliding forward periodically
after each current window is full. We give a list of the notable
contributions of our work as follows.

• Our most innovative contribution is addressing the outlier
detection problem for evolving streams for the first time. In
such streams, not only new points arrive over time, but feature
values may change and new features (columns) may emerge.
This is a (3)rd setting where n and d (the total number of
data rows and columns, respectively) are both unknown, as
compared to (1) the static setting with n and d both known,
and (2) the row-streaming setting with d known, n unknown.
• We propose a new algorithm called xStream for outlier detec-
tion in evolving streams. xStream exhibits a number of key

properties: (i) it is a constant memory approach with fixed-
size model and data sketches, processing each stream element
in constant time; (ii) it tackles high-dimensionality via de-
tection in subspace projections; (iii) it measures outlierness
at multiple scales or different granularities, which allows
identifying both scattered and clustered outliers; and (iv) it
handles non-stationarity via a window-based scheme that
requires O (1) update time per window.
• We also show that xStream can easily accommodate settings
(1) and (2). In particular, it applies to static disk-resident data,
requiring only two passes—one for model building and another
for scoring outlierness—as well as to row-streaming data, with
minor modifications to the implementation.

Through extensive experiments on benchmark datasets, we com-
pare xStream to widely-known state-of-the-art ensemble methods
on (1) static and (2) streaming outlier detection. On these settings,
xStream is as competitive as existing methods on low-to-medium
dimensional datasets, and superior in high-dimensions. To further
set xStream apart from the rest, we demonstrate its performance
on (3) evolving streams, for which there is no existing competitor.

To facilitate reproducibility, we make all source code and data
publicly available at https://github.com/cmuxstream/.

2 RELATEDWORK

Our work introduces an ensemble-based approach to outlier detec-
tion in evolving streams. We cover related work in both areas.

Ensemble Methods: Outlier detection is a well-studied area,
especially for static point-cloud data [2, 12]. Following the success
of ensemble methods on classification, several ensemble detectors
have been developed in the past to leverage “the strength of the
many”. For example, Lazarevic and Kumar developed feature bag-
ging [22], an ensemble inspired by bagging [8] that employs ran-
domly selected feature subsets to detect outliers in subspaces. Liu
et al. [23] propose a method based on random forests [9], which
used different subsamples of training data to construct an ensemble
of trees to isolate outliers on the basis of the path length from the
root to the leaves. Most recently, Aggarwal [3] and Zimek [34] laid
out opportunities and challenges in this area, which created a surge
of focus on ensemble methods for outlier detection, including the
subsampling technique [35] that assembled base detectors with
different subsamples of the data points, ensemble of randomized
space trees RS-Forest [32], rotated bagging with variable subsam-
pling techniques [4], selective [27] and sequential [28] ensembles,
projection-based histogram ensemble LODA [26], and the random-
ized subspace hashing ensemble RS-Hash [29]. Ensemble techniques
enjoy reduced variance and the ability to detect outliers hidden in
subspaces. They have been shown to outperform base detectors
alone and are considered state-of-the-art for outlier detection.

Streaming Methods: There exist various outlier detectors for
data streams [6, 7, 11, 17, 30, 33]. Most related to our work are the
ensemble methods that partition the representation space (feature
subspaces, projections, etc.) and estimate density based on counts
in the partitions [26, 31, 32], which are easily generalized to data
streams. The idea is to maintain two separate counts; one for the
most recent historical window (called reference) and another for
the current window. Then, every time the window slides, reference

https://github.com/cmuxstream/

Table 1: Comparing xStream with state-of-the-art outlier

detection techniques in terms of various properties.

Methods/
Properties

LO
F
[1
0]

Fe
at
.B
ag
.[
22
]

LO
CI

[2
5]

H
iC
S
[2
1]

iF
or
es
t[
23
]

H
S-
St
re
am

[3
1]

ST
O
RM

[6
]

LO
DA

[2
6]

RS
-H

as
h
[2
9]

RS
-F
or
es
t[
32
]

xS
tr

ea
m

Static ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Streaming ✔ ✔ ✔ ✔ ✔ ✔

Multi-scale ✔ ✔

Subspaces ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Projections ✔ ✔

Evolving

feature space

✔

Evolving points/

feature values

✔

counts are overwritten by current counts and the latter are set to
zero. Differently, RS-Hash [29] uses continuous counting (i.e., no
sliding windows) where points are down-weighted by recency.

While there is much work on time series outlier detection [18],
this differs from outlier detection in data streams. Here, the goal is
to identify outlying time-series patterns based on temporal depen-
dencies, rather than independent outlying objects.

Remarkably, all of the existing techniques consider the row-
stream setting where data objects arrive one at a time and assume
that dimensionality is known. None of them can handle either evolv-
ing objects with changing feature values, or newly-emerging fea-
tures where dimensionality is unknown. Our work is the first to
address this more challenging setting and easily generalizes to
static as well as row-streaming scenarios as well. Table 1 compares
xStream to several popular static and streaming methods in terms
of various properties and highlights key differences.

3 OUTLIER DETECTION IN

FEATURE-EVOLVING DATA STREAMS

3.1 Problem Definition

We now formalize the problem of outlier detection in feature-
evolving data streams. Consider an incoming stream of elements
D = {et }t=1,2, ... where each element et is a triple of the form
(id, f ,δ)t . Here, the id is a unique integer identifying each data
point. f is a feature name, represented as a string. δ is a discrete or
continuous scalar.

Each such triple is an update to the point with identifier id lying
in a feature space F that is unobserved. We do not assume anything
about the types of features: they may be categorical or numerical.
The update is made to a feature with name f and is of magnitude δ .
For example: the triple (1000, “sudo”, +2) increments the number of
times a user with ID 1000 ran the sudo command on a machine, and
the triple (3, “rainfall_2018.02”, 2.5) records the amount of rainfall
observed by a sensor with ID 3 on a specific date.

We define our outlier detection problem formally as follows:

Problem 1 (Outlier Detection in Feature-Evolving Data
Streams). Given a streamD = {et }t=1,2, ... of triples et = (id, f ,δ)t ,
compute and maintain an outlier score for each evolving point id such
that outliers are scored higher than non-outlier points at any time t .

Proposed Method: xStream
We now propose xStream to detect outliers in feature-evolving
data streams. xStream is an ensemble of Half-Space Chains that
approximates density efficiently, without needing to know the un-
derlying feature space a-priori. Each chain approximates the density
of a point by counting its nearby neighbors at multiple scales. The
method builds on the following key components: (1) StreamHash:
subspace-selection and dimensionality reduction via sparse random
projections for evolving feature spaces; (2) Half-Space Chains: an
efficient ensemble to estimate density at multiple scales; and (3)
extensions to handle non-stationarity and evolving data points in
the stream. We now describe each of these components, followed
by the complete algorithm and its complexity in space and time.

