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I. ADDITIONAL METHODOLOGICAL EXPLANATIONS 

 
A. Difference between treatment of consumption and production. 

 
The Carbon Benefits Index calculates a carbon cost of different forms of biomass 

consumption and a carbon benefit of different forms of biomass production. 
Consumption of biomass is a cost because it comes at the expense of the opportunity to 
store carbon in vegetation and soils and therefore keep it away from the atmosphere. 
Production of any form of biomass likely generates carbon benefit because it can 
directly generate carbon storage, because it can be used to displace fossil fuel 
emissions, or because it satisfies consumptive demands for food or fiber and therefore 
frees up other land to focus on carbon storage while the world still meets the same level 
of consumptive demands.  

 
Isolating the specific consequences of production decisions and consumption 

decisions requires an assumption that each decision not influence the other. Thus, a 
change in consumption by one person results in an absolute change in global 
consumption by that amount. By contrast, a change in production on one hectare of 
land of a crop or animal product does not alter total consumption of the quantity of crops 
or animal products consumed, and therefore produced, but only alters where and how 
they are produced. The quantity of carbon stored in vegetation and soils is a kind of 
residual, and it adjusts based on these other consumption and production decisions. In 
the real world, through price effects, changes in production may affect quantities 
consumed and changes in consumption may affect production systems, but these 
effects are not only uncertain, they could also in theory be countermanded by tax and 
other public policies.  As discussed in the main text, they also factor in changes not just 
in the consumption or the production on a single hectare but changes by consumption 
or production by other people, sometimes on other land, and at other’s people’s 
expense.  Our separation of consumption and production these effects makes it 
possible to evaluate the efficiency of consumption and production decisions in and of 
themselves. 

 
Our assumption of constant consumption applies to food but not to biofuels. We do 

not apply it to biofuels in part because biofuel GHG benefits can be directly assessed 
and in part because we assume that decisions to use biofuels are heavily influenced by 
their estimated greenhouse gas consequences and so are not automatically replaced 
elsewhere if one user reduces use. If someone wishes to assume a fixed global 
demand for ethanol, however, the Index could be used to assess the relative efficiency 
of producing the ethanol in one location versus the global average.  

 
 
B. Why we base carbon benefits on changes in carbon storage not absolute 

levels of carbon storage 
 
 Our carbon benefits formula for production decisions estimates the benefits of 
carbon storage (positive or negative) on the hectare of land analyzed only as 
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annualized, time-discounted changes in carbon storage on that land over time. If 
management of a hectare will not change existing carbon storage, then carbon storage 
does not alter its benefits. 
 

Conceptually, it could make sense to count existing carbon storage as a benefit 
as well as changes in carbon storage. However, we do not count existing carbon 
storage because the purpose of the index is to compare one use or management of 
land with an alternative use, and in that comparison, existing carbon storage cancels 
out. For current land use 𝑙𝑚1 the change in carbon storage ∆𝐶𝑆𝑙𝑚1

 at time 𝑡2 equals 

carbon storage at that time 𝐶𝑆𝑙𝑚1
(𝑡2) minus the carbon storage at the initial time 

𝐶𝑆𝑙𝑚1
(𝑡1). For a change in management or use from 𝑙𝑚1 to 𝑙𝑚2, the change in carbon 

storage equals later carbon storage under new management 𝐶𝑆𝑙𝑚2
(𝑡2) minus initial 

carbon storage under original management 𝐶𝑆𝑙𝑚1
(𝑡1). Because carbon storage at time 

𝑡1 is the same for both existing management and changed management, i.e., they both 
start with today’s carbon stock, the existing carbon stocks cancel out and the only 
difference is the carbon storage at time 𝑡2 beteen 𝑙𝑚2 and 𝑙𝑚1. 
 
 It would be possible mathematically to achieve the same result while also 
counting absolute carbon storage as a carbon benefit. However, some aspects of 
carbon storage are often unknown, such as carbon stored at depths below one meter 
although land use change is unlikely to change such carbon storage. For soil carbon, it 
is often easier to estimate changes in carbon stocks than to estimate entire existing 
carbon stocks. In addition, for some hectares with large soil storage numbers, using 
total carbon storage numbers could dwarf the benefits of other outputs as well as the 
changes in carbon storage, which would make the carbon benefit numbers less intuitive 
and useful because the purpose is to focus on changes. Finally, using total carbon 
storage would create challenges for annualizing benefits. For these practical reasons, 
we therefore use changes in carbon storage.   

 
C. Time Discounting 
 
Because carbon storage is lost quickly but crop production can continue indefinitely, 

any system for evaluating the carbon costs of land use must in some way address the 
relative costs of emissions over time. There have been several articles addressing how 
to deal with emissions from land use change, typically in the biofuel context1,2. Much of 
the discussion focuses on the value of up-front versus later mitigation. In general, this 
question can be thought as a question about what is the relative value of reducing 
emissions sooner rather than later, a debate largely present in the integrated 
assessment literature, both in cost-efficiency and cost-benefit settings3–7. The basic 
value is all the damages that might be avoided if emissions are reduced sooner rather 
than later. They include not only the damages that are likely to occur in the interim, but 
also the potential for incurring, long-term persistent or permanent damages due to 
short-term emissions, which could be permanently avoided by mitigation in the short-
term, but which could not be avoided by mitigation only in the longer term.  
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The option value to adjust the speed of overall mitigation as information becomes 
available is another source of value for early versus late mitigation8. Other important 
factors include the investment value of money due to overall economic growth, and the 
benefits of reducing overall mitigation costs, which often occur through the learning and 
incentives induced by earlier mitigation9. Few papers address all of these 
considerations. Implicit in political commitments to hold warming to a 2 degree threshold 
is a commitment to early mitigation because later mitigation will not prevent this 
threshold from being exceeded10, which explains proposals for large-scale mitigation by 
2050. 

 
In our base case, we choose a period of 100 years, a 4% discount rate based on the 

real return on investment11, and a constant cost of a ton of emissions over time. In 
economic terms, this approach in effect assumes a constant, real cost of emissions. 
Economic climate models can estimate widely different time-dependent changes in the 
carbon costs of emissions depending on overall emissions trajectory selected, expected 
costs of mitigation (in optimal emissions trajectories), whether early mitigation is likely to 
reduce costs of future mitigation5,12, whether and how they factor in the risk of crossing 
thresholds4,6,13–15. Another factor concerns estimates of the long-term consequences of 
early emissions and whether they factor in recent science estimating that the warming 
consequences of early emissions will persist for long-times, notwithstanding traditional 
estimates of molecular decay or uptake, because of carbon feedback effects, and the 
persistent effects of increasing ocean temperatures16–18. Simple integrated assessment 
models propose increasing carbon tax profiles19, however the assumption of a constant 
carbon cost is more consistent with these more recent estimates of constant warming 
effects of emissions regardless of when they occur along with a desire to avoid crossing 
warming thresholds. 

 
Because the choice of a discount rate and a carbon value trajectory is inherently a 

question of policy, we also select a 4% discount rate for our central scenario because it 
is roughly consistent with U.S. bioenergy policies. To date, those policies in Europe and 
the US. have amortized emissions from land use change for 20-30 years against 
benefits in fossil fuel displacement from bioenergy that occur in those periods20. 
Amortizing emissions from land clearing over 25 years and applying those emissions to 
a crop or biofuel indefinitely is equivalent to assigning 4% of the emissions indefinitely, 
or alternatively to applying a 4% interest (or discount) rate to a one-time emission of that 
amount in the initial year. When further accounting for the time over which carbon 
decays, which we calculate as described above, rather than treating all emissions as 
occurring in year one, we find that in general our use of a 4% discount rate generates 
similar results to 33-year amortization, which is close to the 30-year -year amortization 
period used by U.S. biofuel policies. 

