
The OpenGL ES® Shading Language,
Version 3.20.8

Graeme Leese, Broadcom (Editor) ; Robert J. Simpson, Qualcomm ; John
Kessenich ; Dave Baldwin and Randi Rost (Version 1.1 Authors)

Version 3.20.8, Mon, 14 Aug 2023 15:39:14 +0000: from git branch: main commit:
747576a437935b79d72cc07b6cbed7136b613e71

Table of Contents
1. Introduction. 2

1.1. Changes . 2

1.2. Overview. 5

1.3. Error Handling . 6

1.4. Typographical Conventions . 7

1.5. Compatibility . 7

2. Overview of Shading . 8

2.1. Vertex Processor . 8

2.2. Tessellation Control Processor. 8

2.3. Tessellation Evaluation Processor . 9

2.4. Geometry Processor . 9

2.5. Fragment Processor . 9

2.6. Compute Processor. 9

3. Basics. 11

3.1. Character Set . 11

3.2. Source Strings . 11

3.3. Version Declaration . 12

3.4. Preprocessor . 13

3.5. Comments. 18

3.6. Tokens . 19

3.7. Keywords . 19

3.8. Identifiers . 24

3.9. Definitions . 24

3.10. Logical Phases of Compilation. 26

4. Variables and Types. 28

4.1. Basic Types . 28

4.2. Scoping . 43

4.3. Storage Qualifiers . 47

4.4. Layout Qualifiers . 62

4.5. Interpolation Qualifiers . 85

4.6. Parameter Qualifiers . 86

4.7. Precision and Precision Qualifiers . 87

4.8. Variance and the Invariant Qualifier. 92

4.9. The Precise Qualifier . 95

4.10. Memory Qualifiers . 98

4.11. Specialization-Constant Qualifier. 101

4.12. Order and Repetition of Qualification. 102

4.13. Empty Declarations . 102

5. Operators and Expressions . 103

5.1. Operators . 103

5.2. Array Operations . 104

5.3. Function Calls . 104

5.4. Constructors. 104

5.5. Vector Components . 109

5.6. Matrix Components . 110

5.7. Structure and Array Operations . 111

5.8. Assignments. 111

5.9. Expressions . 113

5.10. Vector and Matrix Operations. 115

5.11. Specialization-Constant Operations. 117

5.12. Evaluation of Expressions . 118

6. Statements and Structure. 119

6.1. Function Definitions . 120

6.2. Selection . 123

6.3. Iteration . 124

6.4. Jumps. 125

7. Built-In Variables . 127

7.1. Built-In Language Variables. 127

7.2. Built-In Constants . 135

7.3. Built-In Uniform State . 136

7.4. Redeclaring Built-In Blocks . 137

8. Built-In Functions. 139

8.1. Angle and Trigonometry Functions . 140

8.2. Exponential Functions . 141

8.3. Common Functions . 142

8.4. Floating-Point Pack and Unpack Functions . 147

8.5. Geometric Functions . 148

8.6. Matrix Functions . 149

8.7. Vector Relational Functions . 150

8.8. Integer Functions . 151

8.9. Texture Functions . 153

8.10. Atomic Counter Functions . 161

8.11. Atomic Memory Functions. 162

8.12. Image Functions . 163

8.13. Geometry Shader Functions . 166

8.14. Fragment Processing Functions . 167

8.15. Shader Invocation Control Functions . 169

8.16. Shader Memory Control Functions . 170

8.17. Subpass-Input Functions . 172

9. Shader Interface Matching . 173

9.1. Input Output Matching by Name in Linked Programs . 173

9.2. Matching of Qualifiers. 174

10. Shading Language Grammar . 177

11. Counting of Inputs and Outputs . 189

12. Acknowledgments . 192

13. Normative References . 196

14. Non-Normative SPIR-V Mappings . 197

14.1. Feature Comparisons . 197

14.2. Mapping from GLSL to SPIR-V . 198

Copyright 2008-2022 The Khronos Group Inc.

This Specification is protected by copyright laws and contains material proprietary to Khronos.
Except as described by these terms, it or any components may not be reproduced, republished,
distributed, transmitted, displayed, broadcast or otherwise exploited in any manner without the
express prior written permission of Khronos.