3.2 StreamHash

Random projections are an efficient and effective method of re-
ducing data dimensionality while accurately preserving distances
between points. Classical random projections [19] involve drawing
a set of Gaussian random vectors {rrr1, . . . ,rrrK } ⊂ Rd and project-
ing each point xxx ∈ Rd to a low-dimensional embedding yyy ∈ RK
as: yyy = (xxxTrrr1, . . . ,xxxTrrrK), where K is the number of random pro-
jections. This low-dimensional embedding preserves pairwise dis-
tances between points with high-accuracy [20].

In high-dimensional data, outliers often lie in low-dimensional
subspaces, rendering them difficult to detect with a large number
of irrelevant features [5, 36]. This difficulty may be mitigated by
looking for outliers in selected subspaces of the data [2]. Hence, we
consider a variant of random projections called database-friendly
random projections [1], which replaces the Gaussian random vec-
tors with sparse random vectors where only 1/3 of the vector com-
ponents are non-zero. Under this scheme, each projection ignores
a 2/3 fraction of the feature space, essentially selecting a subspace,
while still maintaining the ability to preserve pairwise distances.
Specifically, the projection values rrr i [j] follow the distribution:

rrr i [j] =
√

3
K

−1 with probability 1
6

0 with probability 2
3

+1 with probability 1
6

In a feature-evolving stream, however, the true dimensionality d
is unobserved and evolving over time. Hence, it is impossible to
draw random vectors rrr1, . . . ,rrrK of this dimensionality a-priori.
To address this issue, we propose StreamHash, a hashing-based
implementation of sparse random projections that functions in
unobserved and evolving feature spaces. StreamHash is instanti-
ated with K hash-functions h1 (·), . . . ,hK (·). Each hash function hi
maps a string f (the feature name) to a hash-value, i.e., hi : f → R.
Given a point xxx in a fixed feature space F , its random projection
via StreamHash is computed as follows:

yyy[i] =
∑
fj ∈F

hi (fj) xxx[j], i = 1, . . . ,K . (1)

Eq. (1) applies to data points arriving with all their features at once.
In a feature-evolving stream D of triples (id, f ,δ), updates to the
projection of point id are computed as follows:

yyyid[i] = yyyid[i] + hi (f) δ , i = 1, . . . ,K . (2)

Ifyyyid did not exist on the arrival of the first triple, it is initialized
with the first such update. Hence, with this projection scheme, we
can now compute and maintain low-dimensional projections of the
incoming data points in an online fashion, without observing the
underlying feature space.

What remains is to specify an implementation of the hash func-
tions hi ’s such that the hash function values hi (f) follow the dis-
tribution of projection values rrr i [j] in Eq. (1). Let д1 (·), . . . ,дK (·)
be functions from an efficiently computable universal hash family
[14, 15], mapping strings to 32 bit integers. The exact number of
bits is irrelevant, and is chosen for efficiency based on the machine
word size. Let ai (f) = дi (f)/(232 − 1), a number between 0 and 1.
hi (f) is defined for K random projections, analogous to Eq. (1) as:

hi [f] =
√

3
K

−1 if ai (f) ∈ [0, 1/6)
0 if ai (f) ∈ [1/6, 5/6)
+1 if ai (f) ∈ [5/6, 1]

(3)

3.3 Half-Space Chains

To detect density-based outliers, it suffices to approximate the den-
sity of each point by counting the number of its neighbors lying
within some radius r (i.e., at some scale). There are two issues
with performing neighborhood-counting directly: (1) the success
of outlier detection is sensitive to the choice of scale, and (2) in
high-dimensional data, the number of neighbors at any scale tends
to zero as the dimensionality increases. We resolve both these is-
sues by coupling dimensionality-reduction via StreamHash as
described in the previous subsection, with an ensemble that approx-
imates the density by computing neighborhood-counts at multiple
scales, which we describe now.

We perform density estimation in the projected K-dimensional
space denoted as P = {1, . . . ,K }. One approach to approximating
density is to construct histograms with equiwidth bins and use the
bin-counts. However, as the dimensionality of the binned space
increases, the number of bins grows exponentially. This leaves every
bin too sparsely populated to reliably approximate the density, as a
consequence of the curse of dimensionality. Instead, we propose an
ensemble of Half-Space Chains of depth D. Each chain randomly
selects a single split-dimension p ∈ P at each level l = 1, . . . ,D, and
recursively splits the space along that dimension into discrete bins.
Additionally, if a feature is sampled again at subsequent levels in
the chain, it is discretized with a smaller bin width, thus enabling
density approximation at multiple scales.

Let us denote byppp the vector of split features sampled by a chain,
where ppp[l] ∈ P for each level l = 1, . . . ,D. The split features are
sampled uniformly at random with replacement; this allows dimen-
sions to be split into finer granularities if sampled multiple times.
Let ∆∆∆[p] be the initial bin-widths, used to discretize dimensions
when sampled for the first time. This is set to approximately half
the range of the projected data along each dimension p, and may
be estimated by an initial sample.

We approximate the density at a projected pointyyy at level l of the
chain by binning the point at that level and retrieving the bin-count.
Let the bin-vector (corresponding to a unique bin-id) be z̄̄z̄z ∈ ZK ,
initialized to 000. Let p = ppp[1] ∈ P be the feature sampled by the
chain at level l = 1. The bin-vector at l = 1 is computed using the

Δ = (2,2)
s = (0,0)

y = (2.2,3)

(0,0)

(4,4)

(0,4)

(4,0) y

p[l=1] x1

p[l=2] x2

p[l=3] x1

y

y

y

z = (0,0)

z = (1.1, 0.0)
z = (1, 0)

z = (1.1, 1.5)
z = (1, 1)

z = (2.2, 1.5)
z = (2, 1)

x1

x2

Figure 2: Example illustration of a Half-Space Chain (left) of depth

D = 3 and∆∆∆, sss as shown in aK = 2 dimensional projected space (top).

The dimension selected at each level ppp[l=1], ppp[l=2] and ppp[l=3] is re-
cursively split into bins (middle). Corresponding un-discretized and

discretized bin-vectors, respectively zzz and z̄̄z̄z , at each level are shown

(right, last computed bin element in bold). See §3.3 for details.

initial bin-width as z̄̄z̄z[p] = ⌊yyy[p]/∆∆∆[p]⌋. Every subsequent time p is
sampled in the chain, the bin-width is halved and used to update
the bin-vector as above.

