Biomass Carbon of Tropical Land Cover Types (t C / ha)												
		Americas		Sub	-Saharan A	frica	S	outheast As	ia²		Pan-Tropica	
Crop Type	Humid	Seasonal	Dry	Humid	Seasonal	Dry	Humid	Seasonal	Dry	Humid	Seasonal	Dry
Forests	197	132	130	204	156	76	229	109	82	210	132	96
Disturbed Forests ³	100	68	67	104	80	40	116	56	43	107	68	50
Shrubland / Sayanna	64	43	42	67	51	24	75	35	26	69	43	31
Grassland	8	8	4	8	8	4	8	8	4	8	8	4
Degraded Land ⁴	1	1	1	1	1	1	1	1	1	1	1	1
Annual Cropland⁵	6	7	7	4	3	5	5	5	5	5	5	5
Sugarcane	11	14	15	5	9	14	13	13	14	10	12	14
Dil Palm ⁷	71	79	72	17	23	45	88	77	77	58	60	65
Coconut ⁸	95	93	93	68	41	29	67	66	74	77	66	65

Table S1. Estimates of carbon stocks for tropical landscapes. All values include carbon stored in aboveground and belowground living plant biomass $(t C / ha)^{1, 2}$

- ^{1.} Humid, seasonal and dry ecoregions were defined according to the FAO Global Ecoflorisitic zones. The dry ecoregions includes both dry tropical forests and shrublands. Mountain ecoregions were included as humid tropics in Southeast Asia and dry tropics in Africa and Latin America. All biomass carbon values estimated using IPCC Tier-1 methods (Eggelston *et al* 2006, Gibbs *et al* 2007). Estimates include litter and dead wood carbon stocks for forests (Eggelston *et al* 2006).
- ^{2.} Used insular Southeast Asia value for humid forests and continental Southeast Asia values for seasonal and dry forests based on patterns of forest distribution.
- ^{3.} Forest carbon values were reduced by 50% to estimate disturbed forest biomass (i.e. affected by shifting cultivation, logging, fragmentation, fire etc.)
- ^{4.} Assumed that degraded lands have very little living biomass.
- ^{5.} To estimate biomass for annual crops, we assigned 5 t C / ha to the mean tropical yield for annual crops and then scaled according to regional yields. Ratios of average pan-tropical yield / regional yields (0.85, 0.73, 0.76 for Americas, 1.41, 1.45, 1.11 for Africa, and 1.01, 0.99, 1.10 for Asia).

- ⁶ Assumed sugarcane stored 14 t C / ha in seasonal Americas. Scaled across the tropics using ratios of Africa and Southeast Asia / seasonal Americas yield data (0.82 and 1.07 for humid and dry Americas and 0.33, 0.67 and 0.97 for humid, seasonal and dry Africa, and 0.95, 0.93, and 0.98 for humid, seasonal and dry Southeast Asia, respectively
- ^{7.} Oil palm value based on average IPCC GPG (Eggelston *et al* 2006) value for humid Southeast Asia, we used 0.47 for C fraction and then added in root biomass according to IPCC. Scaled across tropics using ratios of Africa and Americas / humid Southeast Asia yield data (0.81, 0.91, 0.82 for humid, seasonal and dry Americas and 0.19, 0.26 and 0.51 for humid, seasonal and dry Africa, and 0.87 and 0.88 for seasonal and dry Southeast Asia, respectively).
- ^{8.} Coconut value based on best guess for humid Southeast Asia, we used 0.47 for C fraction and then added in root biomass according to IPCC (Eggelston *et al* 2006). Scaled using ratios of Africa and Americas / humid Southeast Asia yield data (1.41, 1.37, 1.38 for humid, seasonal and dry Americas and 1.0, 0.61 and 0.44 for humid, seasonal and dry Africa, and 0.98 and 1.10 for seasonal and dry Southeast Asia, respectively).

Table S2. Estimates of organic soil carbon stocks for tropical landscapes. Values down to 1m depth $(t C / ha)^{1,2}$

Organic soil carbon stocks for tropical land sources (t C / ha)												
		Americas		Sub-Saharan Africa			Southeast Asia			Pan-tropical		
Crop Type	Humid	Seasonal	Dry	Humid	Seasonal	Dry	Humid	Seasonal	Dry	Humid	Seasonal	Dry
Forest / Disturbed Forest	77	76	67	77	67	60	62	73	73	72	72	67
Shrubland /Savanna / Grassland	45	45	45	41	41	41	80	80	80	55	59	59

- Average soil carbon stock estimates for each FAO ecoregions and continent derived from Batjes (2006). Values over 500 t C / ha were excluded from Southeast Asia to estimate non-peat carbon stocks.
- Conversion of natural ecosystems to cropland emits 25% of soil carbon while conversion to plantations emits 10% (Murty *et al* 2002, Guo and Gifford 2002, Houghton and Goodale 2004). Peat soils, not included in the table, are assumed to emit ~1600 t C / ha over 120 year period (Hooijer *et al* 2006, Page *et al* 2002).

