Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Argonaute HITS-CLIP decodes microRNA–mRNA interaction maps

Abstract

MicroRNAs (miRNAs) have critical roles in the regulation of gene expression; however, as miRNA activity requires base pairing with only 6-8 nucleotides of messenger RNA, predicting target mRNAs is a major challenge. Recently, high-throughput sequencing of RNAs isolated by crosslinking immunoprecipitation (HITS-CLIP) has identified functional protein–RNA interaction sites. Here we use HITS-CLIP to covalently crosslink native argonaute (Ago, also called Eif2c) protein–RNA complexes in mouse brain. This produced two simultaneous data sets—Ago–miRNA and Ago–mRNA binding sites—that were combined with bioinformatic analysis to identify interaction sites between miRNA and target mRNA. We validated genome-wide interaction maps for miR-124, and generated additional maps for the 20 most abundant miRNAs present in P13 mouse brain. Ago HITS-CLIP provides a general platform for exploring the specificity and range of miRNA action in vivo, and identifies precise sequences for targeting clinically relevant miRNA–mRNA interactions.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Argonaute HITS-CLIP.
Figure 2: Distribution of mRNA tags correlates with seed sequences of miRNAs from Ago CLIP.
Figure 3: Ago–miRNA ternary clusters in validated miR-124 mRNA targets.
Figure 4: Meta-analysis of Ago–mRNA clusters in large-scale screens of miR-124-regulated targets.
Figure 5: Ago–miR-124 ternary maps in brain and transfected HeLa cells.
Figure 6: Ago–miRNA ternary maps.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

Data deposits

The microarray data have been deposited in the GEO database under accession number GSE16338.

References

  1. Filipowicz, W., Bhattacharyya, S. N. & Sonenberg, N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nature Rev. Genet. 9, 102–114 (2008)

    Article  CAS  Google Scholar 

  2. Sharp, P. A. The centrality of RNA. Cell 136, 577–580 (2009)

    Article  CAS  Google Scholar 

  3. Ambros, V. The functions of animal microRNAs. Nature 431, 350–355 (2004)

    Article  ADS  CAS  Google Scholar 

  4. Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004)

    Article  CAS  Google Scholar 

  5. He, L. & Hannon, G. J. MicroRNAs: small RNAs with a big role in gene regulation. Nature Rev. Genet. 5, 522–531 (2004)

    Article  CAS  Google Scholar 

  6. Berezikov, E. et al. Diversity of microRNAs in human and chimpanzee brain. Nature Genet. 38, 1375–1377 (2006)

    Article  CAS  Google Scholar 

  7. Lim, L. P. et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433, 769–773 (2005)

    Article  ADS  CAS  Google Scholar 

  8. Krek, A. et al. Combinatorial microRNA target predictions. Nature Genet. 37, 495–500 (2005)

    Article  CAS  Google Scholar 

  9. Lewis, B. P., Burge, C. B. & Bartel, D. P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15–20 (2005)

    Article  CAS  Google Scholar 

  10. Rajewsky, N. microRNA target predictions in animals. Nature Genet. 38 (Suppl.). S8–S13 (2006)

    Article  CAS  Google Scholar 

  11. Baek, D. et al. The impact of microRNAs on protein output. Nature 455, 64–71 (2008)

    Article  ADS  CAS  Google Scholar 

  12. Bentwich, I. Prediction and validation of microRNAs and their targets. FEBS Lett. 579, 5904–5910 (2005)

    Article  CAS  Google Scholar 

  13. Ventura, A. et al. Targeted deletion reveals essential and overlapping functions of the miR-17–92 family of miRNA clusters. Cell 132, 875–886 (2008)

    Article  CAS  Google Scholar 

  14. Ebert, M. S., Neilson, J. R. & Sharp, P. A. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nature Methods 4, 721–726 (2007)

    Article  CAS  Google Scholar 

  15. Johnston, R. J. & Hobert, O. A microRNA controlling left/right neuronal asymmetry in Caenorhabditis elegans . Nature 426, 845–849 (2003)

    Article  ADS  CAS  Google Scholar 

  16. Xiao, C. & Rajewsky, K. MicroRNA control in the immune system: basic principles. Cell 136, 26–36 (2009)

    Article  CAS  Google Scholar 

  17. van Rooij, E., Liu, N. & Olson, E. N. MicroRNAs flex their muscles. Trends Genet. 24, 159–166 (2008)