 
 In addition to results using 4%, we also show results for COCs using other time 

discount rates in Supplemental Table 3. The carbon calculator enables a user to specify 
different discount rates. 
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D.  Dynamic Global Vegetation Models 
 

We provide further information about the LPJmL dynamic global vegetation model 
(DGVM) used to estimate native carbon stocks and the NPP of native vegetation. 
LPJmL is a global grid-based dynamic vegetation model21,22, which builds on process-
based representations of key ecosystem processes such as photosynthesis23, plant and 
soil respiration, carbon allocation, evapotranspiration and phenology in 9 generic plant 
functional types (e.g. temperate broadleaved deciduous tree, tropical broadleaved 
evergreen tree) to represent natural land ecosystems at the level of biomes. The latest 
updates of the model include a permafrost module and a new hydrology scheme24. 
Competition between different plant functional types for light, space, and water 
determines vegetation composition within a grid cell. Establishment and mortality of 
vegetation depend on climatic conditions and plant density. Fires can occur and are 
more likely under dry conditions and higher fuel loads (i.e. the amount of combustible 
materials).  

 
LPJmL is driven by monthly fields of temperature, precipitation, cloud cover and 

number of wet days which are disaggregated according to Gerten et al.25. Additional 
inputs include information on soil properties and annual atmospheric CO2 
concentrations. Here we used observation-based monthly temperature and cloud cover 
time series provided by the Climatic Research Unit (CRU TS version 3.21)*, which 
provides data from 1901 to 2012 (refs. 26,27). These were combined with monthly 
gridded precipitation data based on the Global Precipitation Climatology Centre (GPCC) 
Full Data Reanalysis Version 6.0† covering the years 1901 to 2010 (refs. 28,29). We 
applied the CRU methodology to derive the corresponding number of days with rain per 
month required to distribute monthly precipitation within months30,31. For the years up to 
1958 we used atmospheric CO2 concentrations based on ice-core data32 from the 
Scripps CO2 program‡ and direct observations from the Mauna Loa Observatory33 for 

later years from the Global Greenhouse Gas Reference Network§. Individual processes 

in LPJmL have been validated extensively before, e.g. Sitch et al.21,34 for carbon cycling 
and plant geography of the natural vegetation, Schaphoff et al.24 for permafrost, river 
flow, carbon and water fluxes. The model has also been successfully evaluated against 
various observational data, such as net primary production35, vegetation activity 
measured by leaf area index36, and pan-tropical forest carbon stocks37. 
 

We originally intended to use a range of DGVMs to simulate vegetation and soil 
carbon stocks of potential natural vegetation because of the substantial uncertainties in 
underlying databases used and in the biophysical processes that drive these models. In 
addition to LPJmL we analyzed data from three other DGVMs available through the 
ISIMIP data archive (https://www.isimip.org): HYBRID, JEDI, and SDGVM. When we 
analyzed the additional models used to generate native carbon stocks, however, we 

                                                      
* Available at: https://crudata.uea.ac.uk/cru/data/hrg/ 
† Available at: ftp://ftp.dwd.de/pub/data/gpcc/html/fulldata_v6_doi_download.html 
‡ Available at: http://scrippsco2.ucsd.edu/data/atmospheric_co2.html 
§ Available at: https://esrl.noaa.gov/gmd/ccgg/trends/ 

https://www.isimip.org)/
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found not only wide differences in model results but also larger discrepancies overall 
between the carbon stock estimates of these other DGVMs and average carbon stocks 
estimates at the biome level reported in the literature38–42. Results for above- and 
belowground vegetation and soil carbon stocks are shown in Supplementary Figure 1. 

 
Vegetation models must attempt to simulate a wide variety of biogeochemical and 

biophysical processes over time in estimating gains in carbon stocks. Because of the 
complexity and uncertainty of these processes, we believe DVGM carbon stock results 
should be considered less reliable than empirically measured carbon stock numbers. 
Unfortunately, biome carbon stocks cover too large an area to account for differences in 
the areas used by different crops.  For example, all or most of the U.S. grasslands are 
typically treated as a single biome even though they encompass areas with widely 
different rainfall patterns and temperatures. Because of these differences, wheat is 
typically grown in cooler and drier areas more than in the wetter, warmer areas devoted 
to maize and soybeans. To reflect these differences, we believe the best system is a 
hybrid between biome estimates and DVGMs, which uses the biomes to set average 
values and the DVGMs to estimate spatial variation within the biome. Because other 
DVGMs do a poorer job of matching biome carbon stock estimates, we decided to use 
only LPJmL for this project.   

 
However, the same preference for measured carbon stocks applies to LPJmL as 

well. We therefore scaled LPJmL results in each pixel so that the average biome values 
of our adjusted LPJmL results match those of the reference values for the biome from 
the literature38–42. This procedure preserved the advantage of working with spatially 
explicit and heterogeneous carbon stock maps of potential natural vegetation while 
reducing modelling uncertainties at the same time. We then recalculated the average 
carbon for each crop using this “adjusted LPJmL” data.  
 

E. Accounting for Biofuel PEMs  
 
Although bioenergy by-products could possibly be factored into the carbon benefits 

analysis at different stages, consistency with the theory behind the Carbon Benefits 
Index requires that by-products used for feed should be based on the COC and global 
average PEMs of the crops and crop products they replace, e.g., maize or soybean 
cake. Their quantities and benefits should therefore be calculated as outputs of land. 
Electricity biofuel by-products, which can be generated by sugarcane of cellulosic 
ethanol, are typically factored into lifecycle calculations as a credit against the 
production emissions of the ethanol. For ease in using these other LCAs, we 
recommend using that approach for factoring electricity by-products into the production 
emissions of biofuels and do so in the examples in this paper.  

 
Many biofuel LCAs already provide a credit for by-products in their estimates of 

biofuel production emissions. When using such an LCA, a user must be careful to avoid 
double-counting by-product credits. To do this calculation correctly with such a LCA, a 
user should remove the PEM credits for the feed by-product from the LCA analysis as 
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the PEMs for the feed by-product should be counted in the overall analysis of the 
outputs of a hectare of land. 

 
F. Determination of potash and phosphorus fertilization for crops missing in 

data  
 

To determine potash and phosphorus reference application rates when not present 
in data, we first use classes of similar crops to infer application rates where possible. 
For crops with application rates still missing, a country-specific ratio of fertilizer use is 
computed using crops with known application rates, by dividing the country rate by the 
world average rate using crops with known application rates only. This rescaling factor 
is then applied to world average application rates to estimate application rates for crops 
not reported for each country. 
 

G. Sources of information in examples  
 
Land use options Brazil (Figure 1) 

 
Beef: Yield and GHG emissions data from Cardoso et al.43. The authors kindly 

provided additional back-up data for their study to make our full analysis possible. 
 
Gasoline and diesel emissions: GHG emissions data from Edwards et al.44. 
 
Sugarcane ethanol: Sugarcane yield from FAOSTAT45; ethanol yield and GHG 

emissions data from Edwards et al.44. 
 