For binning-based density estimation, the placement of the bin
boundaries plays a crucial role; which may have an adverse ef-
fect on points near the boundaries, potentially causing clusters
to split due to lying on both sides. To tackle this issue, we intro-
duce a random shift sss[p] for each dimension p ∈ P, such that
sss[p] ∈ Uniform(0,∆∆∆[p]). These shifts reduce the impact of deter-
ministic bin boundaries on clustered points by providing them an
opportunity to fall into the same bin. Let o(p, l) be the number
of times feature p ∈ P has been sampled in the chain until and
including level l , where o(p, l) = 1 at the first level p is sampled.
The bin-vector ofyyy at level l is then computed as,

zzz[p] =
yyy[p] + sss[p]/2o (p,l)−1

∆∆∆[p]/2o (p,l)−1 , ∀ p ∈ P (4)

z̄̄z̄z = ⌊zzz⌋ (5)
where zzz ∈ RK is the un-discretized bin-vector ofyyy. Fig. 2 illustrates
the process of recursively splitting a 2-dimensional projected space
by aHalf-Space Chain of depthD = 3, bin-widths∆∆∆ = (2, 2)without
shifts, i.e. sss = (0, 0) for simplicity. At levels l = 1 and 2, dimensions
ppp[1] = x1 and ppp[2] = x2 are selected for the first time and split
into two bins each of width ∆∆∆[1] = 2 and ∆∆∆[2] = 2. At level l = 3,
dimensionppp[3] = x1 is split again to a finer granularity, into bins of
width ∆∆∆[1]/2 = 1. Corresponding z̄̄z̄z and zzz at each level are shown
on the right.

Given z̄̄z̄z at any level, we index z̄̄z̄z into a counting data-structure
maintained at that level to obtain the bin-count of the point. How-
ever, the number of unique bin vectors (esp. at higher granularities
or levels) can be large and in fact is theoretically unbounded in
a streaming scenario. Hence, we use a count-min-sketch Hl ∈ H

at each level l = 1, . . . ,D, which approximates the bin-counts at

that level with high accuracy while consuming constant space [13].
Overall, each chain is defined by C = {ppp,∆∆∆,sss,H} and the collec-
tion of M such chains C = {C1 . . . ,CM } constitutes xStream’s
ensemble of Half-Space Chains.

In-place construction of bin-vectors. We may use Eqs. (4)
and (5) to compute the bin-vectors at each level l = 1, . . . ,D. How-
ever, the following recursive relationship enables computing the
un-discretized bin-vectors incrementally; starting at l = 1 and mov-
ing downward (zzz = 000 initially) using a few arithmetic operations:

zzz[p] = (yyy[p] + sss[p])/∆∆∆[p] if o(p, l) = 1
zzz[p] = 2zzz[p] − sss[p]/∆∆∆[p] if o(p, l) > 1 (6)

where p is the feature sampled at level l , and o(p, l) denotes the
number of times feature p ∈ P has been sampled as defined earlier.

Updating bin-counts in a Half-Space Chain. On the arrival
of a projected pointyyy, its bin-vector z̄̄z̄z is constructed at each level
l = 1, . . . ,D recursively using Eq. (6) and is indexed into Hl to
increment the bin-count Hl [z̄̄z̄z]. One may also need to delete points
from the chain: we will see in §3.4 that, when points evolve, their
old projected points are deleted from the chain and updated ones
are added. Deletion proceeds exactly the same as addition, with the
bin-count being decremented instead.

Multi-scale Outlier Scoring. At higher levels, the bin-counts
tend to be lower. To facilitate comparing outlier scores across levels,
we define the outlier score ofyyy (with bin-vector z̄̄z̄z) at each level l as
the extrapolated bin-count 2lHl [z̄̄z̄z]. This is equal to the expected
number of points in each bin if the initial bin-widths∆∆∆[p] for p ∈ P
were exactly half the range ofp, and the data points were distributed
uniformly at random.

We define the multi-scale outlier score of a pointyyy from a chain
C as the minimum extrapolated bin-count across all levels, corre-
sponding to the lowest density this point has among all the consid-
ered granularities. The overall outlierness score by the ensemble is
then the average of the scores across all chains, that is:

S (yyy) =
1
M

∑
C ∈C

SC (yyy) =
1
M

∑
C ∈C

minl 2lHl [z̄̄z̄z] (7)

Note that we update the bin-counts and compute outlierness scores
simultaneously as we traverse each chain from l = 1 downward.

3.4 Handling Non-stationarity and

Evolving Points

Streaming randomprojections (§3.2) coupledwithHalf-Space Chains
(§3.3) can be used to compute outlier scores over any stream of
incoming data points in evolving feature space. However, the dis-
tribution of points may change as the stream progresses, causing
bin-counts constructed in the past to no longer represent the current
distribution of the data. Additionally, triples in the data stream may
update previously seen points. As such, we next extend xStream to
handle non-stationarity and evolving data points.

Handling non-stationarity. We handle non-stationarity by
maintaining separate bin-counts for an alternating pair of windows
containingψ points each, termed as current and reference windows.

These are associated with two separate counters in each entry
of a count-min-sketch Hl , denoted by Hl .c and Hl .r for the current
and reference window respectively. As a pointyyy is propagated down

Algorithm 1 xStream
Input Stream D; Half-Space Chains C; Window sizeψ
Output Outlier score for each id in D, at any instant

1: cache = [] ▷ Size-N LRU cache
2: numpoints = 0
3: for et = (id, f ,δ)t ∈ D do

4: if id < cache then ▷ previously unseen id, §3.4
5: if numpoints = ψ then

6: numpoints← 0
7: for Hl ∈ HC ,∀C ∈ C do

8: Hl .r ← Hl .c
9: Hl .c ← 0
10: numpoints← numpoints +1
11: else ▷ evolving existing id, §3.4
12: yyyid ← Remove (id,yyyid) from cache
13: Deleteyyyid from the current counters of C
14: yyyid ← Get updated projection for triple et ▷ Eq. (2)
15: Add (id,yyyid) to (head of) cache
16: Addyyyid to the current counters of C
17: S (yyyid) ← score with reference counters of C ▷ Eq. (7)
18: return S (yyyid)

the chain, the current window bin-counts Hl .c [z̄̄z̄z] are incremented
by 1 at each level whereas the reference window counts Hl .r [z̄̄z̄z]
are used to compute is outlierness score. On the arrival of (ψ + 1)th
new point, the counts in Hl .r are replaced with those in Hl .c , and
the counts in Hl .c are set to zero to begin processing the next
window. The swapping and resetting of counts, i.e., model update
is effectively O (1).

Here,ψ is set based on the expected frequency of distribution-
changes in the stream; a higher frequency would benefit from lower
ψ . However, settingψ too low reduces the statistical power of the
reference window, resulting in outlier scores with a high variance.