    Article  CAS  Google Scholar 

  18. Selbach, M. et al. Widespread changes in protein synthesis induced by microRNAs. Nature 455, 58–63 (2008)

    Article  ADS  CAS  Google Scholar 

  19. Beitzinger, M., Peters, L., Zhu, J. Y., Kremmer, E. & Meister, G. Identification of human microRNA targets from isolated argonaute protein complexes. RNA Biol. 4, 76–84 (2007)

    Article  CAS  Google Scholar 

  20. Easow, G., Teleman, A. A. & Cohen, S. M. Isolation of microRNA targets by miRNP immunopurification. RNA 13, 1198–1204 (2007)

    Article  CAS  Google Scholar 

  21. Hendrickson, D. G., Hogan, D. J., Herschlag, D., Ferrell, J. E. & Brown, P. O. Systematic identification of mRNAs recruited to argonaute 2 by specific microRNAs and corresponding changes in transcript abundance. PLoS ONE 3, e2126 (2008)

    Article  ADS  Google Scholar 

  22. Zhang, L. et al. Systematic identification of C. elegans miRISC proteins, miRNAs, and mRNA targets by their interactions with GW182 proteins AIN-1 and AIN-2. Mol. Cell 28, 598–613 (2007)

    Article  CAS  Google Scholar 

  23. Hammell, M. et al. mirWIP: microRNA target prediction based on microRNA-containing ribonucleoprotein-enriched transcripts. Nature Methods 5, 813–819 (2008)

    Article  CAS  Google Scholar 

  24. van Rooij, E., Marshall, W. S. & Olson, E. N. Toward microRNA-based therapeutics for heart disease: the sense in antisense. Circ. Res. 103, 919–928 (2008)

    Article  CAS  Google Scholar 

  25. Wheeler, T. M., Lueck, J. D., Swanson, M. S., Dirksen, R. T. & Thornton, C. A. Correction of ClC-1 splicing eliminates chloride channelopathy and myotonia in mouse models of myotonic dystrophy. J. Clin. Invest. 117, 3952–3957 (2007)

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Licatalosi, D. D. et al. HITS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature 456, 464–469 (2008)

    Article  ADS  CAS  Google Scholar 

  27. Ule, J. et al. CLIP identifies Nova-regulated RNA networks in the brain. Science 302, 1212–1215 (2003)

    Article  ADS  CAS  Google Scholar 

  28. Ule, J., Jensen, K., Mele, A. & Darnell, R. B. CLIP: a method for identifying protein-RNA interaction sites in living cells. Methods 37, 376–386 (2005)

    Article  CAS  Google Scholar 

  29. Jensen, K. B. & Darnell, R. B. CLIP: crosslinking and immunoprecipitation of in vivo RNA targets of RNA-binding proteins. Methods Mol. Biol. 488, 85–98 (2008)

    Article  CAS  Google Scholar 

  30. Yeo, G. W. et al. An RNA code for the FOX2 splicing regulator revealed by mapping RNA-protein interactions in stem cells. Nature Struct. Mol. Biol. 16, 130–137 (2009)

    Article  CAS  Google Scholar 

  31. Wang, Y. et al. Structure of an argonaute silencing complex with a seed-containing guide DNA and target RNA duplex. Nature 456, 921–926 (2008)

    Article  ADS  CAS  Google Scholar 

  32. Landgraf, P. et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129, 1401–1414 (2007)

    Article  CAS  Google Scholar 

  33. Lu, J. et al. MicroRNA expression profiles classify human cancers. Nature 435, 834–838 (2005)

    Article  ADS  CAS  Google Scholar 

  34. Grimson, A. et al. MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol. Cell 27, 91–105 (2007)

    Article  CAS  Google Scholar 

  35. Wang, E. T. et al. Alternative isoform regulation in human tissue transcriptomes. Nature 456, 470–476 (2008)

    Article  ADS  CAS  Google Scholar 

  36. Duursma, A. M., Kedde, M., Schrier, M., le Sage, C. & Agami, R. miR-148 targets human DNMT3b protein coding region. RNA 14, 872–877 (2008)

    Article  CAS  Google Scholar 

  37. Forman, J. J., Legesse-Miller, A. & Coller, H. A. A search for conserved sequences in coding regions reveals that the let-7 microRNA targets Dicer within its coding sequence. Proc. Natl Acad. Sci. USA 105, 14879–14884 (2008)