Tropical rainforest: Although there is a large policy focus on potential reforestation of 

the Atlantic Coastal Rainforest, we found few reported studies of carbon accumulation. 
Macedo et al.46 found carbon accumulation rates in soils alone of 1.73 tC/ha/y in 
deforested and degraded soils of the Atlantic Coastal Rain Forest replanted with 
nitrogen-fixing trees, but did not measure vegetation carbon. Another study in one part 
of the region reported carbon accumulation rates in vegetation for experimental 
plantings in one location in the area ranging from roughly 2 tC/ha/y over only the first 
seven years for forests planted without any nitrogen-fixing trees to almost 7 tC/ha/y for 
plantings with 75% nitrogen-fixing trees47. More generally, our analysis of average 
carbon accumulation from tropical forest regeneration of 4.5 tC/ha/y used in the carbon 
gain method is based primarily on above-ground carbon accumulation rates analyzed in 
Poorter et al.48. This analysis included a wide range of forest types, many of which were 
far drier than the Atlantic Coastal Rain Forest. Based on these various studies we 
believe that 5 tC/ha/y is a reasonable and probably conservative estimate for tropical 
forest regeneration in this ecosystem. 

 
To illustrate the likely effects of extensive grazing on arid, native grasslands, we 

used the carbon benefits index to estimate the carbon benefits of grazing on the 
Campos in Uruguay at 5.9 tCO2/ha/y.  We also estimated that removal of grazing and 
allowing regrowth of the Campos vegetation would generate 1.5 tCO2/ha/y.   
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Crop products (Extended Data Figure 1) 
 

Iowa maize: Yield data is from USDA NASS statistics**, and GHG emissions data 

from Edwards et al.44. The marginal emissions from additional nitrogen fertilizer input in 
Iowa was based on data generated about crop yield response to additional nitrogen by 
actual farmers analyzed by the Iowa Soybean Associated reported in the 
Supplementary Material for Searchinger49 and emission factors used by this study for 
the Carbon Benefits Index. 

 
West Africa maize: Yield response data is from Fischer et al.50, and GHG emissions 

data estimated from emissions factors used for the Carbon Benefits Index. 
 
Rice: Yield data from dataset in this study (SPAM database), and GHG emissions 

data estimated from Bryngelsson et al.51. Estimates of the portion of farms in different 
countries using single or multiple, mid-season drawdowns were adjusted based on 
improved professional opinion as reflected in Adhya et al.52. 

 
Organic and conventional wheat: Yield data is statistics from Swedish Board of 

Agriculture53. GHG emissions data for conventional wheat is from Flysjö et al.54; for 
organic wheat estimated from ALBIO model in Bryngelsson et al.51 assuming manure 
input instead of nitrogen fertilizer. (The ALBIO model uses nitrous oxide emission rates 
that are the same as those used in Globagri.) 

 
Organic and conventional beans: Yield data comes from statistics of the Swedish 

Board of Agriculture53. GHG emissions data for conventional beans is from Flysjö et 
al.54; for organic beans estimated from ALBIO model in Bryngelsson et al.51 assuming 
manure input instead of nitrogen fertilizer. 
 

Different fuel sources (Figure 2) and “ILUC” 
 

Solar-cell-powered battery-electric vehicle (BEV): COC for land requires that we 
assume an alternative land use. For this calculation, we assumed solar cell modules to 
be located on clear-cut forest that would otherwise be allowed to regrow with a COC 
corresponding to 3.1 ton C/ha/y based on Lind55, which provides average carbon 
sequestration rates of Northern European coniferous forest. In fact, the carbon cost of 
the actual land use demands for solar panels is a small fraction of the emissions from 
the solar option, which is dominated by emissions from battery and solar panel 
construction. Our forest assumption is equivalent to a land use cost of 11.4 tCO2/ha/y. 
Assuming solar panels replaced land used for beans or wheat, the annual loss of 
carbon benefits would rise to 15.7-17 tCO2/ha/y. As this land use cost is such a small 
part of the costs of this alternative, we did not do overall sensitivity analyses with these 
alternatives. 

 

                                                      
** https://www.nass.usda.gov 

https://www.nass.usda.gov/
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Module efficiency of 16% is a conservative number based on Green et al.56 and 
performance ratio is from NREL57, and GHG emissions in solar panel production from 
Louwen et al.58. Energy use in BEV battery production was taken from Dunn et al.59 with 
emissions per unit energy based on Peters et al.60. Fuel economy, and battery capacity 
and specific energy are 2017 Chevrolet Bolt specifications. 
 

To account for the varying solar radiation and module output over the year, which 
necessitates backup supply in winter, as well as that energy demand in BEV battery 
production increasingly is met through solar electricity (cf. the Tesla battery plant in 
Nevada), we did a set of additional calculation variants. As to the varying solar radiation, 
we simplistically assumed that the modules deliver a surplus power output during the 
four brightest summer months but runs an equally large power deficit during the four 
darkest months. Since the CO2 intensity of European power supply generally is higher 
in winter than summer, we assumed that the CO2 intensity of winter power supply 
exceeds that of summer supply by 300 gCO2/kWh (this corresponds roughly to the 
difference between coal power and gas power in CO2 intensity). As to energy use for 
battery manufacturing, we did a low CO2 variant where we assumed all energy being 
met by solar power that carries a CO2 cost in module manufacturing of 30 gCO2/kWh 
(based on Louwen et al.58). The error bar in Fig. 2 shows the range of the permutations 
of the additional calculations described here. 

 
Biofuel powertrains: Carbon opportunity costs and emissions per unit of fuel 

estimated as described in the main text and methods. Fuel economy data based on 
Swedish Energy Agency61. 

 
As discussed in the main text, the COCs of biofuels are based on the COCs of their 

feedstock after subtracting the COCs of their by-products. In the case of vegetable oil 
feedstocks, we allocate the COCs of the oilseed crops between vegetable oil and 
oilseed meals or other by-products based on energy content. 

 
Biofuel COCs are equivalent to estimates of indirect land use change if the crop 

devoted to the biofuel were replaced at the global average carbon cost. For a proper 
comparison with California estimates of ILUC from maize-based ethanol, reported in 
Searchinger et al.20, we did not apply our time discounting but followed the California 
method of amortizing ILUC emissions over 30 years. 

 
Iowa land use options (Extended Data Figure 2) 

 
Maize-soybean: Maize data as from above (see “Crop products”). Soybean yield 

data from USDA NASS statistics62, and GHG emissions data from Edwards et al.44.  
 
Maize ethanol: Maize yield from USDA NASS; ethanol yield, DDGS yield and GHG 

emissions data from Edwards et al.44. DDGS credited as described in the methods. 
 
Grass ethanol: Grass yield from Hudiburg et al.63; ethanol yield (375 l/t DM) and 

GHG emissions from Evans et al.64 
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Human diets (Figure 3) 
 

Diet data from Bryngelsson et al.51. Refers to consumption measured at whole-sale 
level, i.e. before losses in retail, restaurants, households, etc.; hence, we factor in these 
losses, but not those that occur up-stream of whole-sale, such as harvest losses. 
Carbon opportunity costs and emissions per food unit from the global average data set 
in this study (see Extended Data Tables 1, 2). 

 
H. Sensitivities 
 
We analyzed the effect on COCs of 30% variations in global soil carbon stocks and 

20% variations in native vegetation carbon stocks as explained in the methods 
discussion. We also analyzed COCs using the carbon loss method for 2% and 6% 
discount rates. The results for COCs are set forth in Supplementary Table 3 and the 
potential implications for the examples we analyze are set forth in Supplementary 
Tables 5-9.  
 

There are other uncertainties in the analysis including precise locations and areas of 
production of individual crops, soil carbon loss rates due to cropping, global pasture 
area estimates, and feeds consumed by different livestock. There are also uncertainties 
in production emission rates. We believe there is not enough high-quality data to model 
these uncertainties both quantitatively and rigorously in a truly meaningful way. 

