Advertisement

Abstract

Gene silencing through RNA interference (RNAi) is carried out by RISC, the RNA-induced silencing complex. RISC contains two signature components, small interfering RNAs (siRNAs) and Argonaute family proteins. Here, we show that the multiple Argonaute proteins present in mammals are both biologically and biochemically distinct, with a single mammalian family member, Argonaute2, being responsible for messenger RNA cleavage activity. This protein is essential for mouse development, and cells lacking Argonaute2 are unable to mount an experimental response to siRNAs. Mutations within a cryptic ribonuclease H domain within Argonaute2, as identified by comparison with the structure of an archeal Argonaute protein, inactivate RISC. Thus, our evidence supports a model in which Argonaute contributes “Slicer” activity to RISC, providing the catalytic engine for RNAi.

Get full access to this article

View all available purchase options and get full access to this article.

Supplementary Material

File (liu_som.pdf)

References and Notes

1
G. J. Hannon, Nature418, 244 (2002).
2
A. Fireet al., Nature391, 806 (1998).
3
G. Hutvagner, P. D. Zamore, Curr. Opin. Genet. Dev.12, 225 (2002).
4
A. Hamilton, O. Voinnet, L. Chappell, D. Baulcombe, EMBO J.21, 4671 (2002).
5
E. Bernstein, A. A. Caudy, S. M. Hammond, G. J. Hannon, Nature409, 363 (2001).
6
Y. Leeet al., Nature425, 415 (2003).
7
S. M. Hammond, E. Bernstein, D. Beach, G. J. Hannon, Nature404, 293 (2000).
8
M. F. Mette, W. Aufsatz, J. van der Winden, M. A. Matzke, A. J. Matzke, EMBO J.19, 5194 (2000).
9
I. M. Hallet al., Science297, 2232 (2002).
10
T. Volpeet al., Science297, 1833 (2002).
11
M. Pal-Bhadra, U. Bhadra, J. A. Birchler, Mol. Cell9, 315 (2002).
12
P. H. Olsen, V. Ambros, Dev. Biol.216, 671 (1999).
13
D. P. Bartel, Cell116, 281 (2004).
14
T. Tuschl, P. D. Zamore, R. Lehmann, D. P. Bartel, P. A. Sharp, Genes Dev.13, 3191 (1999).
15
P. D. Zamore, T. Tuschl, P. A. Sharp, D. P. Bartel, Cell101, 25 (2000).
16
S. M. Elbashir, J. Martinez, A. Patkaniowska, W. Lendeckel, T. Tuschl, EMBO J.20, 6877 (2001).
17
J. Martinez, A. Patkaniowska, H. Urlaub, R. Luhrmann, T. Tuschl, Cell110, 563 (2002).
18
G. Hutvagner, P. D. Zamore, Science297, 2056 (2002).
19
S. M. Hammond, S. Boettcher, A. A. Caudy, R. Kobayashi, G. J. Hannon, Science293, 1146 (2001).
20
M. A. Carmell, G. J. Hannon, Nature Struct. Mol. Biol.11, 214 (2004).
21
L. Cerutti, N. Mian, A. Bateman, Trends Biochem. Sci.25, 481 (2000).
22
H. Tabaraet al., Cell99, 123 (1999).
23
M. A. Carmell, Z. Xuan, M. Q. Zhang, G. J. Hannon, Genes Dev.16, 2733 (2002).
24
A. A. Caudy, M. Myers, G. J. Hannon, S. M. Hammond, Genes Dev.16, 2491 (2002).
25
K. Okamura, A. Ishizuka, H. Siomi, M. C. Siomi, Genes Dev.18, 1655 (2004).
26
B. Zheng, A. A. Mills, A. Bradley, Nucleic Acids Res.27, 2354 (1999).
27
S. J. Conway, A. Kruzynska-Frejtag, P. L. Kneer, M. Machnicki, S. V. Koushik, Genesis35, 1 (2003).
28
W. Deng, H. Lin, Dev. Cell2, 819 (2002).
29
S. Kuramochi-Miyagawaet al., Development131, 839 (2004).
30
T. Sasaki, A. Shiohama, S. Minoshima, N. Shimizu, Genomics82, 323 (2003).
31
S. Yekta, I. H. Shih, D. P. Bartel, Science304, 594 (2004).
32
J. G. Doench, C. P. Petersen, P. A. Sharp, Genes Dev.17, 438 (2003).
33
M. Kiriakidouet al., Genes Dev.18, 1165 (2004).
34
A. Nykanen, B. Haley, P. D. Zamore, Cell107, 309 (2001).
35
J. W. Pham, J. L. Pellino, Y. S. Lee, R. W. Carthew, E. J. Sontheimer, Cell117, 83 (2004).
36
Y. Tomariet al., Cell116, 831 (2004).
37
J.-J. Song et al., Science305, 1434 (2004). Published online 29 July 2004; 10.1126/science.1102514.
38
B. R. Chapadoset al., J. Mol. Biol.307, 541 (2001).
39
W. Yang, T. A. Steitz, Structure3, 131 (1995).
40
D. S. Schwarz, Y. Tomari, P. D. Zamore, Curr. Biol.14, 787 (2004).
41
R. F. Ketting, T. H. Haverkamp, H. G. van Luenen, R. H. Plasterk, Cell99, 133 (1999).
42
T. Sijen, R. H. Plasterk, Nature426, 310 (2003).
43
E. Sarot, G. Payen-Groschene, A. Bucheton, A. Pelisson, Genetics166, 1313 (2004).
44
Materials and methods are available as supporting material on Science Online.
45
The authors thank members of the Hannon lab for helpful discussions, Alea Mills for advice on ES cell work and for providing the library of targeting constructs, Sang Yong Kim for generating chimeras, Kathryn Anderson for insightful discussions and advice, and Phil Sharp for providing the CXCR4 constructs. M.C. is supported by the U.S. Army Breast Cancer Research Program, F.V.R. by the Jane Coffin Childs Memorial Fund, and J.S. by a Bristol Myers Squibb predoctoral fellowship. S.M.H. is a General Motors Cancer Research Foundation Scholar. This work was supported in part by grants from NIH (L.J. and G.J.H.).