Table S3. Conversion factors used to convert estimates of crop yields into potential volume of biodiesel or ethanol.¹

Biofuels Convers	ion Factors
Biodiesel Crops	liters/ton
Oil Palm	223
Soybean	183
Coconut	130
Groundnut	309
Castor	393
Ethanol Crops	liters/ton
Corn	410
Sugarcane	81
Wheat	389
Cassava	180
Rice	430

¹Biodiesel crop yields were first converted to oils using the average oil content of the different oilseed crops, and then converted to liters by dividing by the crop oil densities. Volumes of raw vegetable oils were reduced by a processing ratio of 0.96 to account for losses in converting to food-grade vegetable oil and then by a biodiesel refining ratio of 0.98 to account for the conversion efficiency of processed vegetable oil to refined biodiesel (NREL 2004). The processing of ethanol, which can come from grains, sugars and starches, is more crop specific than biodiesel. As such, pre-calculated conversion factors (in liters/tons) were compiled from a variety of sources (e.g., Shapouri and Salassi 2004, Nigam and Agrawal 2004).

Table S4. Mean potential biofuel yields across the tropics and world circa2000 (L / ha)¹

				Biofue	l Crop `	Yields	(Liters	/ ha)					
		America			Africa		Asia		Pan-Tropical			Global	
Crop Type	Humid	Seasonal	Dry	Humid	Seasonal	Dry	Humid	Seasonal	Dry	Humid	Seasonal	Dry	90th %
Maize	836	1,167	865	469	500	563	936	930	7:50	770	912	707	3,729
Sugarcane	4,531	5,529	5,892	1,846	3,683	5,372	5,240	5,138	5,408	4,644	5,390	5,510	7,752
Wheat	616	762	807	674	638	662	676	894	1,042	657	869	1,015	1,913
Rice	1,345	1,293	2,026	654	727	740	1,535	1,370	1,261	1,461	1,329	1,257	2,819
Cassaya	2,285	2,223	1,835	1,698	1,437	1,379	2,445	1,972	3,066	1,930	1,651	2,016	2,965
Oil Palm	3,249	3,643	3,310	757	1,062	2,044	4,013	3,511	3,530	2,882	1,690	3,225	4,507
Castor	398	416	202	116	126	237	195	180	401	232	245	367	699
Soybean	490	448	425	149	141	241	221	252	178	369	432	221	554
Coconut	864	839	846	613	370	267	611	598	669	620	602	622	746
Groundnut	366	516	461	263	281	248	501	420	313	394	319	287	962

¹Area weighted mean crop yields derived from Monfreda *et al* (2008) across different tropical regions and converted to potential ethanol and biodiesel yields using conversion factors in Table S3. We calculated the area-weighted 90th percentile yields for each crop by first sorting all of the global cropland data according to yield and then aggregating the area cultivated until the top 10th percent was reached – this was done to ensure small agricultural plots with lower than normal yields would not skew the results.

Table S5a: Ecosystem Carbon Payback Time (in years) for biofuelsproduced from different tropical land sources in tropical Latin America.

Note that this table provides more detailed information for each ecoregion and continent combination, rather than averaged across all continents as depicted in Figure 3.

Latin America - Humid Tropics

Crop Type	Forests	Dist. Forests	Woody Sav.	Grassland	Degraded	Annual Crops
Maize	549	300	188	41	0	0
Sugarcane	100	54	33	6	0	0
Wheat	746		255	56	0	0
Rice	342	187	117	26	0	0
Cassava	201	110	69	15	0	0
Palm	77	33	15	0	0	0
Castor	794	434	271	60	0	0
Soybean	645		220	48	0	0
Coconut	269	103	36	0	0	0
Groundnut	864	473	295	65	0	0

Immediate
1-10 Years
11-25 Years
26-50 Years
51-100 Years
101-200 Years
201-300 Years
> 301 Years

Latin America - Seasonal Tropics

Сгор Туре	Forests	Dist. Forests	Woody Sav.	Grassland	Degraded	Annual Crops
Maize	272	154	93	29	0	0
Sugarcane	56	31	18	5	0	0
Wheat	416	235	143	44	0	0
Rice	245	139	84	26	0	0
Cassava	143	81	49	15	0	0
Palm	41	14	3	0	0	0
Castor	526	297	181	55	0	0
Soybean	488	276	168	51	0	0
Coconut	164	51	2	0	0	0
Groundnut	423	239	146	44	0	0

Latin America - Dry

Сгор Туре	Forests	Dist. Forests	Woody Sav.	Grassland	Degraded	Annual Crops
Maize	357	200	125	30	0	0
Sugarcane	51	28	17	3	0	0
Wheat	383	214	134	32	0	0
Rice	152	85	53	13	0	0
Cassava	168	94	59	14	0	0
Palm	45	17	5	0	0	0
Castor	1051			89	0	0
Soybean	500	280	175	42	0	0
Coconut	158	47	0	0	0	0
Groundnut	461	258	161	39	0	0

1-10 Years 11-25 Years 26-50 Years 51-100 Years 101-200 Years 201-300 Years	
11-25 Years 26-50 Years 51-100 Years 101-200 Years 201-300 Years	Immediate
26-50 Years 51-100 Years 101-200 Years 201-300 Years	1-10 Years
51-100 Years 101-200 Years 201-300 Years	11-25 Years
101-200 Years 201-300 Years	26-50 Years
201-300 Years	51-100 Years
	101-200 Years
> 301 Years	201-300 Years
	> 301 Years

Table S5b: Ecosystem Carbon Payback Time (in years) for biofuels

produced from different land sources in tropical Africa. Note that this table

provides more detailed information for each ecoregion and continent

combination, rather than averaged across all continents as depicted in Figure 3.