 
One additional uncertainty involves the biophysical effects of land cover change. 

Such biophysical effects are highly complex and debated. For example, the the 

combined effects of albedo and transpiration changes on regional temperatures due to 

changes in European forest cover are still debated – compare Alkama & Cescatti65 and 

Naudts et al.66. For an estimate of different results of U.S. forests, see Zhao & 

Jackson67. There are some uncertainties regarding direct solar reflection at the 

terrestrial surface, but the big uncertainties involve transpiration and cloud cover. 

Alkama & Cescatti65 estimate that albedo changes from deforestation are amplifying the 

consequences of increased CO2 concentrations while Bright & Jackson68 conclude the 

opposite. Transpiration also influences seasonal and diurnal fluctuations in cloud cover, 

which may also reduce climate effects. Unfortunately, the science on these issues is still 

very much evolving. 

 Second, because of the effect on cloud cover and a variety of other feedback 

effects, the effects of land use change on albedo cannot be calculated on a hectare by 

hectare basis. They can therefore not be incorporated into a global analysis of our type.  

We also do not factor biophysical changes into the carbon benefits index 

because their effects cannot be calculated on a hectare-by-hectare basis because of 

the effects of multiple hectares working together on cloud cover and a variety of other 

feedback effects.  When and if biophysical changes can be accurately analyzed with 

confidence, our analysis would still be useful for the effects of GHG emissions alone. 
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II. SUPPLEMENTARY TABLES & FIGURES  
 
Supplementary Table 1: Global percentage deviation of carbon pools simulated by DGVMs 
from reference values at the biome level based on results shown in Supplementary Figure 1. 

 LPJmL HYBRID JEDI SDGVM 

Vegetation carbon 6 78 13 -24 

Soil carbon -14 -37 -27 33 

 
 
 
Supplementary Table 2: Extent and native-vegetation carbon stocks of global permanent 
grasslands (area numbers from HYDE 3.2 (ref. 68); carbon stocks from LPJmL model). 

 
 Area  

Estimated losses of native-
vegetation plant and soil C stocks 

  Mha % of total Pg C % of total tC per ha 

Originally forested 908 32.1% 187 66.6% 206 
Originally woody savanna (30-60% tree 
cover) 300 10.6% 35 12.3% 115 

Originally savanna (10-30% tree cover) 163 5.8% 14 5.0% 86 

Originally grassland (5-10% tree cover) 1461 51.6% 46 16.2% 31 

TOTAL 2832  282  99 
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Supplementary Table 3: COC’s under sensitivity based on variations in native vegetation and 
soil carbon content and discount rates.  

Category Product Carbon opportunity cost*           

  

Base 
variant "Low" variant "High" variant 

"2% 
discounting" 

variant 
"6% discounting" 

variant 

    

kg 
CO2e/ 

kg fresh 
weight 

kg 
CO2e/ 

kg 
fresh 

weight 

% 
change 

from 
base 

kg 
CO2e/ 

kg 
fresh 

weight 

% 
change 

from 
base 

kg 
CO2e/ 

kg 
fresh 

weight 

% 
change 

from 
base 

kg 
CO2e/ 

kg fresh 
weight 

% 
change 

from 
base 

Cereals           

 Maize grains 2.1 1.6 -22% 2.6 22% 1.4 -35% 2.9 35% 

 

Rice grains 
(rough) 

2.6 2.1 -20% 3.1 20% 1.7 -35% 3.5 34% 

 Wheat grains 1.9 1.5 -23% 2.3 23% 1.2 -34% 2.5 33% 

 Barley grains 2.6 2.0 -22% 3.1 22% 1.7 -33% 3.4 32% 

 

Sorghum 
grains 

4.4 3.4 -22% 5.4 22% 2.9 -34% 5.9 33% 

 Millet grains 4.9 3.9 -20% 5.8 20% 3.4 -30% 6.3 29% 

  
         

Tubers  
         

 

Cassava 
tubers 

1.7 1.3 -20% 2.0 20% 1.1 -34% 2.2 34% 

 

White potato 
tubers 

0.6 0.5 -22% 0.76 22% 0.4 -35% 0.8 34% 

 

Sweet potato 
tubers 

1.2 1.0 -21% 1.5 21% 0.8 -35% 1.6 35% 

 Yam tubers 1.5 1.2 -20% 1.8 20% 1.0 -34% 2.0 34% 

  
         

Sugar crops          

 

Sugar cane 
stems 

0.2 0.2 -23% 0.25 23% 0.13 -34% 0.3 33% 

 

Sugar beet 
roots 

0.2 0.1 -23% 0.23 23% 0.12 -34% 0.3 33% 

  
         

Oil crops  
         

 

Soybean 
seeds 

5.9 4.6 -22% 7.1 22% 3.8 -35% 7.9 35% 

 

Oil palm fruit 
(bunches) 

2.2 1.8 -19% 2.6 19% 1.6 -28% 2.8 28% 

 Canola seeds 5.8 4.6 -21% 7.0 21% 3.9 -33% 7.7 32% 

 

Sunflower 
kernels 

4.9 3.7 -24% 6.0 24% 3.2 -36% 6.6 35% 

 

Groundnut 
pods 

6.0 4.7 -22% 7.3 22% 3.9 -35% 8.0 35% 

 Coconuts 2.8 1.9 -33% 3.8 33% 2.0 -29% 3.5 25% 

   
        

Pulses   
        

 

Common 
beans 

14.2 11.1 -22% 17.3 22% 9.0 -36% 19.3 36% 

 Chickpeas 3.7 2.7 -26% 4.7 26% 2.3 -38% 5.0 36% 

 Cowpeas 13.1 10.5 -20% 15.7 20% 9.0 -31% 17.0 30% 

 Pigeon peas 7.5 5.6 -25% 9.3 25% 4.6 -38% 10.2 37% 

 Lentils 5.9 4.5 -22% 7.2 22% 3.9 -33% 7.7 32% 
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Category Product Carbon opportunity cost*           

  

Base 
variant "Low" variant "High" variant 

"2% 
discounting" 

variant 
"6% discounting" 

variant 

    

kg 
CO2e/ 

kg fresh 
weight 

kg 
CO2e/ 

kg 
fresh 

weight 

% 
change 

from 
base 

kg 
CO2e/ 

kg 
fresh 

weight 

% 
change 

from 
base 

kg 
CO2e/ 

kg 
fresh 

weight 

% 
change 

from 
base 

kg 
CO2e/ 

kg fresh 
weight 

% 
change 

from 
base 

           

Fruits  
         

 Banana 1.1 0.9 -21% 1.4 21% 0.7 -35% 1.5 34% 

 Plantains 3.1 2.4 -21% 3.7 21% 2.0 -35% 4.2 35% 

 

Other fruit - 
temperate 

0.9 0.7 -22% 1.1 22% 0.6 -35% 1.3 35% 

 

Other fruit - 
tropical 

1.0 0.8 -21% 1.2 21% 0.7 -35% 1.3 34% 

  
         

Vegetables          

 Vegetables 0.71 0.6 -22% 0.9 22% 0.5 -35% 1.0 35% 

           
Vegetable oils          

 Soybean oil 10.8 8.4 -22% 13.2 22% 7.0 -35% 14.5 35% 

 Palm oil 9.3 7.5 -19% 11.0 19% 6.7 -28% 11.8 28% 

 Palm kernel oil 9.3 7.5 -19% 11.0 19% 6.7 -28% 11.8 28% 

 Canola oil 8.9 7.1 -21% 10.7 21% 6.0 -33% 11.7 32% 

 Sunflower oil 7.5 5.7 -24% 9.3 24% 4.8 -36% 10.1 35% 

 Groundnut oil 12.9 10.1 -22% 15.7 22% 8.3 -35% 17.3 35% 

 Maize oil 5.0 3.9 -22% 6.1 22% 3.2 -35% 6.7 35% 

 Cotton oil 3.3 2.5 -23% 4.1 23% 2.1 -36% 4.5 35% 

           
Sugars           

 

Cane white 
sugar 1.9 1.4 -23% 2.3 23% 1.2 -34% 2.5 33% 

 

Beet white 
sugar 0.9 0.7 -23% 1.1 23% 0.6 -34% 1.2 33% 

           
Meat, dairy and eggs          

 

Beef and 
buffalo meat** 144 113 -21% 175 21% 94 -35% 194 35% 

 

Sheep and 
goat meat** 186 146 -21% 225 21% 121 -35% 250 35% 

 

Cow and 
buffalo milk 6.2 4.9 -21% 7.5 21% 4.0 -35% 8.3 35% 

 

Sheep and 
goat milk 19.9 15.6 -21% 24.1 21% 12.9 -35% 26.8 35% 

 Pork^ 14.3 11.2 -22% 17.5 22% 9.3 -35% 19.3 34% 

 Poultry meat^ 10.7 8.3 -22% 13.1 22% 6.9 -35% 14.4 35% 

 Eggs 10.7 8.3 -22% 13.0 22% 6.9 -35% 14.3 35% 

           
Livestock feeds          

 Soybean meal 4.9 3.8 -22% 6.0 22% 3.2 -35% 6.6 35% 

 

Palm kernel 
meal 4.3 3.5 -19% 5.2 19% 3.1 -28% 5.5 28% 

 Canola meal 4.0 3.1 -21% 4.8 21% 2.7 -33% 5.2 32% 

 

Sunflower 
meal 3.3 2.5 -24% 4.1 24% 2.1 -36% 4.5 35% 
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Category Product Carbon opportunity cost*           

  

Base 
variant "Low" variant "High" variant 

"2% 
discounting" 

variant 
"6% discounting" 

variant 

    

kg 
CO2e/ 

kg fresh 
weight 

kg 
CO2e/ 

kg 
fresh 

weight 

% 
change 

from 
base 

kg 
CO2e/ 

kg 
fresh 

weight 

% 
change 

from 
base 

kg 
CO2e/ 

kg 
fresh 

weight 

% 
change 

from 
base 

kg 
CO2e/ 

kg fresh 
weight 

% 
change 

from 
base 

 

Groundnut 
meal 6.3 5.0 -22% 7.7 22% 4.1 -35% 8.5 35% 

           

Livestock feeds          

 Cotton meal 3.3 2.5 -23% 4.1 23% 2.1 -36% 4.5 35% 

 

DDGS (maize-
ethanol) 2.7 2.1 -22% 3.3 22% 1.7 -35% 3.6 35% 

 

DDGS (wheat-
ethanol) 2.6 2.0 -22% 3.2 22% 1.7 -35% 3.5 35% 

           
Other           

 

Coffee beans 
(green) 31.1 24.5 -21% 37.8 21% 20.0 -36% 42.1 35% 

 

Tea leaves 
(dried) 14.9 11.7 -22% 18.1 22% 9.5 -36% 20.2 36% 

 

Cocoa beans 
(dried) 40.4 31.6 -22% 49.2 22% 25.7 -36% 54.8 36% 

  Cotton lint 3.0 2.3 -23% 3.7 23% 1.9 -36% 4.0 35% 

           

Bioethanol          

 Maize ethanol 4.4 3.9 -22% 4.9 22% 3.4 -36% 5.3 36% 

 Wheat ethanol 4.3 3.9 -24% 4.8 24% 3.4 -34% 5.0 32% 

 
Sugarcane 
ethanol 

2.8 2.5 -23% 3.1 23% 2.2 -34% 3.3 33% 

           

Biodiesel          

 
Soy 
methylester 

10.6 9.4 -22% 11.8 22% 8.1 -35% 12.8 35% 

 
Palm oil 
methylester 

8.7 7.8 -19% 9.6 19% 7.0 -28% 10.1 28% 

 
Canola 
methylester 

8.9 8.0 -21% 
9.8 

 
21% 7.0 -33% 10.6 32% 

           

*Carbon "loss" method (see text). Includes organic soil emissions. 

**Average including meat from dairy animals. GE: gross energy; LHV: lower heating value 

^Refers to whole carcass weight including bone and fatty tissue 
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Supplementary Table 4: Comparison of our Biofuel COCs with Economic Modeling for the 

European Commission and the California Air Resources Board (gCO2/MJ). 

Biofuel Carbon Benefits (COCs) GLOBIOM-EU GTAP-CAL 

Wheat ethanol 140 23  
Corn ethanol 200 9 22 
Sugarcane ethanol 110 11 14 
Soybean Biodiesel 330 100 27 
Rapeseed Biodiesel 270 43 13 
Palm oil Biodiesel 260 230 71 

 

Results are solely from land use change and do not include production emissions. 

To assure consistent comparison, all results are adjusted to amortize total emissions from land use 

change over 30 years reflecting California practice. 

GLOBIOM-EU results are modeling results using the GLOBIOM model prepared for the European 

Commission and taken from ref. 69 (Fig. 3) and GTAP-CAL results are model results using the GTAP 

model used the California Air Resources Board and taken from ref. 70 (Table ES-2). 
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Supplementary Table 5: Sensitivity analysis results for data in Brazilian land use example (cf. 
Figure 1) 

Example Net GHG benefit (carbon benefit + differences in PEM and soil sequestration) 

 

Base 
variant "Low" variant "High" variant 

"2% 
discounting" 

variant 

"6% 
discounting" 

variant 
"Gain" 

method* 

  

Mg 
CO2e/ 
ha/ yr 

Mg 
CO2e/ 
ha/ yr 

% 
change 

from 
base 

Mg 
CO2e/ 
ha/ yr 

% 
change 

from 
base 

Mg 
CO2e/ 
ha/ yr 

% 
change 

from 
base 

Mg 
CO2e/ 
ha/ yr 

% 
change 

from 
base 

Mg 
CO2e/ 
ha/ yr 

% 
change 

from 
base 

Beef Brazil 
Cardoso Syst. 1 
(30 kg CW/ha/yr) 

3.4 2.5 -28% 4.4 28% 1.9 -46% 5.0 45% 4.1 21% 

Beef Brazil 
Cardoso Syst. 2 
(75 kg CW/ha/yr) 

10.0 7.7 -23% 12.3 23% 6.2 -38% 13.7 37% 11.7 17% 

Beef Brazil 
Cardoso Syst. 3 
(140 kg CW/ha/yr) 

21.0 16.7 -20% 25.2 20% 13.9 -34% 27.9 33% 24.1 15% 

Beef Brazil 
Cardoso Syst. 4 
(200 kg CW/ha/yr) 

29.9 23.7 -21% 36.1 21% 19.8 -34% 39.9 34% 34.5 15% 

Beef Brazil 
Cardoso Syst. 5 
(220 kg CW/ha/yr) 

33.7 26.9 -20% 40.4 20% 22.6 -33% 44.7 33% 38.7 15% 

Soybean Brazil 16.3 12.7 -22% 19.9 22% 10.5 -36% 22.0 35% 15.2 -7% 

Sugarcane ethanol 
Brazil 

9.6 9.6 0% 9.6 0% 9.6 0% 9.6 0% 9.6 0% 

CW: carcass weight           
*Estimate using the carbon "gain" method (see section 1.2 in Supplementary methods)   
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Supplementary Table 6: Sensitivity analysis results for data in crop production example (c.f. 
Extended Data Figure 1). 

Example Net GHG benefit (carbon benefit + differences in PEM and soil sequestration) 

 

Base 
variant "Low" variant "High" variant 

"2% 
discounting" 

variant 

"6% 
discounting" 

variant 
"Gain" 

method* 

  

Mg 
CO2e/ 
ha/ yr 

Mg 
CO2e/ 
ha/ yr 

% 
change 

from 
base 

Mg 
CO2e/ 
ha/ yr 

% 
change 

from 
base 

Mg 
CO2e/ 
ha/ yr 

% 
change 

from 
base 

Mg 
CO2e/ 
ha/ yr 

% 
change 

from 
base 

Mg 
CO2e/ 
ha/ yr 

% 
change 

from 
gain 

            
Maize Iowa            
2013-15 avg yield 23.8 18.6 -22% 29.0 22% 15.5 -35% 32.1 35% 27.3 15% 

Higher yield 
(+ 1 ton/ha/y) 

24.7 
19.0 -23% 30.4 23% 15.7 -37% 33.8 37% 28.5 15% 

 
 

          
Maize West Africa   

          
Current 
(unfertilized) 

4.5 
3.7 -19% 5.4 19% 3.2 -30% 5.9 30% 5.1 13% 

Fertilized 
(100 kg N/ha/y) 

13.6 
10.8 -21% 16.5 21% 9.2 -33% 18.1 33% 15.5 14% 

            
Rice (rough) global averages          
Upland rainfed 14.2 12.5 -12% 15.9 12% 11.4 -20% 17.0 19% 13.7 -4% 

Lowland irrigated 21.7 17.5 -19% 25.9 19% 14.7 -32% 28.6 32% 20.4 -6% 

            

Organic and conventional winter wheat Sweden - 2013-15 avg yields 

Conventional 14.1 11.3 -20% 17.0 20% 9.9 -30% 18.2 29% 19.0 34% 

Organic 7.8 6.3 -19% 9.3 19% 5.6 -28% 10.0 28% 10.4 33% 

            
Organic and conventional peas Sweden - 2013-15 avg yields 

Conventional 14.3 10.8 -24% 17.8 24% 9.2 -35% 19.1 34% 33.6 135% 

Organic 9.5 7.2 -24% 11.8 24% 6.2 -35% 12.7 34% 22.4 135% 

                        

*Estimate using the carbon "gain" method     
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Supplementary Table 7: Sensitivity analysis results for data in fuel source example (cf. Figure 
2). 

Example COC and emissions per distance (mid-sized car)         

 

Base 
variant "Low" variant "High" variant 

"2% 
discounting" 

variant 

"6% 
discounting" 

variant 
"Gain" 

method* 

  

g 
CO2e/ 

km 

g 
CO2e/ 

km 

% 
change 

from 
base 

g 
CO2e/ 

km 

% 
change 

from 
base 

g 
CO2e/ 

km 

% 
change 

from 
base 

g 
CO2e/ 

km 

% 
change 

from 
base 

g 
CO2e/ 

km 

% 
change 

from 
gain 

Solar power 
BEV 

22.4 22.4 0% 22.4 0% 22.4 0% 22.4 0% 22.4 0% 

Cane 
ethanol 

261 211 -19% 312 19% 187 -29% 334 28% 276 6% 

Wheat 
ethanol 

507 440 -13% 575 13% 412 -19% 598 18% 639 26% 

Maize 
ethanol 

498 421 -15% 574 15% 376 -25% 620 25% 522 5% 

Palm-oil 
biodiesel 

611 517 -15% 706 15% 469 -23% 750 23% 528 -14% 

Rapeseed 
biodiesel 

592 492 -17% 692 17% 435 -27% 746 26% 575 -3% 

Soybean 
biodiesel 

639 510 -20% 768 20% 432 -32% 842 32% 600 -6% 

*Estimate using the carbon "gain" method   
 

Supplementary Table 8: Sensitivity analysis results for data in Iowa land use example (cf. 
Extended Data Figure 2). 

Example Net GHG benefit (carbon benefit + differences in PEM and soil sequestration) 

 

Base 
variant "Low" variant "High" variant 

"2% 
discounting" 

variant 

"6% 
discounting" 

variant 
"Gain" 

method* 

  

Mg 
CO2e/ 
ha/ yr 

Mg 
CO2e/ 
ha/ yr 

% 
change 

from 
base 

Mg 
CO2e/ 
ha/ yr 

% 
change 

from 
base 

Mg 
CO2e/ 
ha/ yr 

% 
change 

from 
base 

Mg 
CO2e/ 
ha/ yr 

% 
change 

from 
base 

Mg 
CO2e/ 
ha/ yr 

% 
change 

from 
gain 

Maize-soybean 
rotation Iowa 

21.8 17.0 -22% 26.6 22% 14.1 -36% 29.5 35% 22.9 5% 

Maize ethanol 
Iowa 

9.4 7.7 -18% 11.1 18% 6.7 -29% 12.0 28% 11.7 25% 

Grass ethanol 
(grass yield 17 
ton DM/ha/yr 
soil C seq. 0.6 
ton/yr) 

12.5 12.5 0% 12.5 0% 12.5 0% 12.5 0% 12.5 0% 

*Estimate using the carbon "gain" method    
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Supplementary Table 9: Sensitivity analysis results for data in human diets example (cf. Figure 
3). 

Example COC and emissions per capita (Norther European diets)       

 

Base 
variant "Low" variant "High" variant 

"2% 
discounting" 

variant 

"6% 
discounting" 

variant 
"Gain" 

method* 

  

Mg 
CO2e/ 
cap/yr 

Mg 
CO2e/ 
cap/yr 

% 
change 

from 
base 

Mg 
CO2e/ 
cap/yr 

% 
change 

from 
base 

Mg 
CO2e/ 
cap/yr 

% 
change 

from 
base 

Mg 
CO2e/ 
cap/yr 

% 
change 

from 
base 

Mg 
CO2e/ 
cap/yr 

% 
change 

from 
base 

Baseline 
(year 2050) 

8.7 7.3 -16% 10.1 16% 6.5 -26% 10.9 25% 9.7 11% 

Less meat 
(- 50%) 

6.3 5.3 -16% 7.2 16% 4.7 -25% 7.8 25% 6.9 11% 

Vegetarian 
(ovo-lacto) 

5.4 4.5 -16% 6.2 16% 4.0 -25% 6.7 25% 6.0 11% 

No beef or 
dairy (pork & 
poultry at 
baseline 
level) 

2.6 2.2 -16% 3.0 16% 1.9 -25% 3.2 24% 2.8 9% 

Vegan 1.8 1.5 -17% 2.1 17% 1.3 -27% 2.3 26% 2.0 12% 

*Estimate using the carbon "gain" method   
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Supplementary Figure 1: Comparison of modeled carbon stocks of native vegetation from LPJmL, HYBRID, JEDI, 
and SDGVM with reference values for different biomes taken from Trumper et al.42, Malhi et al.40, and Jobbágy et 
al.39. “A” is vegetation carbon and “B” is soil organic carbon. 
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III. SUPPLEMENTARY DISCUSSION  

 
A. How treatment of land use in other LCAs means most crops have little or 

no land use cost. 
 

