Supplementary Information

Supplementary Figures

Supplementary Figure 1. Up-regulation of EBV-miR-BART1 in both CNE1 and 5-8F cells by lentivirus-mediated transduction

Lentiviral particles carrying 282-nt pri-EBV-miR-BART1 precursor (H1-miRNA-CMV-GFP-BART1) or a BART1 control sequence (H1-miRNA-CMV-GFP-mock) was transduced into EBV-negative NPC cell lines. QRT-PCR confirmed the up-regulation of EBV-miR-BART1 in either CNE1-BART1 (a) or 5-8F-BART1 (b) cells compared with relative mock control cells. The expression level of EBV-miR-BART1 in either CNE1-BART1 or 5-8F-BART1 cells was very close to the mean level of 20 NPC specimens (P>0.05) that used for the miRNA-microarray profile analysis. Student's t test, mean ± SEM, N=3, ***P<0.001.

Supplementary Figure 2. Wound-healing assays evaluating the migration of NPC cells Up-regulation of EBV-miR-BART1 increased the migration of both CNE1-BART1 and 5-8F-BART1 cells compared with that of CNE1-mock and 5-8F-mock control cells respectively. Wound-healing pictures were taken at 0, 6, 12, and 24hr after scratch.

Supplementary Figure 3. Down-regulation of the expression of EBV-miR-BART1 in both CNE1-BART1 and 5-8F-BART1 cells by transfection of BART1-inhibitory oligonucleotide Either CNE1-BART1 cells (a) or 5-8F-BART1 cells (b) was transfected with the BART1-inhibitory oligonucleotide (in-b1-5p for the BART1-5p inhibitor and in-b1-3p for the BART1-3p inhibitor) or the non-specific inhibitor control (in-NC) at 50nM by using Lipofectamine 2000 reagent. The expression of BART1 (either BART1-5p or BART1-3p) was determined by qRT-PCR. Either in-b1-5p or in-b1-3p specifically down-regulated the expression of BART1-5p or BART1-3p respectively. The combination of in-b1-5p and in-b1-3p down-regulated both BART1-5p and BART1-3p. Student's t test, mean ± SEM, N=3, ***P<0.001.

Supplementary Figure 4. Validation of EBV-miR-BART1 expression in liver-metastasized tumors of mice xenografted with 5-8F NPC cells

QRT-PCR confirmed the up-regulation of BART1 (either BART1-5p or BART1-3p) in liver-metastasized tumors of mice implanted with 5-8F-BART1 cells compared with that of 5-8F-Mock control. The expression level of either BART1-5p or BART1-3p in liver-metastasized tumors was very close to the mean level of 20 NPC specimens (P>0.05) that used for the miRNA-microarray profile analysis. Student's t test, mean ± SEM, N=3, ***P<0.001.

Supplementary Figure 5. Putative migration/metastasis-associated candidate genes enriched from those EBV-miR-BART1 down-regulated genes obtained from RNA-deep sequencing

Supplementary Figure 6. Reconstitution of PTEN expression in CNE1-BART1 and 5-8F-BART1 cells validated by qRT-PCR

The expression vector GV230 containing whole coding sequence of PTEN and the control vector GV170 (200ng) were transfected into CNE1-BART1 and 5-8F-BART1 cells by using Lipofectamine 2000 reagent. After 48hr, total RNAs were extracted from the transfected cells. QRT-PCR confirmed the restoration of PTEN at mRNA level. Student's t test, mean \pm SEM, N=3, ***P<0.001.

Supplementary Figure 7. Basal expression of EBV-miR-BART1 in three EBV-positive NPC cell lines and down-regulation of endogenous BART1 expression in HONE1-EBV cells

(a) Expression of BART1 (either BART1-5p or BART1-3p) in three EBV-positive cell lines and 20 NPC clinical samples as quantified by qRT-PCR.

(b) Expression of BART1 (either BART1-5p or BART1-3p) was significantly decreased by the BART1 inhibitory oligonucleotides (in-b1-5p, in-b1-3p or both) but not by the control oligonucleotide (in-NC). Mean \pm SEM, N=3, ***P< 0.001.

Supplementary Figure 8. Construction and sequence validation of the lentiviral expression vector used for up-regulation of EBV-miR-BART1

(a) The GV209 lentiviral vector (H1-miRNA-CMV-EGFP-BART1) containing 282-nt of pri-EBV-miR-BART1 precursor. The BART1-5p and BART1-3p sequences are underlined by blue and green color respectively. *Age*I (ACCGGT) and *Eco*RI (GAATTC) restriction sites of the insert are capitalized in red color.

(b) Sequence validation of EBV-miR-BART1 by sequencing the insert.

Supplementary Figure 9. Original Western blotting images of the key components of PTEN-dependent pathway and EMT

Supplementary Tables

Supplementary Table 1. A cohort of clinical tissue samples for miRNA-microarray analysis and qRT-PCR validation (*Independent t test; [§]Chi-square test. SCC, squamous cell carcinoma)

Characteristics	Clinical tissue samples				
	NP (n=20)	NPC (n=20)	P-value		
Age	40.10	43.35	0.45*		
Gender, male	9 (45%)	14 (70%)	0.11 [§]		
Poorly differentiated SCC		3 (15%)			
Undifferentiated cancer		17 (85%)			
Differentiated SCC		0			

Supplementary Table 2. Identification of 69 miRNAs that are differentially expressed between NPC and NP

	Fold change	Parametric	Parametric	Permutation	Geom mean of	Geom mean of
ID of miRNA	(NPC/NP)	P-value*	FDR	P-value	ratios in NP	ratios in NPC
EBV-mir-BART1	19.27250161	< 1e-07	< 1e-07	< 1e-07	0.8125691	15.660236
EBV-mir-BART7	18.07791945	< 1e-07	< 1e-07	< 1e-07	0.9346132	16.8958559
EBV-mir-BART3	17.58748896	< 1e-07	< 1e-07	< 1e-07	0.9132633	16.0620225
EBv-miR-BART10	14.69989431	< 1e-07	< 1e-07	< 1e-07	1.1458645	16.8440805
EBV-mir-BART8	9.488377212	< 1e-07	< 1e-07	< 1e-07	1.1705958	11.1070561
EBV-mir-BART9	8.929823198	< 1e-07	< 1e-07	< 1e-07	1.0091342	9.0113889
EBV-mir-BART5	7.846405052	< 1e-07	< 1e-07	< 1e-07	0.9187861	7.2091699
EBV-mir-BART6	7.118709463	1.00E-07	7.40E-06	< 1e-07	0.7954561	5.6626205
EBV-miR-BART2	6.916700789	< 1e-07	< 1e-07	< 1e-07	1.3506757	9.3422202
EBV-mir-BART14	4.411855538	3.00E-07	1.92E-05	< 1e-07	1.2572036	5.5466018
EBV-mir-BART16	3.987080265	2.50E-06	0.0001412	< 1e-07	1.0048799	4.0065376
hcmv-miR-UL22A-1	3.885736046	< 1e-07	< 1e-07	< 1e-07	0.7876988	3.0607896
EBV-mir-BART4	3.787084074	7.00E-07	4.20E-05	< 1e-07	0.9391749	3.5567349
hsa-mir-643	3.265885184	0.0004774	0.0100596	4.00E-04	0.7455299	2.4348153
hsa-miR-205	3.248118933	6.92E-05	0.002076	3.00E-04	6.728439	21.8547711
hsa-mir-660	3.147664166	0.0002148	0.0054265	7.00E-04	1.6899949	5.3195365
hsa-mir-651	2.851257861	5.44E-05	0.0018651	4.00E-04	0.8795513	2.5078271
EBV-mir-BART12	2.823659898	2.38E-05	0.000952	< 1e-07	0.8353809	2.3588313
hsa-mir-613	2.792151931	5.84E-05	0.0019264	3.00E-04	0.7482905	2.0893406
hsa-mir-581	2.696646908	0.00028	0.0064	8.00E-04	1.0545058	2.8436301
EBV-mir-BART17	2.290131754	0.0025353	0.0325018	0.0043	1.2044927	2.7584471
EBV-mir-BART20	1.963470804	0.001917	0.0259484	0.002	1.0313375	2.025001
hcmv-miR-US25-2-5p	1.751267173	0.0004925	0.0100596	5.00E-04	0.7969985	1.3957573
hsa-mir-604	1.707947764	0.0002276	0.0055488	3.00E-04	0.8396544	1.4340858
hsa-miR-191	0.675653489	0.0024665	0.0324362	0.0012	1.2266716	0.8288049
hsa-miR-199a	0.667823292	0.0016459	0.0232362	0.001	1.0138932	0.6771015
<u>hsa-let-7i</u>	0.624801665	0.0032592	0.0391692	5.00E-04	1.6666703	1.0413384
<u>hsa-miR-26a</u>	0.583824466	0.002897	0.0361184	0.0014	3.2261411	1.8835
hsa-let-7c	0.573459207	0.0009439	0.0158973	5.00E-04	0.9209456	0.5281247
hsa-miR-221	0.563403611	0.0019191	0.0259484	0.0022	0.956716	0.5390172
<u>hsa-let-7d</u>	0.562094115	0.0014468	0.021702	0.0012	0.9135164	0.5134822
hsa-miR-375	0.553670369	0.0028318	0.0357701	0.0026	1.056692	0.585059
hsa-miR-136	0.55210868	0.0013857	0.0211154	0.0016	1.8847563	1.0405903
hsa-miR-10b	0.548276244	0.0007865	0.014246	0.0012	0.5592348	0.3066151
hsa-miR-199b	0.536033283	0.001025	0.0169655	0.0017	1.8175629	0.9742742
<u>hsa-miR-30a-5p</u>	0.520525329	2.35E-05	0.000952	< 1e-07	4.7382753	2.4663923
<u>hsa-miR-30d</u>	0.520322198	0.0002312	0.0055488	< 1e-07	4.3641825	2.2707811
hsa-miR-152	0.51214102	0.0005287	0.010574	6.00E-04	2.6944112	1.3799185
hsa-miR-145	0.500895953	0.0043537	0.0491712	0.0062	17.6262937	8.8289392

hsa-mir-624	0.48726506	0.0032641	0.0391692	0.0032	1.3162108	0.6413435
hsa-miR-365	0.485030362	0.0016908	0.0235242	0.0028	0.8250951	0.4001962
<u>hsa-let-7g</u>	0.480341011	0.0004898	0.0100596	< 1e-07	1.7995287	0.8643874
hsa-miR-31	0.477838587	0.0006132	0.0115426	6.00E-04	0.4731818	0.2261045
hsa-miR-199a*	0.473994909	0.0036812	0.0425777	0.0051	2.6174524	1.2406591
hsa-miR-196b	0.471017271	0.003782	0.0432229	0.0063	1.5101803	0.711321
<u>hsa-miR-30e-5p</u>	0.458486626	2.80E-06	0.0001493	< 1e-07	6.0942278	2.7941219
hsa-miR-195	0.447332403	0.0008874	0.0154892	0.0015	1.99611	0.8929247
hsa-miR-29a	0.437574812	2.33E-05	0.000952	< 1e-07	4.1010735	1.7945265
hsa-miR-16	0.435157393	0.0045243	0.0505038	0.0051	1.8793853	0.8178284
hsa-miR-29b	0.431569238	0.0001835	0.0047611	1.00E-04	1.7628566	0.7607947
hsa-miR-346	0.42473145	0.0005502	0.0107794	0.0016	4.9578175	2.1057411
<u>hsa-miR-146a</u>	0.418978959	2.77E-05	0.0010228	< 1e-07	10.756221	4.5066303
<u>hsa-miR-30b</u>	0.406976952	0.0003932	0.0085789	2.00E-04	4.5581951	1.8550803
hsa-miR-342	0.397489125	2.77E-05	0.0010228	< 1e-07	8.6870346	3.4530018
hsa-miR-449	0.396329922	0.0035867	0.0419906	0.0079	6.6484496	2.6349795
hsa-miR-143	0.379372457	0.000574	0.0110208	8.00E-04	43.9659697	16.6794781
hsa-miR-144	0.37808031	0.0006346	0.0117157	0.0014	47.9652601	18.1347207
hsa-miR-29c	0.36916765	8.40E-06	0.0004244	< 1e-07	4.5125747	1.6658966
hsa-miR-126*	0.362801182	0.000942	0.0158973	0.0028	9.3399427	3.3885423
hsa-miR-140	0.331890429	0.0008268	0.0146987	0.0017	2.2027896	0.7310848
<u>hsa-miR-30a-3p</u>	0.322618985	2.15E-05	0.000952	< 1e-07	4.5292535	1.4612231
hsa-miR-485-3p	0.317850375	0.0011268	0.0180288	0.0021	13.4029323	4.2601271
<u>hsa-miR-26b</u>	0.312392088	4.29E-05	0.0015253	< 1e-07	4.4792998	1.3992978
hsa-miR-105	0.304738919	0.0001367	0.0037495	6.00E-04	2.615638	0.7970867
hsa-miR-32	0.282737728	0.0021969	0.029292	0.0049	2.6416395	0.7468911
hsa-miR-101	0.26323514	8.98E-05	0.0025355	3.00E-04	2.5906225	0.6819429
hsa-miR-150	0.253107259	6.02E-05	0.0019264	3.00E-04	20.454355	5.1771457
<u>hsa-miR-34b</u>	0.173349588	3.00E-07	1.92E-05	< 1e-07	3.0396284	0.5269183
<u>hsa-miR-34c</u>	0.126005664	< 1e-07	< 1e-07	< 1e-07	1.614109	0.2033869

Notes:

Normalization: Normalize (center) each array using lowess smoother.

Exclude a gene under any of the following conditions: <20% of expression data have \geq 1.5-fold change in either direction from gene's median value. Percent of data missing or filtered out exceeds 50%.

*Global test: probability of getting at least 69 genes significant by chance (at the 0.005 level).

FDR, False discovery rate.

Tumor suppressor miRNAs are highlighted with colors.

	Clinical tissue samples				
	NP (n=32)	NPC (n=82)	P-value		
Age, years	43.18	54.65	0.076*		
Gender, male	18 (65.63%)	54 (65.85%)	0.390 [§]		
T stage					
T1		18 (21.95%)			
T2		22 (26.83%)			
Т3		20 (24.39%)			
T4		22 (26.83%)			
N stage					
N0		7 (8.54%)			
N1		26 (31.71%)			
N2		33 (40.24%)			
N3		16 (19.51%)			
M stage					
M0		77 (93.90%)			
M1		5 (6.10%)			
M2		0			
M3		0			
TNM stage					
I		15 (18.29%)			
II		22 (26.83%)			
III		25 (30.49%)			
IV		20 (24.39%)			

Supplementary Table 3. A cohort of clinical samples used for the association analysis with pathological and clinical data

*Independent t test. [§]Chi-square test.

Gene symbol	Fold-change	P-value	Pathways*
PTEN	0.422484	8.35E-18	5
NRAS	0.470386	6.71E-23	2
CHUK	0.411017	1.31E-07	3
SOS2	0.495144	7.63E-11	3
CYCS	0.415773	1.51E-51	3
BAX	0.433427	0.000129	1
TNFRSF10D	0.257243	1.05E-06	1
CDK1	0.33074	8.87E-09	1
ROCK1	0.408148	6.83E-13	1
ATR	0.34964	4.08E-23	1
SERPINB5	0.418178	4.31E-35	1
HSP90AA1	0.081898	5.94E-32	2
BIRC3	0.227606	3.61E-05	3
BIRC2	0.234874	1.05E-23	3
MGST2	0.260917	1.02E-27	2
EGLN3	0.26978	2.00E-28	1
MSH2	0.336967	6.10E-26	1
CUL2	0.403895	4.71E-08	1
SP100	0.372665	2.11E-06	1
TPR	0.446203	1.88E-40	1
CCNA2	0.457381	9.58E-28	1
MYLK3	0.220494	1.84E-06	1
PPP1CC	0.462373	9.43E-79	1

Supplementary Table 4. Candidate genes and their associated pathways

*Metastasis/invasion-associated pathways in which candidate genes were involved. These pathways are p53 signaling pathway, pathway in cancer, prostate cancer, focal adhesion and small cell lung cancer.

Gene	Primer	Sequence	
PTEN	Forward	5'-TGCAGAAGAAGCCCCGCCA-3'	
	Reverse	5'-ACGCCTTCAAGTCTTTCTGCAGG-3'	
mut1*	Forward	5'-AACGCAAGGTTTCCGAAGGGTTTTGC-3'	
	Reverse	5'-CAACTGCAAACTTATCTGTTGCCAC-3'	
mut2 [§]	Forward	5'-CGAAGAAAATTCAGATGCTGTTAG-3'	
	Reverse	5'-TGGCCTTGATTACACTGGAGATGG-3'	
GAPDH	Forward	5'-GCCACATCGCTCAGACACCA-3'	
	Reverse	5'-CTCAGCCTTGACGGTGCCAT-3'	

Supplementary Table 5. Primer sequences

*Mut1, PTEN 3'-UTR containing mutant EBV-miR-BART1-5p binding site; [§]Mut2, PTEN 3'-UTR containing mutant EBV-miR-BART1-3p binding site

Name of antibody	Cat. No	Company	Mol weight	Dilution (WB/IHC)
PTEN (D375) pAb	BS1305	Bioworld	54kDa	1:800/1:200
FAK phospho (pY576)	2103-1	Epitomics	125kDa	1:5000
Anti-FAK antibody	BM0503	ABZOOM	119kDa	1:1000
Anti-ERK1/2 antibody	BM0431	ABZOOM	43kDa	1:1000
pErk1 (pT202)/Erk2 (pT185)	1481-1	Epitomics	42/44kDa	1:3000/1:100
p-Shc (Tyr239/240)	2434	CST	52kDa	1:800/1:200
p-Paxillin (Y31) pAb	BS4721	Bioworld	68kDa	1:800
H/K/N-Ras (H27) pAb	BS1309	Bioworld	25kDa	1:800/1:200
p130 ^{Cas} (v404) pAb	BS1416	Bioworld	130kDa	1:800/1:200
Anti-AKT (p-Ser473)	AM1006	ABZOOM	60kDa	1:1000/1:200
E-cadherin (24E10) mAb	3195	CST	135kDa	1:500/1:100
N-Cadherin (C-term)	2019-1	Epitomics	140kDa	1:1000
Vimentin	BS1776	Bioworld	57kDa	1:500/1:100
GAPDH	P30008	Abmart	37kDa	1:1000

Supplementary Table 6. A list of antibodies used for Western blotting and IHC staining