Handling evolving data points. Points may evolve by receiv-
ing updates in the stream to either an existing feature or to a new,
previously unseen feature. In either case, Eq. (2) requires the exist-
ing projected pointyyy to reside in main memory so as to update it
quickly without accessing the disk.

Hence, we maintain in memory a fixed-size cache of N projected
points. We follow a Least-Recently-Updated (LRU) eviction protocol
for the cache: addition of a new point to a full cache is followed
by the eviction of the least recently updated point. The LRU cache
is implemented as a linked-list, with additions to the head and
evictions from the tail. On receiving an update, the existing pro-
jected point is first removed from the cache and from the chains by
decrementing its bin-counts at all levels. It is then updated using
Eq. (2), moved to the head of the cache and used to increment the
corresponding bin-counts in the chains.

Overall xStream algorithm, including the mechanisms to han-
dle non-stationarity and evolving data points, is provided in Al-
gorithm 1. The window mechanism is depicted in lines 4–10, and
the caching mechanism in lines 11–15. Note that lines 16-17 are
performed simultaneously during the same traversal of each chain.

3.5 Time and Space Complexity

Time: Given arriving stream element et , we update the projected
vectoryyy in O (K). For a given chain in the ensemble, we then con-
struct the bin-vector z̄̄z̄z and index it into the count-min-sketch (CMS)
at every level. Here, indexing involves hashing z̄̄z̄z intom different
fixed-size CMS hashtables (the larger them, the better the approx-
imate counts). This takes O (Km) at each level. For a total of M
chains each with depth D, time complexity per incoming update
becomes (KmDM), which is a constant.

Space: xStream maintains (i) M half-space chains and (ii) N
evolving (projected) points in main memory. The CMS hashtables
per level constitute the main space requirement for a chain. That
is, for m size-L hashtables at D levels, the space for the ensem-
ble structure is O (mLDM). Together with the LRU cache, overall
requirement becomes O (MmLD + NK), also a constant.

For e.g., an ensemble with M=100,m=10,L=1000,D=10 plus a
cache of N=100, 000 points with K=100 would require 160MB.

Note that our space overhead is linear in depth by design; unlike
for e.g., tree structures employed by existing (static/row-streaming)
outlier ensembles [23, 31, 32], which grow exponentially by depth.

3.6 xStream for Static and Row-Streaming Data

Next we demonstrate that xStream can easily accommodate set-
tings (1) and (2) as we discussed in the Introduction.

Note that the half-space chains ensemble structure can be con-
structed without data. That is, the split dimension and shift for each
level and the fixed-size count-min-sketches can be instantiated apri-
ori. Moreover, K d-dimensional sparse projector vectors (rrr i ’s) can
be created and kept in memory.

For disk-resident static setting, xStream then makes two passes
over the data. In pass 1, it populates the counters. That is, it loads
one point/row xxx at a time, computes projected vector yyy and the
corresponding bin-ids at each level of each chain using Eq.(6) to
increment the count-min-sketch counters. In pass 2, it scores for
outlierness. That is, it follows the same steps as in pass 1 but this
time uses the populated counts in corresponding count-min-sketch
bins to compute outlierness per point as in Eq. (7).

For the row-streaming setting, xStream implementation is al-
most identical to the disk-resident static setting above, since reading
one point at a time from disk is analogous to receiving one point at
a time over the stream. The difference is that this time xStream em-
ploys the window mechanism where it uses current and reference
counters to populate and score points, respectively. Note that in
this setting, xStream can still create and cache the K projectors in
memory apriori, since dimensionality d is known for row-streams.

4 EVALUATION

4.1 Experiment Settings

We evaluate and compare xStream to various state-of-the-art base-
lines under three different settings.

Static. This is the offline setting, where both n and d are known
and all of the data is available at train time. We use all the data
to train detection models and subsequently score the same points
under the trained model. Note that all the models used for detection

Table 2: Datasets used for evaluation.

Name Evolving Evolving n or d No. of

F ? points? |D| outliers

gisette No No 3850 4970 351
isolet No No 4886 617 389
letter No No 4586 617 389
madelon No No 1430 500 130
cancer No No 385 30 28
ionosphere No No 242 33 17
telescope No No 13283 10 951
indians No No 538 8 38
Spam-SMS Yes No 5574 8442 747
Spam-URL Yes No 2.4M 3.2M 792K
Attk-Flash Yes Yes 63.1M 1.1M 2.8M
Attk-Java Yes Yes 89.7M 1.1M 29.5M

are unsupervised, as such, training does not make ground truth
labels available to the models but only used for evaluation.

Datasets. We use the top eight static datasets in Table 2 with
varying size and dimensionality. These are standard UCI datasets
previously used for outlier detection (see [26] for details).

Baselines. In static setup, we compare xStream to four tech-
niques: iForest [23], HS-Trees [31], LODA [26], and RS-Hash [29].
These are all ensemble methods that seek outliers in subspaces, and
have been shown to outperform numerous standard detectors [4]
and hence are considered the state-of-the-art.

We use recommended sample size ψ = 256 and height limit
hlim= 15 for iForest, max-depth 15 for HS-Trees, sparsity factor
1/
√
d for LODA and let it select the best width for its histograms,

the recommended sample size 1000 for RS-Hash, and k = 100 and
ℓ = 15 for our xStream. For all methods, we set the number of
ensemble components (trees, histograms, chains) to 100.

Row-stream. The second setting is where data points with
known dimensionality arrive one-at-a-time over the stream. Each
arriving point is scored under the detection model and discarded.

Datasets. We use the Spam-SMS and Spam-URL datasets listed
in the middle part of Table 2, containing ground truth spam SMS
messages and emails containing spam URLs, respectively. Each SMS
or URL document arrives one at a time over the stream. As such,
these datasets well-align with the row-streaming setting—except
for one caveat, which is their feature representations. We use the
word and shingle counts as features for both type of documents,
however, the vocabulary size in reality is unknown apriori (esp.
for SMS, where the vocabulary is highly variable). That is, the
feature domain F is in fact evolving. Nevertheless, we give the
advantage of known-d to existingmethods, by identifying all unique
features in the entire corpus apriori and constructing feature vectors
accordingly for the incoming documents.

Baselines. We compare to the streaming versions of the baseline
techniques from the previous part, namely HS-Stream and LODA
(iForest does not have a stream version). We use similar hyperpa-
rameter settings as before. In addition, we use two sliding windows
(reference and current) for HS-Stream, LODA, and xStream with

various window sizes. RS-Hash uses a continuous counting ap-
proach with (recommended) decay rate 0.015.

Note that our work addresses a much more challenging outlier
detection problem than the offline and row-streaming (w/ known-d)
scenarios above. We provide comparative results solely for com-
pleteness and to show xStream’s competitiveness in these settings.