The most obvious examples of inadequate other methods are lifecycle calculations 

for food or agricultural GHG calculators that do not attempt to assign greenhouse gas 

costs to land use demands71,72. They may separately calculate land use demands, but 

those results cannot be factored directly into GHGs. Other greenhouse gas calculators 

assign land use costs only if the agricultural change directly converts native lands. The 

Ex-Act tool developed by the UN FAO73 is one example. 

To illustrate the consequences, if a farm adopts more fertilizer and thereby increases 

production emissions per hectare or per kilogram of food, these tools will calculate that 

change as a greenhouse gas increase regardless of the yield gain and the potential 

land savings. Similarly, if a farm reduces inputs and yields, it will likely measure that 

change as good for the climate despite implicit increases in land use demands to feed 

people. Measured this way, farms in Africa with low yields but also few inputs will 

generally appear desirable from a greenhouse gas perspective – and preferable to 

alternatives with more inputs – regardless of whether keeping farms this way will result 

in tens of millions of hectares of clearing of forests and savannas and resulting large 

losses in carbon (as well as biodiversity).   

LCAs like Gerber et al.74 assign LUC emissions to specific food products only based 
on the LUC emissions that are occurring recently and that they associate with these 
food products. Thus, if soybeans are derived from Brazil, soybeans are expanding in 
Brazil and land use change is occurring in Brazil, the LCAs attribute some expansion of 
land to soybeans and then average the resulting emissions over all the soybeans 
produced in Brazil. By contrast, if, e.g., either soybeans are not expanding or net 
cropland is not increasing in the U.S., U.S. soybeans have no land use cost. Some 
other LCAs follow a similar approach but focus on global expansion of a particular crop 
and global expansion of cropland75. Even for this approach, individual crops can have 
zero, low or high land use costs depending on whether demand for that crop is 
expanding more rapidly than yield. (Different LCA approaches are discussed in 
Schmidinger & Stehfest76). 

 
LCAs that follow these general approaches do not focus on the opportunity costs of 

land but only attempt to assign responsibility for ongoing land use change emissions. If 
land area is not expanding for a crop because there is no increasing demand or 
because yield growth is keeping up with growing demand, then a crop is viewed as 
having no land use emissions at all. The same is true if area is expanding for a crop, but 
high yield growth or declining demand for other crops results in no net land use change. 

 
This approach also averages responsibility for LUC emissions across all consumers. 

It does not focus on the consequences of each person’s individual demand. If one were 
interested in the marginal effect of each ton of product demand, then the analysis 
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should focus only on the LUC caused by that additional ton of product demand. The 
rationale in these other LCAs appears to be to apportion responsibility for LUC to each 
consumer in proportion to the share of consumption. Because land use change occurs 
only when yield growth cannot keep pace with increases in demand, the marginal 
consequences of each person’s demand should instead be the additional land use 
required to produce that additional consumption. 

 
The Carbon Benefits Index approach, by focusing on opportunity costs, is essentially 

a form of marginal analysis of food demand (although it uses average land use 
conversion costs to measure the effects of that marginal increase in demand). If land 
use change is occurring to meet growing demand, then increases in demand add to 
growing land use change, and the carbon loss method is an appropriate benchmark 
estimate of the costs. Similarly, production on one hectare helps avoid that much LUC 
elsewhere. If agricultural expansion would not occur, then consumption by one person 
keeps land in production, and the carbon gain method is a more appropriate measure of 
the carbon costs of consumption and the carbon benefits of production. 
 

B. Physical optimization models 
 

Several physical land use models optimize areas for agricultural expansion in ways 

that would meet specified targets for food production while minimizing emissions from 

land conversion, including Johnson et al.77 who focused on global crop production, and 

other papers that focused on national crop production78–80. Such models are inherently 

focused on efficiency, and they can help guide development decisions. In theory, each 

cell could be ranked based on its estimated likely carbon-efficiency.  

These models also have limitations that preclude their uses to make most decisions 

regarding individual hectares. For a simulation, such a model must specify the key 

characteristics of all land in the world or country analyzed, including such factors as 

caloric crop yields, carbon stock and loss rates from conversion. The model must also 

assumes one alternative for all this land, which is typically to hold its native or existing 

carbon stock. Because analyzing these land use characteristics on a global basis is 

hard, such a model must make broad assumptions, e.g., in Johnson et al. (2014) all 

new cropland in a region will have the same yields as existing cropland and all carbon 

stocks are the same within each biome (not just in their native state but today).  

Unfortunately, real hectares differ. That is in part because global assumptions about 

vast land areas are inherently crude (yields and carbon stocks vary from hectare to 

hectare), and also because there are many parameters that people can control that are 

not accounted for in models of this type, such as the Johnson model, and realistically 

could not be included. In the real world, people can generate different yields, different 

production emissions, and changes in carbon stocks on the same land. In addition, in 

the real world, many potential areas of land expansion do not hold full, native carbon 

stocks — many lands are already disturbed. These kind of optimization models are not 

able to handle these deviations of land in the real world from the model’s fixed 
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assumptions, which limits their utility for analyzing individual, real hectares. Although 

valuable for many purposes, models such as the Johnson model cannot be used to 

evaluate the effects of any of the following on real hectares: changes to management, 

yield or type of crop on existing cropland, changes from cropland to forest, bioenergy 

production or pasture, changes in consumption, or changes in production emissions. 

C. Estimation challenges of global economic land use change models 
 
Here we elaborate on some of the challenges global economic land use change 

models face in estimating the consequences of changes in one hectare on carbon 
storage by others. 

 
Own-price elasticities: Models must estimate responses of changed supply of one 
food one hectare and resulting effects on prices on the demand for and supply of all 
other foods globally. Doing so requires large numbers of explicit or implicit supply 
and demand elasticities. Because only a few such elasticity have typically been 
estimated in any form, modelers tend to borrow elasticities from other crops and 
other countries. In addition, to determine a true causal relationship between a 
change in price and changes in supply and demand, elasticities cannot properly be 
calculated just by regressing changes in quantity demanded or supplied as a 
function of price. These changes could be caused by unexplained variables that 
influence both supply and demand, and the simultaneous influence of supply and 
demand on each other also defeats analysis using this simple relationship. Proper 
analyses therefore require analyses driven by changes in “exogenous instruments”. 
Only a limited number of the own price supply or demand elasticities that exist at all 
are based on proper econometric methods. 
 
Cross-price elasticities: The land use consequences of a change in production of 
one crop on one hectare depend not just on how much supply or demand for a food 
changes with price, but how much of those changes result in shifts to other foods, 
which have their own land use demands. For example, as a diversion of maize to 
bioenergy reduces supply for food, a portion of the own price elasticity occurs not 
because of an absolute increase in agricultural production or due to a decrease in 
demand for all crops but instead occurs because of a shift of production and 
consumption away from one crop to another. It is the sizes of the ultimate increases 
or decreases in all crops that determine the change in overall agricultural land.  
 
One of the potential theoretical advantages of global economic models is that they 
can estimate the extent to which increased demand or reduced production of one 
crop leads farmers and consumers to switch from one crop to another. But there are 
so few econometric estimates of cross-price supply or demand elasticities that no 
model to our awareness relies on them. Models instead typically produce cross-price 
elasticities through functional forms. Because the cross-price elasticities are not 
known, the true sizes of these increases or decrease in land demands also cannot 
be known. 
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Ruminant Livestock: Ruminant livestock production heavily uses grazing land, which 
is a large majority of all agricultural land, and a proper agricultural land use model 
would need to estimate how changes in feed prices lead to changes in ruminant 
production methods (for example, influencing the extent of reliance on pasture or 
crop residues versus crops, and on one type of crop-based feed versus another). 
Such estimates should also predict changes in the country of production. Similarly, 
these models must estimate how production loss due to crop conversion of pasture 
leads to changes in production and therefore land use demands elsewhere. But 
global analysis of production methods and production costs for ruminant livestock is 
crude. Few models even attempt any significant, disaggregated representation of the 
ruminant livestock sector. 
 
Effective yield elasticities: Many economic models attempt to estimate the effect of 
higher prices on increases in effective crop yields and attempt to do so for all crops 
and in all countries. These higher crop yields reduce the amount of land use change 
and therefore emissions attributable to the biofuel. Unfortunately, there is no reason 
that the intensification effect for any one crop in any one country should be the same 
or even similar to the effect for other crops or for other countries. Farmers should 
choose to intensify if and when the costs of boosting production by increasing 
cropland or pasture is higher than the costs of increasing yields by increasing the 
share of other inputs such as fertilizer or labor. That calculation will depend on the 
agronomy of each crop and on the amount, cost of access and productivity of 
additional potential cropland in a country. In general, however, there are extremely 
few estimates of yield responses to price, even fewer with proper econometric 
methods, and most are focused on maize or soybeans in the United States20,81. 
Some models apply numbers ultimately derived from analysis of maize in the U.S. to 
all other crops and to all other countries even though these numbers should greatly 
vary82. 
 
Estimating land use change emissions and yields of new cropland: Consequential 
economic models attempt to estimate which lands or types of land will be converted 
for new crops in each country where cropland conversion occurs. Doing so requires 
difficult estimates of where land use changes will occur within a country and the 
carbon contents of these lands. These calculations therefore depend not merely on 
average carbon stock estimates around the world but on precise carbon stock 
estimates of particular locations despite the difficulty of inferring precise cell-by-cell 
information from satellite-based maps or scattered field measurements. Models must 
also in one form or another make assumptions about the yields of these new 
croplands, which are based little evidence. Models can seek out areas as likely 
candidates for conversion precisely where relationships among parameters 
unexpectedly diverge. For example, if a cell is claimed to have high yield potential 
but today stores little carbon or is cheap, a model might select it as prime candidate 
for conversion. However, if any one of these overlapping maps map has an error, 
that error may make the cell seem like a promising candidate for conversion.  As a 
result, models may estimate conversion will occur areas precisely because of  
random data errors. 
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The Carbon Benefits Index does not face these challenges precisely because it does 
not attempt to estimate the marginal costs of replacing a food product but instead uses 
average costs. That means it cannot offer these kinds of marginal predictions but can 
offer more robust estimates of average costs. 
 

D. How consequential economic models attribute global intensification gains 
and reductions in consumption as GHG benefits to biofuels or reforestation 
of agricultural land. 

 
Searchinger et al.20 provide extensive discussion and illustration of how 

consequential economic models attribute global consumption and intensification 
changes to biofuels. The effect can be calculated in two conceptually different but 
mathematically equivalent ways. The simplest conceptual way is that when biofuels 
reduce supply of crops for food, both intensification on other croplands and reduced 
consumption of food lead to less land use change to replace the crops. The reduction in 
land use change, typically treated as ILUC, results in lower GHG costs for biofuels. In 
this type of analysis, the modeling systems ignore the carbon emitted by fermentation 
and burning of the biomass itself and instead attribute biogenic carbon losses to the 
biofuel only that result from indirect land use change. In calculations of “leakage” due to 
reforestation of agricultural land, reductions in food consumption work to reduce 
leakage in the same way. 

 
This calculation, however, is an indirect way of counting the actual changes in flows 

of carbon to and from the atmosphere. Physically, fermenting biomass into ethanol and 
burning any biofuel do release carbon into the atmosphere. This carbon is a GHG 
emission. This carbon also has the potential to be offset by reduced food consumption, 
which reduces the amount of carbon released from the consumption of food and feed 
directly through respiration and wastes by people and/or livestock. These emissions 
may also be offset by increased plant growth, which absorbs more carbon, and which 
can result from increased crop yields. As shown in Searchinger et al.20, another way to 
understand these LCAs is that they are counting these carbon gains implicitly as offsets 
for the carbon emitted by fermentation and burning of the biomass as a fuel. 

 
E. Biodiversity and “land sharing versus land sparing”  
 
Land use decisions should consider effects on biodiversity, water and other 

environmental services of land in addition to carbon. Maximizing global carbon and 
GHG benefits will often increase other ecosystem services83, and the failure to 
appreciate the carbon costs of many ecosystems, such as woody savannas, has 
sometimes led to proposals to convert them in ways that would also seriously harm 
biodiversity84. Yet, carbon enhancement could sometimes harm biodiversity. For 
example, planting dense forests on woody savannas would store more carbon but with 
serious implications for biodiversity and water supplies85. 

 
Unlike carbon, evaluating biodiversity and many other ecosystem services requires a 

local approach because each hectare’s value depends on the composition of land 
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around it. For example, if a hectare of forest is contiguous with other hectares of forest, 
it will typically have far more biodiversity value than if it is isolated, yet in some cases, 
small refugia of forest may have disproportionate value. Some watershed areas with 
relatively low biodiversity may be critical to the preservation of downstream 
ecosystems84. There is no scientifically valid way to examine values per hectare in 
isolation. Carbon benefits, however, could be incorporated into physical optimization 
exercises described above. 

 
One of the substantial debates in conservation biology involves the extent to which 

biodiversity strategies should focus on “land sparing” versus “land sharing”86. “Land 
sparing” typically implies intensifying agricultural production to be able to avoid clearing 
larger, intact landscapes. “Land sharing” can sometimes refer to agricultural practices 
that enable use of the crop-production land itself as habitat, e.g., trees or ephemeral 
ponds, and sometimes implies preserving non-agricultural landscape features, such as 
hedgerows or vegetated wetlands, within agricultural landscapes. 

 
Efforts to reduce land use demands or the greenhouse gas effects of agricultural 

production can sometimes reduce habitat. As just some examples, leveling farm fields 
can boost yields but eliminate ephemeral ponds used by migratory birds, and increasing 
fertilizer can have offsite adverse effects on aquatic habitats. For these reasons, some 
efforts that boost carbon benefits on agricultural land could have negative effects on its 
habitat values even if doing so helps to spare land elsewhere. 

 
 The Carbon Benefits Index, however, also factors in changes in carbon storage 

on agricultural lands. Although there is academic debate about the viability of different 
“climate smart agriculture” practices claimed to build soil carbon87,88, the index will count 
as a carbon benefit any practices that do build carbon in either soil or vegetation. Some 
practices, such as silvopastoral systems, claim gains both in soil carbon and food 
outputs89. The Carbon Benefits Index does not avoid the need to evaluate land use 
changes separately based on effects on biodiversity and other ecosystem values, but it 
will recognize the climate benefits of efforts to enhance carbon on agricultural lands. 
 

F. Why the index does not yet include forest product COCs  
 

Our analysis does not at this time estimate COCs for the uses of wood products. 
One key factor is the efficiency of wood harvest, i.e., the ratio of wood harvested to 
forest carbon losses. This factor must be known worldwide, and to differentiate wood 
products, for different types of wood. Because this data is not available, developing a 
COC for wood products therefore depends on further work. Our analysis of forests 
therefore presently focuses only the carbon storage value of forests. 
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