    Article  ADS  CAS  Google Scholar 

  38. Lal, A. et al. p16INK4a translation suppressed by miR-24. PLoS ONE 3, e1864 (2008)

    Article  ADS  Google Scholar 

  39. Shen, W. F., Hu, Y. L., Uttarwar, L., Passegue, E. & Largman, C. MicroRNA-126 regulates HOXA9 by binding to the homeobox. Mol. Cell. Biol. 28, 4609–4619 (2008)

    Article  CAS  Google Scholar 

  40. Tay, Y., Zhang, J., Thomson, A. M., Lim, B. & Rigoutsos, I. MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature 455, 1124–1128 (2008)

    Article  ADS  CAS  Google Scholar 

  41. Yu, J. Y., Chung, K. H., Deo, M., Thompson, R. C. & Turner, D. L. MicroRNA miR-124 regulates neurite outgrowth during neuronal differentiation. Exp. Cell Res. 314, 2618–2633 (2008)

    Article  CAS  Google Scholar 

  42. Makeyev, E. V., Zhang, J., Carrasco, M. A. & Maniatis, T. The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol. Cell 27, 435–448 (2007)

    Article  CAS  Google Scholar 

  43. Wang, X. & Wang, X. Systematic identification of microRNA functions by combining target prediction and expression profiling. Nucleic Acids Res. 34, 1646–1652 (2006)

    Article  CAS  Google Scholar 

  44. Karginov, F. V. et al. A biochemical approach to identifying microRNA targets. Proc. Natl Acad. Sci. USA 104, 19291–19296 (2007)

    Article  ADS  CAS  Google Scholar 

  45. Didiano, D. & Hobert, O. Perfect seed pairing is not a generally reliable predictor for miRNA-target interactions. Nature Struct. Mol. Biol. 13, 849–851 (2006)

    Article  CAS  Google Scholar 

  46. Vella, M. C., Choi, E. Y., Lin, S. Y., Reinert, K. & Slack, F. J. The C. elegans microRNA let-7 binds to imperfect let-7 complementary sites from the lin-41 3′UTR. Genes Dev. 18, 132–137 (2004)

    Article  CAS  Google Scholar 

  47. Mili, S. & Steitz, J. A. Evidence for reassociation of RNA-binding proteins after cell lysis: implications for the interpretation of immunoprecipitation analyses. RNA 10, 1692–1694 (2004)

    Article  CAS  Google Scholar 

  48. Kirino, Y. & Mourelatos, Z. Site-specific crosslinking of human microRNPs to RNA targets. RNA 14, 2254–2259 (2008)

    Article  CAS  Google Scholar 

  49. Vasudevan, S., Tong, Y. & Steitz, J. A. Switching from repression to activation: microRNAs can up-regulate translation. Science 318, 1931–1934 (2007)

    Article  ADS  CAS  Google Scholar 

  50. Khan, A. A. et al. Transfection of small RNAs globally perturbs gene regulation by endogenous microRNAs. Nature Biotechnol. 10.1038/nbt.1543 (24 May 2009)

Download references

Acknowledgements

Acknowledgments We thank members of the Darnell laboratory for discussion, J. Fak for help with exon arrays, C. Zhang for bioinformatic discussions, and G. Dunn, D. Licatalosi, C. Marney, M. Frias, T. Eom, J. Darnell, M. Yano and C. Zhang for critical review of the manuscript. We also thank Z. Mourelatos for supplying the 2A8 antibody and communicating unpublished results; G. Hannon for discussions; and S. Dewell for help with high-throughput sequencing. This work was supported in part by grants from the NIH (R.B.D.), the Cornell/Rockefeller/Sloan-Kettering Tri-Institutional Program in Computational Biology and Medicine (S.W.C.) and MD-PhD Program (J.B.Z.). R.B.D. is an Investigator of the Howard Hughes Medical Institute.

Author Contributions S.W.C. and R.B.D conceived, designed and supervised the experiments, analysed the data and wrote the paper. J.B.Z. did the initial experiments with the 7G1-1* antibody. A.M. helped with all HITS-CLIP experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert B. Darnell.

Supplementary information

Supplementary Information

This file contains Supplementary Methods, Supplementary Tables 1-3, Supplementary Figures 1-16 with Legends and Supplementary References. (PDF 5216 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chi, S., Zang, J., Mele, A. et al. Argonaute HITS-CLIP decodes microRNA–mRNA interaction maps. Nature 460, 479–486 (2009). https://doi.org/10.1038/nature08170

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08170

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing