Ana Eulalio, Eric Huntzinger, and Elisa Izaurralde

Supplementary Figure 1

Supplementary Figure 1 Different modes of miRNA-mediated gene silencing. (a) S2 cells were cotransfected with a mixture of three plasmids: plasmids expressing primary miRNAs (miR-9b or miR-279) or the corresponding empty vector (–), a plasmid expressing *Renilla* luciferase (R-Luc), and increasing amounts of the F-Luc–nerfin-1 reporter as indicated. Firefly luciferase activity (black bars) and mRNA levels (green bars) were normalized to that of the *Renilla* luciferase transfection control. For each condition, the normalized values of F-Luc activity and mRNA levels were set to 100 in cells transfected with the empty vector (*i.e.* in the absence of the miRNAs, only shown for the lowest amount of reporter). (**b,c**) S2 cells were co-transfected with a mixture of three plasmids: the F-Luc–CG11206 reporter, plasmids expressing primary miRNAs (colored bars) or the corresponding empty vector (gray bars), and a plasmid expressing *Renilla* luciferase (R-Luc). Cells were treated with cycloheximide (CHX, 10 µg/ml; SIGMA) or hippuristanol (HP, in DMSO; 4 µM final concentration) 7 hours before isolating the RNA samples. In panel (**c**) control cells were treated with corresponding amounts of DMSO. Firefly luciferase mRNA levels were normalized to that of the *Renilla* luciferase. The normalized values were set to 100 in the absence of miRNAs (gray bars). Mean values ± standard deviations from three independent experiments are shown.

Supplementary Fig. 2.

Supplementary Figure 2 Depleting eIF6 does not prevent miRNA-mediated mRNA decay. (**a**–**d**) S2 cells were co-transfected with a mixture of three plasmids: the F-Luc–par-6 reporter, a plasmid expressing primary miR-1 (+) or the corresponding empty vector (–); and a plasmid expressing *Renilla* luciferase (R-Luc). In panel (**c**) cells were treated with the indicated dsRNAs on days 0 and 4, and transfected on day 6. Samples were analyzed as described in Figure 1. (**b**,**d**) Northern blot analysis of representative RNA samples isolated from S2 cells shown in panels (**a**,**c**), respectively.

Supplementary Fig. 3.

Supplementary Figure 3 Depletion of eIF6 reduces 80S ribosome and polysome formation. (**a**–**d**) S2 cells were treated with a dsRNA targeting endogenous eIF6 on day 0 and day 4. GFP dsRNA served as a negative control. (**a**–**c**) On day 9 cells were lysed and fractionated on 15%–45% sucrose gradients. As a control, extracts from untreated cells were also analyzed. The absorbancy at 254 nm of each fraction was quantitated and normalized to the total intensity across all fractions. (**d**) An aliquot of cells collected on day 9 was pulse labeled with [³⁵S]methionine for 1 h. Total cell extracts were analyzed by SDS-PAGE followed by fluorography.

Supplementary Fig. 4.

Supplementary Figure 4 Depleting eIF6 does not prevent miRNA-mediated gene silencing. (**a**,**b**) S2 cells were co-transfected with a mixture of three plasmids: the indicated F-Luc reporters, a plasmid expressing primary miRNAs or the corresponding empty vector (–); and a third plasmid expressing *Renilla* luciferase (R-Luc). One day after transfection cells were treated with the indicated dsRNAs. Firefly and *Renilla* luciferase activities were measured 2, 3, 4 and 5 days after addition of dsRNAs. Firefly luciferase activity was normalized to that of the *Renilla* luciferase transfection control. For each condition, the normalized values of F-Luc activity were set to 100 in cells transfected with the empty vector [(–); *i.e.* in the absence of the miRNAs].

Supplementary Fig. 5.

a Titration of *D. melanogaster* AGO1 in S2 cells

Supplementary Figure 5 Activity of *D. melanogaster* AGO1 and human AGO2 mutants in tethering assays. (a) S2 cells were transfected with the F-Luc–5BoxB or F-Luc reporters, a plasmid expressing *Renilla* luciferase, and decreasing amounts of plasmids expressing the λ N-HA-peptide (Control) or λ N-HA fusions of wild-type AGO1 or AGO1 mutants as indicated. Firefly luciferase activity was normalized to that of the *Renilla* and set to 100 in cells expressing the λ N-HA-peptide alone for each condition (Control bars). (b) A similar experiment as described in panel (a) was repeated with wild-type or mutated human λ N-HA-AGO2 protein in S2 cells. (c) HeLa cells were transfected with the R-Luc-5BoxB or R-Luc reporters described by Pillai *et al.* (2004), a plasmid expressing firefly luciferase, and a plasmid expressing GFP. Vectors expressing the λ N-HA-peptide (Control) or λ N-HA fusions of wild-type aGO2 or AGO2 mutants were included in the transfection mixtures as indicated. For each reporter, *Renilla* luciferase activity was normalized to that of the firefly and set to 100 in cells expressing the λ N-HA-peptide alone.

Supplementary Fig. 6.

Supplementary Figure 6 GW182 represses translation of bound mRNAs. S2 cells were treated with GFP or NOT1 dsRNAs on days 0 and 4. On day 6 cells were transfected with the F-Luc–5BoxB reporter, a plasmid expressing *Renilla* luciferase, and 5 ng of vectors expressing the λ N-HA-peptide or λ N-HA-GW182. F-Luc activities (black bars) and mRNA levels (gray bars) were quantitated and normalized to that of the *Renilla* control. In cells expressing the λ N-HA-peptide alone, these values were set to 100 for each knockdown.

Supplementary Table 1 - List of constructs and oligonucleotides used in this study.

Contruct	Plasmid	Cloning sites
F-Luc-nerfin-1	pJLuc	gift from Steve Cohen
miR-9b	pAc5.1A	EcoRI-Xhol
miR-279	pAc5.1A	EcoRI-Xhol
F-Luc-CG11206	pAc5.1B-F-Luc	EcoRI-Sall
miR-12	pAc5.1A	EcoRI-Xhol
F-Luc-par6	pJLuc	gift from Steve Cohen
miR-1	pAc5.1A	EcoRI-Xhol
Dm AGO1	pAc5.1B-λN-HA	Rehwinkel et al. (18)
Dm AGO1 F594V	pAc5.1B-λN-HA	
Dm AGO1 F629V	pAc5.1B-λN-HA	
Dm AGO1 F2V2	pAc5.1B-λN-HA	
olgos used to generate AGO1 siRNA resistant version		
Human AGO2	pAc5.1B-λN-HA	EcoRI-NotI
Human AGO2-F470V	pAc5.1B-λN-HA	EcoRI-Notl
Human AGO2-F505V	pAc5.1B-λN-HA	EcoRI-NotI
Human AGO2-F2V2	pAc5.1B-λN-HA	EcoRI-Notl
GW182	pAc5.1B-λN-HA	HindIIII-Notl
GW182(1-592)	pAc5.1B-λN-HA	HindIII-EcoV
Renilla-V5	pAc5.1A-R-Luc-V5	Kpnl-Xhol
Renilla	pAc5.1A-R-Luc	Kpnl-Xhol
Human AGO2	pCI-Neo	gift from Witec Filipowicz
Human AGO2-F470V	pCI-Neo	
Human AGO2-F505V	pCI-Neo	
Human AGO2-F2V2	pCI-Neo	