Evolving Stream. This is the extreme setting we consider in
this work, in which updates arrive over time as a stream D. These
may include updates to existing features’ values as well as newly-
emerging features of new or previous data points.

Datasets. We use the Attk-Flash and Attk-Java datasets listed
in the last section of Table 2, also used in our prior work [24].
They contain traces from processes executing simultaneously on a
machine, respectively from malicious processes exploiting a Flash
or Java vulnerability. Each dataset also contains traces each from 5
non-attack scenarios corresponding to casual browsing activities:
YouTube, GMail VGame (a Flash game), Download (downloading a
file) and CNN (a news website). Here, processes do not arrive one at
a time as in setting (2), rather, they run in parallel. Moreover, they
evolve; executing various system calls (e.g., file read/port write/etc.)
over time. We represent the sequence of calls by a process with
shingle (subsequence) counts, where new shingles emerge in time.
Moreover, such shingle updates arrive to any and all processes
running on the host in an interleaved fashion, requiring the detector
to maintain the representation of “live” processes and update their
outlier scores over time.

Baselines. In this new setting, there is no existing competitor.
xStream is the first technique (to the best of the authors’ knowl-
edge) for outlier detection in evolving data streams—handling evolv-
ing feature space and evolving feature values.

4.2 Static Experiments

Table 3 reports the performance of competing methods as measured
by average precision (area under the precision-recall curves) on
static datasets. The results are averaged across 10 independent runs,
since all methods are non-deterministic.

We statistically compare the average ranks of the algorithms
(reported in Table 3) using the nonparametric Friedman test [16].
With p = 0.1107, we could not reject the null hypothesis at a 5%
confidence-level that all methods are equally performant, suggest-
ing xStream is as competitive as the state-of-the-art in this basic
setting. Next, we perform the Nemenyi post-hoc test to compare
the methods in pairs while accounting for multiple testing. The test
reports significance if the average ranks of two methods differ by a
“critical distance” (CD): for 5 methods on 8 datasets at a significance
level α = 0.05, the CD = 2.1567. Since the gap between the low-
est (by xStream) and highest (by iForest) average ranks is already
less than the CD, we again conclude that there is no significant
difference in performance between any pair of methods.

xStream is designed for high-dimensional datawithmany newly-
emerging features. With many dimensions, we expect most features
to be irrelevant for outlier detection. Put differently, outliers tend
not to stand out in all possible dimensions. To showcase such a
scenario, we append new columns with Gaussian noise to the four
lowest dimensional static datasets, thereby increasing the dimen-
sionality with noisy features. Specifically we append 100%, 1000%,

Table 3:MeanAverage Precision on static datasets.Mean and

standard deviation are reported over 10 runs.

Dataset iForest HS-Trees RS-Hash LODA xStream
cancer 0.617 ± 0.021 0.646 ± 0.033 0.619 ± 0.030 0.826 ± 0.013 0.845 ± 0.008
ionosphere 0.705 ± 0.006 0.706 ± 0.007 0.764 ± 0.032 0.642 ± 0.067 0.848 ± 0.018
telescope 0.367 ± 0.008 0.392 ± 0.012 0.391 ± 0.012 0.322 ± 0.007 0.344 ± 0.009
indians 0.142 ± 0.003 0.146 ± 0.002 0.156 ± 0.007 0.177 ± 0.008 0.216 ± 0.010
gisette 0.078 ± 0.002 0.080 ± 0.002 0.084 ± 0.007 0.087 ± 0.003 0.090 ± 0.003
isolet 0.099 ± 0.003 0.097 ± 0.005 0.108 ± 0.004 0.089 ± 0.004 0.112 ± 0.006
letter 0.093 ± 0.001 0.092 ± 0.002 0.104 ± 0.004 0.094 ± 0.006 0.122 ± 0.005
madelon 0.110 ± 0.003 0.101 ± 0.013 0.092 ± 0.005 0.101 ± 0.010 0.097 ± 0.004
Avg Rank 3.75 3.3125 2.875 3.3125 1.75

Table 4:MeanAverage Precision on static perturbed datasets,

reported over 10 runs. Numbers in brackets indicate the

number of Gaussian noise columns as a % of the original di-

mensionality.

Dataset iForest HS-Trees RS-Hash LODA xStream
cancer (100) 0.599 ± 0.031 0.605 ± 0.031 0.646 ± 0.032 0.811 ± 0.012 0.825 ± 0.012
cancer (1K) 0.406 ± 0.088 0.201 ± 0.024 0.425 ± 0.112 0.722 ± 0.056 0.813 ± 0.022
cancer (2K) 0.306 ± 0.044 0.229 ± 0.029 0.337 ± 0.077 0.633 ± 0.092 0.822 ± 0.021
cancer (5K) 0.120 ± 0.040 0.158 ± 0.018 0.153 ± 0.070 0.336 ± 0.141 0.796 ± 0.028
i.sphere (100) 0.651 ± 0.049 0.568 ± 0.026 0.622 ± 0.038 0.560 ± 0.056 0.848 ± 0.011
i.sphere (1K) 0.302 ± 0.072 0.231 ± 0.006 0.258 ± 0.070 0.589 ± 0.073 0.819 ± 0.019
i.sphere (2K) 0.211 ± 0.105 0.085 ± 0.007 0.233 ± 0.100 0.561 ± 0.092 0.791 ± 0.026
i.sphere (5K) 0.112 ± 0.035 0.150 ± 0.017 0.135 ± 0.062 0.494 ± 0.072 0.685 ± 0.065
t.scope (100) 0.311 ± 0.012 0.260 ± 0.006 0.326 ± 0.015 0.322 ± 0.006 0.340 ± 0.008
t.scope (1K) 0.156 ± 0.011 0.102 ± 0.004 0.164 ± 0.019 0.303 ± 0.010 0.311 ± 0.006
t.scope (2K) 0.108 ± 0.010 0.098 ± 0.014 0.112 ± 0.019 0.296 ± 0.016 0.284 ± 0.005
t.scope (5K) 0.084 ± 0.005 0.079 ± 0.001 0.087 ± 0.011 0.248 ± 0.017 0.271 ± 0.005
indians (100) 0.123 ± 0.007 0.093 ± 0.003 0.128 ± 0.009 0.171 ± 0.008 0.196 ± 0.015
indians (1K) 0.086 ± 0.014 0.096 ± 0.009 0.087 ± 0.011 0.153 ± 0.028 0.178 ± 0.006
indians (2K) 0.087 ± 0.013 0.076 ± 0.003 0.085 ± 0.008 0.139 ± 0.028 0.151 ± 0.013
indians (5K) 0.073 ± 0.007 0.075 ± 0.009 0.083 ± 0.018 0.126 ± 0.028 0.152 ± 0.020
Avg Rank 4.0625 4.4375 3.25 2.1875 1.0625

1 2 3 4

1 2 3 4 5

Figure 3: Comparison of detectors in terms of average rank

with the Nemenyi test on (top) original and (bottom) noisy

static datasets. Groups of methods that are not significantly

different (p = 0.05) are connected. CD is the critical distance

required to reject equivalence.

Table 5: Mean average precision (MAP) and overall average precision (OAP) on Spam-SMS. Window-size set as a percentage of

the rows in the entire dataset. xStream-1K denotes our method usingM = 1000 half-space chains (instead of 100).

Window HS-Stream LODA RS-Hash xStream xStream-1K
sizeψ MAP OAP MAP OAP MAP OAP MAP OAP MAP OAP

1% 0.480 ± 0.178 0.416 0.090 ± 0.028 0.076 0.291 ± 0.129 0.171 0.505 ± 0.138 0.422 0.522 ± 0.153 0.430
5% 0.492 ± 0.179 0.416 0.082 ± 0.014 0.077 0.216 ± 0.034 0.195 0.455 ± 0.135 0.406 0.493 ± 0.134 0.415
10% 0.430 ± 0.024 0.419 0.081 ± 0.010 0.080 0.174 ± 0.017 0.164 0.444 ± 0.037 0.433 0.448 ± 0.037 0.436
25% 0.363 ± 0.024 0.359 0.080 ± 0.001 0.080 0.203 ± 0.014 0.201 0.409 ± 0.009 0.404 0.435 ± 0.013 0.429

Table 6: Mean average precision (MAP) and overall average precision (OAP) on Spam-URL. Window size set as days of incoming

URLs, for a total of ≈20,000 URLs per-day.

Window HS-Stream LODA RS-Hash xStream xStream-1K
sizeψ MAP OAP MAP OAP MAP OAP MAP OAP MAP OAP

1 day 0.331 ± 0.055 0.330 0.329 ± 0.059 0.331 0.358 ± 0.061 0.357 0.436 ± 0.083 0.437 0.451 ± 0.106 0.452
3 days 0.339 ± 0.058 0.329 0.307 ± 0.055 0.328 0.357 ± 0.046 0.356 0.478 ± 0.078 0.479 0.508 ± 0.064 0.509
5 days 0.336 ± 0.059 0.329 0.321 ± 0.044 0.328 0.357 ± 0.038 0.356 0.472 ± 0.050 0.472 0.493 ± 0.055 0.496
7 days1 — — 0.303 ± 0.040 0.321 0.355 ± 0.036 0.356 0.497 ± 0.053 0.502 0.533 ± 0.049 0.530
1 HS-Stream exceeds the available memory on a 1 TB machine.

2000% and 5000% noisy features of the original dataset dimension-
ality, with noise ∼ N (.1µ, .1σ) where µ and σ are the mean and
tandard deviation of all features in the original dataset.

Table 4 lists the mean average precision along with average ranks
of each method. This time, we can reject the null with p = 5.565 ×
10−10 using the Friedman test. We proceed with the Nemenyi post-
hoc test to find out which detectors actually differ significantly. For
5 methods on 16 (perturbed) datasets at a significance level α = 0.05,
the CD= 1.524. As shown in Table 4, we find a significant difference
between xStream and all baselines except LODA. As expected,
projection-based methods are superior on high-dimensional noisy
datasets, while the performance drops gradually for iForest, HS-
Trees, and RS-Hash as the number of noisy features increases.

We summarize our findings through a graphical presentation of
results in Figure 3. On average, xStream is as competitive with no
significant difference to existing baselines in the static setting. This
is not a coincidence: intuitively, they all score outliers via density
estimation, albeit in different ways. xStream and projection-based
LODA are advantageous in high dimensions with many irrelevant
features, as the (small set of) features carrying signal are less likely
to be selected by other methods that work with the original features.
Non-projection methods also face the “curse of dimensionality”,
where the amount of data needed to obtain a statistically reliable
density estimate grows exponentially with the dimension.

4.3 Row-Stream Experiments

We report results of all competing methods on Spam-SMS and Spam-
URL in Table 5 and Table 6 respectively. We evaluate the methods
with varying window sizes (ψ). We instantiate the window-based
methods xStream, HS-Stream and LODA using the first window
ofψ points. For RS-Hash we use an initial sample size of 1000, as
recommended in [29]. For Spam-SMS, the data does not provide an
explicit time granularity (like minutes/days); hence, we experiment

withψ = 1, 5, 10, and 25% of the rows. For Spam-URL, the rows are
grouped into collections of all the ham and spam URLs received
daily for a total of 120 days. As such, we specify the window size
in terms of the number of days; specifically,ψ = 1, 3, 5, and 7 days.

All methods assign an outlier score to each row as soon as it
arrives, which remains unchanged henceforth. Using these scores,
we compute the average precision for each window containingψ
rows, and report the mean average precision (MAP) over all such
windows. Additionally, we report the average precision for all the
rows observed at the end of the row stream, denoted as OAP; the
overall average precision. Note that the firstψ rows are not assigned
scores, since those are used to instantiate the models.

We observe that xStream outperforms LODA and RS-Hash, and
performs on par with HS-Stream on Spam-SMS containing a total
of 5574 rows in the stream. On Spam-URL with 2.4 million rows
(≈20,000 daily), on the other hand, xStream outperformsHS-Stream,
LODA and RS-Hash on average as well as in terms of the end-of-
stream performance—where HS-Trees ran out of memory forψ = 7
days on a server with 1TB RAM.

HS-Stream’s decayed performance on Spam-URL containing 3.2
million features can be attributed to the dimensionality. While HS-
Stream operates directly on the high dimensional rows, xStream
operates on distance-preserving low-dimensional projections and,
as such, is less prone to curse of dimensionality. This advantage
is further magnified on datasets where a large number of dimen-
sions are irrelevant for outlier detection (as was demonstrated in
§4.2). Though LODA also projects the data, its poor performance
can be attributed to two factors. First, it uses only 1-dimensional
projections, which may not be enough to preserve structure for
high-dimensional datasets like Spam-URL. Second, it relies on dis-
cretizing the data using an optimized yet single bin-width. In con-
trast, xStream employs few but multiple projections, and uses a
spectrum of bin-widths to capture outliers at different granularities.

In all experiments, we use 100 ensemble components
(trees/histograms/chains) for each method. We also use the same
maximum depth for xStream and HS-Stream. Note that HS-Stream
requires space exponential in depth (as it builds balanced binary
trees) in contrast to space linear in depth required by xStream.
In Table 5 and Table 6, we also present the MAP and OAP for
xStream using 1000 chains (thus, increasing the diversity and
expressiveness of the ensemble), demonstrating improved perfor-
mance while still consuming exponentially less space than HS-
Stream: O (100 × 215) for HS-Stream vs. O (1000 × 15) for xStream.

Note that the performance of all methods varies with thewindow-
sizeψ . This is due to the temporal variation in the distribution of
rows over different windows, resulting in varying models being
constructed at the start of each window, which are used later for
scoring. Hence, no consistent trend is to be expected (nor is ob-
served) asψ is varied. We experiment with and present results using
different window-sizes in order to demonstrate that our conclusions
are not biased by the choice of a specific window-size

4.4 Evolving Stream Experiments

We now evaluate xStream on a feature-evolving stream, to de-
tect attack processes executing simultaneously with non-attack
processes. For each non-attack scenario, we concatenate a ran-
dom sample of 25% of the processes from each attack and shuffle
the updates, such that the streams interleave but the order of up-
dates in each trace is maintained. xStream is configured with
M = 100,K = 100,D = 15, ψ = 25 and m = 8,L = 210 for the
count-min-sketches.

We compute theAP andAUCof the points scored in eachwindow
and report them at different instants of the stream in Fig 4 (a)-(b).
The MAP over all windows is reported in Fig 4 (c). We observe that
the AUC is near-ideal over all windows. The AP fluctuates across
windows more than the AUC, but remains ∼0.75+ for the majority
of datasets and windows. The AP on CNN fluctuates over windows
for both Attk-Java and Attk-Flash. The CNN website contains
a wide variety of Java and Flash-based rich-media content; this
makes the CNN scenario relatively more difficult to distinguish as
an outlier using the extracted shingles as features.

To make the setting more realistic, we also combine all the non-
attack processes to construct the “All” scenario and again evaluate
the performance of xStream in detecting a 25% random sample of
each attack. The MAP is noted in the last row of Fig 4 (c). While
performance reduces slightly, xStream still remains a competitive
outlier detector in this setting.

We analyze the effect of the parameters in the “All” scenario and
plot the variation in MAP with each parameter in Fig. 5 (a)-(d).

IncreasingM and K each improve the diversity of the ensemble
by increasing the number of chains, and increasing the diversity of
features sampled in each chain, respectively. The resulting increase
in MAP in either case is confirmed in 5 (a)-(b).

As the maximum depth D is increased, xStream is able to detect
outliers at finer granularities. However, the gains from increasingD
diminish after a point, when the granularity is too fine for the given
data. Hence, it is sufficient to use small D in most cases, though a
larger D has no negative impact. This is confirmed in Fig. 5(c).

5 10 15
syscalls (millions)

0.0
0.2
0.4
0.6
0.8
1.0

AU
C

java

5 10 15
syscalls (millions)

flash

YouTube GMail VGame Download CNN

(a) AUC over time, points scored in each window.

5 10 15
syscalls (millions)

0.0
0.2
0.4
0.6
0.8
1.0

AP

java

5 10 15
syscalls (millions)

flash

(b) AP over time, points scored in each window.

Normal Scenario Attk-Java Attk-Flash

YouTube 0.832 ± 0.146 0.990 ± 0.020
GMail 0.990 ± 0.020 0.886 ± 0.142
VGame 0.999 ± 0.001 0.999 ± 0.001
Download 0.905 ± 0.190 0.875 ± 0.156
CNN 0.828 ± 0.211 0.854 ± 0.173
All 0.794 ± 0.254 0.854 ± 0.262

(c) Mean average precision over all windows.

Figure 4: Performance of xStream on feature-evolving streams.K =
100, M = 100, D = 15, ψ = 25, N = 100%.

10 100 1000
Number of chains M

0.0
0.2
0.4
0.6
0.8
1.0

M
AP

java
flash

(a) MAP vs. M

10 100 1000
Projection size K

0.0
0.2
0.4
0.6
0.8
1.0

M
AP

java
flash

(b) MAP vs. K

5 15 25
Depth D

0.0
0.2
0.4
0.6
0.8
1.0

M
AP

java
flash

(c) MAP vs. D

25% 50% 75% 100%
Cache size N

0.0
0.2
0.4
0.6
0.8
1.0

M
AP

java
flash

(d) MAP vs. N

Figure 5: Effect of parameters on xStream’s performance. Unless

specified, M = 100, K = 100, D = 15, ψ = 25, N = 100%.

Finally, the MAP improves as the size of the cache N (in terms
of the % of total data points) is increased, as expected and observed
in Fig. 5 (d). However, the performance remains competitive even
with a cache containing just 50% of the original points.

50 100 150 200 250
Projection size K

0

5

10

Ti
m

e
(m

icr
os

) Projection time

(a) Projection time vs. K

5 10 15 20 25
Depth D

0

1000

2000

Ti
m

e
(m

icr
os

) Update time

(b) Update time vs. D

Figure 6: Time for xStream to (a) project a triple with a 32-

byte feature name, and (b) updateM = 100 chains, for differ-

ent values of sketch sizeK andmaximum depth D. All times

are in microseconds.

We also record the time taken for the main operations performed
on each incoming update. To facilitate evaluation, we use string
feature names that were padded to 32 bytes. Fig. 6 shows the the
projection time (Fig. 6(a)) and the time to update all the M = 100
chains (Fig. 6(b)) as the projection size K and maximum depth D
are varied. The overall time grows linearly with both parameters,
as expected. The absolute time is of the order of milliseconds; thus,
xStream is capable of processing 1000s of updates per-second.

5 CONCLUSION

We have formulated the problem of detecting outliers in feature-
evolving data streams, wherein both the data points and feature
space may evolve over time. This setting is novel in the outlier-
detection literature with numerous applications, while being inher-
ently more challenging than the static and row-stream settings.

We proposed xStream to solve the problem of outlier-detection
in feature-evolving data streams. xStream addresses a number of
key challenges in this new setting. To handle large and unobserved
dimensionality, it employs a streaming random projection scheme
to embed points in a low-dimensional space on-the-fly, while pre-
serving pairwise distances. xStream then detects outliers in this
projected space via an ensemble of half-space chains. Each half-
space chain of the ensemble enables computing outlier scores for
each point via randomized partitions (within subspaces) of the pro-
jected input space. Outlier scores are computed at multiple scales,
thus facilitating the detection of both clustered and scattered out-
liers. Further, a window-based mechanism is implemented that
handles non-stationarity in the stream. Overall, xStream functions
in constant time and constant space for each update, which can be
controlled via user-configurable parameters.

Via extensive experiments, we showed that xStream (1) per-
forms on parwith the state-of-the art on static data and row-streams,
with few changes required, (2) outperforms the state-of-the-art on
high-dimensional data streams, and (3) achieves desirable perfor-
mance on feature-evolving streams while processing over 1000
updates per-second.