(0)eLetters

eLetters is a forum for ongoing peer review. eLetters are not edited, proofread, or indexed, but they are screened. eLetters should provide substantive and scholarly commentary on the article. Embedded figures cannot be submitted, and we discourage the use of figures within eLetters in general. If a figure is essential, please include a link to the figure within the text of the eLetter. Please read our Terms of Service before submitting an eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

Information & Authors

Information

Published In

Science
Volume 305 | Issue 5689
3 September 2004

Article versions

You are viewing the most recent version of this article.

Submission history

Received: 8 July 2004
Accepted: 19 July 2004
Published in print: 3 September 2004

Permissions

Request permissions for this article.

Notes

Supporting Online Material
www.sciencemag.org/cgi/content/full/1102513/DC1
Materials and Methods
Figs. S1 to S9
References

Authors

Affiliations

Jidong Liu*
Cold Spring Harbor Laboratory, Watson School of Biological Sciences, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.
Michelle A. Carmell*
Cold Spring Harbor Laboratory, Watson School of Biological Sciences, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.
Program in Genetics, Stony Brook University, Stony Brook, NY 11794, USA.
Fabiola V. Rivas
Cold Spring Harbor Laboratory, Watson School of Biological Sciences, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.
Carolyn G. Marsden
Cold Spring Harbor Laboratory, Watson School of Biological Sciences, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.
J. Michael Thomson
Department of Cell and Developmental Biology, University of North Carolina, Chapel Hill, NC 27599, USA.
Ji-Joon Song
Cold Spring Harbor Laboratory, Watson School of Biological Sciences, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.
Scott M. Hammond
Department of Cell and Developmental Biology, University of North Carolina, Chapel Hill, NC 27599, USA.
Leemor Joshua-Tor
Cold Spring Harbor Laboratory, Watson School of Biological Sciences, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.
Gregory J. Hannon [email protected]
Cold Spring Harbor Laboratory, Watson School of Biological Sciences, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.

Notes

To whom correspondence should be addressed. E-mail: [email protected]

Metrics & Citations

Metrics

Article Usage

Altmetrics

Citations

Cite as

Export citation

Select the format you want to export the citation of this publication.

Cited by

View Options

Check Access

Log in to view the full text

AAAS ID LOGIN

AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.

More options

Purchase digital access to this article

Download and print this article for your personal scholarly, research, and educational use.

Purchase this issue in print

Buy a single issue of Science for just $15 USD.

View options

PDF format

Download this article as a PDF file

Download PDF

Full Text

FULL TEXT

Media

Figures

Multimedia

Tables

Share

Share

Share article link

Share on social media