Africa - Humid Tropics

Crop Type	Forests	Dist. Forests	Woody Sav.	Grassland	Degraded	Annual Crops
Maize	1016			74	0	0
Sugarcane	258	141	87	18	0	0
Wheat	708		241	51	0	0
Rice	730	400	248	53	0	0
Cassava	281	154	95	20	0	0
Palm	399	202	123	7	0	0
Castor	2833	1552		205	0	0
Soybean	2200	1205	747	159	0	0
Coconut	430	188	90	0	0	0
Groundnut	1250	684	424	90	0	0

Africa - Seasonal Tropics

Сгор Туре	Forests	Disturbed For	Woody Sav.	Grassland	Degraded	Annual Crops
Maize	736		255	69	0	0
Sugarcane	98	54	33	8	0	0
Wheat	577		200	54	0	0
Rice	506	281	176	48	0	0
Cassava	256	142	89	24	0	0
Palm	211	105	60	0	0	0
Castor	2019			190	0	0
Soybean	1799			169	0	0
Coconut	570	265	138	0	0	0
Groundnut	902			85	0	0

Immediate
1-10 Years
11-25 Years
26-50 Years
51-100 Years
101-200 Years
201-300 Years
> 301 Years

Africa - Dry Tropics

Crop Type	Forests	Dist. Forests	Woody Sav.	Grassland	Degraded	Annual Crops
Maize	338	200	122	46	0	0
Sugarcane	35	21	13	5	0	0
Wheat	288	170	104	39	0	0
Rice	257	152	93	35	0	0
Cassava	138	82	50	19	0	0
Palm	40	14	1	-13	0	0
Castor	553	328	200	75	0	0
Soybean	543	322	197	74	0	0
Coconut	307	106	9	-102	0	0
Groundnut	529	313	191	72	0	0

Immediate
1-10 Years
11-25 Years
26-50 Years
51-100 Years
101-200 Years
201-300 Years
> 301 Years

Table S5c: Ecosystem Carbon Payback Time (in years) for biofuelsproduced from different land sources in tropical Southeast Asia. Note thatthis table provides more detailed information for each ecoregion and continentcombination, rather than averaged across all continents as depicted in Figure 3.

Southe	ast Asia	- Humid	Tropics				
Crop Type	Peat Forests	Forests	Dist. Forests	Woody Sav.	Grassland	Degraded	Annual Cro
Maize	4210		298	213	58	0	
Sugarcane	750	98	51	36	9	0	
Wheat	5831		412	296	80	0	
Rice	2568		181	130	35	0	
Cassava	1612	213	114	82	22	0	
Palm	661	71	29	15	0	0	
Castor	13947				192	0	
Soybean	12305				169	0	
Coconut	4365		216	120	0	0	
Groundnut	5418		383	275	75	0	

Southeast Asia - Seasonal Tropics

Crop Type	Forests	Dist. Forests	Woody Sav.	Grassland	Degraded	Annual Crops
Maize	288.7	166.9	121.8	58.2		0
Sugarcane	50.6	28.6	20.4	8.9	0	0
Wheat	300.3	173.6	126.7	60.5	0	0
Rice	196.0	113.3	82.7	39.5	0	0
Cassava	136.2	78.7	57.4	27.4	0	0
Palm	32.9	10.7	2.0	0.0	0	0
Castor	1030.0		434.6	207.6	0	0
Soybean	734.5			148.0	0	0
Coconut	206.5	76.0	25.1	0.0	0	0
Groundnut	440.4	254.7	185.8	88.8	0	0

Southeast Asia - Dry Tropics

Crop Type	Forests	Dist. Forests	Woody Sav.	Grassland	Degraded	Annual Crops
Maize	280.8	168.6	125.8	62.8	0	0
Sugarcane	37.2	21.6	15.6	6.9	0	0
Wheat	202.2	121.4	90.6	45.2	0	0
Rice	167.1	100.3	74.8	37.3	0	0
Cassava	68.7	41.3	30.8	15.4	0	0
Palm	21.2	4.8	-1.9	0.0	0	0
Castor	361.9	217.3	162.1	80.9	0	0
Soybean	816.2			182.4	0	0
Coconut	115.6	29.0	-6.4	0.0	0	0
Groundnut	464.0	278.7	207.9	103.7	0	0

Immediate
1-10 Years
11-25 Years
26-50 Years
51-100 Years
101-200 Years
201-300 Years
> 301 Years

Immediate
1-10 Years
11-25 Years
26-50 Years
51-100 Years
101-200 Years
201-300 Years
> 301 Years