ACKNOWLEDGMENTS

This research is sponsored by NSF CAREER 1452425, IIS 1408287,
and an Adobe University Marketing Research Award. Any con-
clusions in this material are of the authors and do not necessarily
reflect the views, expressed or implied, of the funding parties.

REFERENCES

[1] Dimitris Achlioptas. 2003. Database-friendly Random Projections: Johnson-
Lindenstrauss with Binary Coins. J. Comput. System Sci. (2003).

[2] Charu C. Aggarwal. 2013. Outlier Analysis. Springer.
[3] Charu C. Aggarwal. 2013. Outlier ensembles. SIGKDD Explorations (2013).
[4] Charu C. Aggarwal and Saket Sathe. 2015. Theoretical Foundations and Algo-

rithms for Outlier Ensembles. SIGKDD Explorations (2015).
[5] Charu C. Aggarwal and Philip S Yu. 2001. Outlier detection for high dimensional

data. SIGMOD Record (2001).
[6] Fabrizio Angiulli and Fabio Fassetti. 2007. Detecting distance-based outliers in

streams of data. In CIKM.
[7] Ira Assent, Philipp Kranen, Corinna Baldauf, and Thomas Seidl. 2012. AnyOut:

Anytime Outlier Detection on Streaming Data. In DASFAA.
[8] Leo Breiman. 1996. Bagging Predictors. Machine Learning (1996).
[9] Leo Breiman. 2001. Random Forests. Machine Learning (2001).
[10] Markus M Breunig, Hans-Peter Kriegel, Raymond T Ng, and Jörg Sander. 2000.

LOF: identifying density-based local outliers. In SIGMOD.
[11] Hui Cao, Yongluan Zhou, Lidan Shou, and Gang Chen. 2010. Attribute Outlier

Detection over Data Streams. In DASFAA.
[12] Varun Chandola, Arindam Banerjee, and Vipin Kumar. 2009. Anomaly Detection:

A Survey. Comput. Surveys (2009).
[13] Graham Cormode and S Muthukrishnan. 2005. An improved data stream sum-

mary: the count-min sketch and its applications. Journal of Algorithms (2005).
[14] Søren Dahlgaard, Mathias Knudsen, and Mikkel Thorup. 2017. Practical Hash

Functions for Similarity Estimation and Dimensionality Reduction. In NIPS.
[15] Søren Dahlgaard, Mathias Bæk Tejs Knudsen, Eva Rotenberg, and Mikkel Thorup.

2015. Hashing for statistics over k-partitions. In FOCS.
[16] Janez Demšar. 2006. Statistical Comparisons of Classifiers over Multiple Data

Sets. Journal of Machine Learning Research (2006).
[17] Sudipto Guha, Nina Mishra, Gourav Roy, and Okke Schrijvers. 2016. Robust

Random Cut Forest Based Anomaly Detection on Streams. In ICML.
[18] Manish Gupta, Jing Gao, Charu C. Aggarwal, and Jiawei Han. 2014. Outlier

Detection for Temporal Data: A Survey. Transactions on Knowledge and Data
Engineering (TKDE) (2014).

[19] Piotr Indyk and Rajeev Motwani. 1998. Approximate nearest neighbors: Towards
removing the curse of Dimensionality. In STOC.

[20] William B Johnson and Joram Lindenstrauss. 1984. Extensions of Lipschitz
mappings into a Hilbert space. Contemp. Math. (1984).

[21] Fabian Keller, Emmanuel Müller, and Klemens Böhm. 2012. HiCS: High Contrast
Subspaces for Density-Based Outlier Ranking. In ICDE.

[22] Aleksandar Lazarevic and Vipin Kumar. 2005. Feature bagging for outlier detec-
tion. In KDD.

[23] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. 2008. Isolation Forest. In ICDM.
[24] Emaad Manzoor, Sadegh M. Milajerdi, and Leman Akoglu. 2016. Fast Memory-

efficient Anomaly Detection in Streaming Heterogeneous Graphs. In KDD.
[25] Spiros Papadimitriou, Hiroyuki Kitagawa, Phillip B. Gibbons, and Christos Falout-

sos. 2003. Fast Outlier Detection Using the Local Correlation Integral. In ICDE.
[26] Tomás Pevný. 2016. Loda: Lightweight on-line detector of anomalies. Machine

Learning (2016).
[27] Shebuti Rayana and Leman Akoglu. 2016. Less is More: Building Selective

Anomaly Ensembles. Transactions on Knowledge Discovery from Data (TKDD)
(2016).

[28] Shebuti Rayana, Wen Zhong, and Leman Akoglu. 2016. Sequential Ensemble
Learning for Outlier Detection: A Bias-Variance Perspective. In ICDM.

[29] Saket Sathe and Charu C. Aggarwal. 2016. Subspace Outlier Detection in Linear
Time with Randomized Hashing. In ICDM.

[30] Markus Schneider, Wolfgang Ertel, and Fabio Ramos. 2016. Expected similarity
estimation for large-scale batch and streaming anomaly detection. Machine
Learning (2016).

[31] Swee Chuan Tan, Kai Ming Ting, and Fei Tony Liu. 2011. Fast Anomaly Detection
for Streaming Data. In IJCAI.

[32] Ke Wu, Kun Zhang, Wei Fan, Andrea Edwards, and Philip S Yu. 2014. RS-Forest:
A Rapid Density Estimator for Streaming Anomaly Detection. In ICDM.

[33] Ji Zhang, Qigang Gao, and Hai H Wang. 2008. SPOT: A System for Detecting
Projected Outliers From High-dimensional Data Streams. In ICDE.

[34] Arthur Zimek, Ricardo J.G.B. Campello, and Jörg Sander. 2013. Ensembles for
Unsupervised Outlier Detection: Challenges and Research Questions. SIGKDD
Explorations (2013).

[35] Arthur Zimek, Matthew Gaudet, Ricardo Campello, and Jörg Sander. 2013. Sub-
sampling for efficient and effective unsupervised outlier detection ensembles. In
KDD.

[36] Arthur Zimek, Erich Schubert, and Hans-Peter Kriegel. 2012. A survey on unsu-
pervised outlier detection in high-dimensional numerical data. Statistical Analysis
and Data Mining: The ASA Data Science Journal (2012).

	Abstract
	1 Introduction
	2 Related Work
	3 Outlier Detection in Feature-Evolving Data Streams
	3.1 Problem Definition
	3.2 StreamHash
	3.3 Half-Space Chains
	3.4 Handling Non-stationarity andEvolving Points
	3.5 Time and Space Complexity
	3.6 xStream for Static and Row-Streaming Data

	4 Evaluation
	4.1 Experiment Settings
	4.2 Static Experiments
	4.3 Row-Stream Experiments
	4.4 Evolving Stream Experiments

	5 Conclusion
	References