5' CGGAATTCCAGGTCAATCGTCAGAAACAATTTAAG 5' CCGGAATTCAAGAGACGCCGCTTATCAACGCTA 5' CCGGAATTCGAGTGAAAAGCTAGCTAGATAGGA 5' CGGAATTCTATTTTCATTTTCGTTTTCCCTTAAATTTG 5' CCGGAATTCCCCCTTTTTCCCTGCAATTACCGT 5' GGGAATTCTATGTACCCATACGATGTTCCAGATTACGCTATGTCCACGGAGCGTGAGCTGGC mutagenesis oligos : 5' CGAGGATGCGCTGCGTAATGTCACCCAGCAGCTGCAGAAGATC mutagenesis oligo: 5' CGGATCAAGTGGAACCCATGGTCCGTTACCTGAAGATCACC mutagenesis oligos: same as for F594V and F629V 5' CCGATTCGCAGCGCGTCAAGTTCACCAAAGAAATTAAAGGCCTGAAGATCGAGATCACCCACTGCGG 5' CGGAATTCTATGTACTCGGGAGCCG mutagenesis oligos: 5' CACGGAAGTCCATCTGAAGTCCGTCACAGAGCAGCTCAGAAAGATC mutagenesis oligos: 5' GCGGACAGCGTGGAGCCCATGGTCCGGCACCTGAAGAACACGTATG mutageneis oligos: same as for F470V and F505V 5' CCCAAGCTTGATGGCTTACCCATACGATGTTCCAGATTACGCTATGCGTGAAGCCCTTTTTTCCC same as GW182 5' CGGGGTACCAACATGACTTCGAAAGTTTATGA 5' CGGGGTACCAACATGACTTCGAAAGTTTATGA

mutants generated using the same oligonucleotides as above

5' oligos

3' oligos

5' CCGCTCGAGAGACGCTGCCTCTTAGCCTTTGGCGAG

5' CCGCTCGAGCTCTTTTGTGCACTCGAACAGGTG 5' ACGCGTCGACAGAGTTTTGATCATGGGTTTATTC 5' CCGCTCGAGCTGGCCATTCGCCTCCTTTAGGCTCTCCAC 5' CCGCTCGAGATTTAATGCCTGTGTGGAATGGTA 5' CCGCTCGAGTTAGGCAAAGTACATGACCTTCTTGG 5' GATCTTCTGCAGCTGCTGGGTGACATTACGCAGCGCATCCTCG 5' GGTGATCTTCAGGTAACGGACCATGGGTTCCACTTGATCCG same as F594V and F629V 5' CCGCAGTGGGTGATCTCGATCTTCAGGCCTTTAATTTCTTTGGTGAACTTGACGCGCTGCGAATCGG 5' TTCCTTTTTTGCGGCCGCCTCAAGCAAAGTACATGGTG 5' GATCTTTCTGAGCTGCTCTGTGACGGACTTCAGATGGACTTCCGTG 5' CATACGTGTTCTTCAGGTGCCGGAcCATGGGCTCCACGCTGTCCGC same as F470V and F505V 5' ATAAGAATGCGGCCGCTTAATCATCAACAATGGAATAAACGAG 5' CTCCCAAGCTTGATGGATGGTTGGCGTCGACATG 5' CCCTCGAGTTGTTCATTTTTGAGAACTCGCTC 5' CCCTCGAGTCATTGTTCATTTTTGAGAACTCGCTC

T7 oligonucleotides for dsRNA synthesis GEP

- AGO1 GW182
- elF6 NOT1

5' TTAATACGACTCACTATAGGGAGGATGGTGAGCAAGGGCGAGGAG 5' TTAATACGACTCACTATAGGGAGACATTAAAAAGCTGACCGATATGC 5' TTAATACGACTCACTATAGGGAGGAGGAGGTAACGGGTCAAGCAATATA 5' TAATACGACTCACTATAGGGCCACGTAAATACAGAGAAAATG 5' TAATACGACTCACTATAGGGAGAGCTCACTCAGCATCGCCATCG

5' TTAATACGACTCACTATAGGGAGGCTTGTACAGCTCGTCCATGCCG 5' TTAATACGACTCACTATAGGGAGATTGACGTTGATCTTCAGACACAG 5' TTAATACGACTCACTATAGGGAGGCCGGCTATTCCTATACCTCCCGTT 5' TAATACGACTCACTATAGGGCCCTGGTTGCTCAGCACGGCGT 5' TAATACGACTCACTATAGGGAGAGTAGGCGAAGGCCGACACAAT