Khronos grants a conditional copyright license to use and reproduce the unmodified Specification
for any purpose, without fee or royalty, EXCEPT no licenses to any patent, trademark or other
intellectual property rights are granted under these terms. Parties desiring to implement the
Specification and make use of Khronos trademarks in relation to that implementation, and receive
reciprocal patent license protection under the Khronos IP Policy must become Adopters and
confirm the implementation as conformant under the process defined by Khronos for this
Specification; see https://www.khronos.org/adopters.

Khronos makes no, and expressly disclaims any, representations or warranties, express or implied,
regarding this Specification, including, without limitation: merchantability, fitness for a particular
purpose, non-infringement of any intellectual property, correctness, accuracy, completeness,
timeliness, and reliability. Under no circumstances will Khronos, or any of its Promoters,
Contributors or Members, or their respective partners, officers, directors, employees, agents or
representatives be liable for any damages, whether direct, indirect, special or consequential
damages for lost revenues, lost profits, or otherwise, arising from or in connection with these
materials.

This Specification has been created under the Khronos Intellectual Property Rights Policy, which is
Attachment A of the Khronos Group Membership Agreement available at https://www.khronos.org/
files/member_agreement.pdf.

Where this Specification identifies specific sections of external references, only those specifically
identified sections define normative functionality. The Khronos Intellectual Property Rights Policy
excludes external references to materials and associated enabling technology not created by
Khronos from the Scope of this specification, and any licenses that may be required to implement
such referenced materials and associated technologies must be obtained separately and may
involve royalty payments.

Khronos and Vulkan are registered trademarks of The Khronos Group Inc. SPIR is a trademark of
The Khronos Group Inc. OpenGL and OpenGL ES are registered trademarks of Hewlett Packard
Enterprise, used under license by Khronos. All other product names, trademarks, and/or company
names are used solely for identification and belong to their respective owners.

1

https://www.khronos.org/adopters
https://www.khronos.org/files/member_agreement.pdf
https://www.khronos.org/files/member_agreement.pdf

Chapter 1. Introduction
This document specifies only version 3.20 of the OpenGL ES Shading Language (GLSL ES). It
requires __VERSION__ to substitute 320, and requires #version to accept only 320 es. If #version is
declared with a smaller number, the language accepted is a previous version of the shading
language, which will be supported depending on the version and type of context in the API. See the
normative references for details on what language versions are supported.

Throughout, when generating SPIR-V for consumption by the Vulkan API (see normative
references), this will be said to be targeting Vulkan.

While this specification and the OpenGL ES Specification are normative for OpenGL ES Shading
Language, for SPIR-V generation it is still the SPIR-V specification and the SPIR-V client API
specification that are normative for the generated SPIR-V. See the normative references for further
detail.

For SPIR-V generation, the SPIR-V client API specifies the commands used to manipulate SPIR-V
shaders.

Independent offline tool chains will compile GLSL ES down to the SPIR-V intermediate language.
SPIR-V generation is not enabled with a #extension, #version, or a profile. Instead, use of GLSL ES
for SPIR-V is determined by offline tool-chain use. See the documentation of such tools to see how to
request generation of SPIR-V for its client API.

GLSL ES → SPIR-V compilers must be directed as to what SPIR-V Capabilities are legal at run-time
and give errors for GLSL ES feature use outside those capabilities. This is also true for
implementation-dependent limits that can be error checked by the front-end against built-in
constants present in the GLSL ES source: the front-end can be informed of such limits, and report
errors when they are exceeded.

All references in this specification to the OpenGL ES Specification are to version 3.2.

1.1. Changes

1.1.1. Changes from GLSL ES 3.2 revision 7

There are no changes between revision 7 and revision 8.

1.1.2. Changes from GLSL ES 3.2 revision 6

• Private OpenGL issue #156: Clarify that per-vertex arrays of arrays of blocks are allowed in the
geometry stage.

• Private GLSL issue #57: Clarify that imageLoad precision is determined only by the precision of
the image argument.

• Public GLSL issue #164: Clarify the precision expected from mod.

• Public GLSL issue #8: Clarify when compute-shader variables may be accessed.

• Public GLSL Issue #159: Remove incorrect vertex input example.

2

• Private GLSL issue #30: Clarify that struct members' precision is always fixed as part of the
struct type declaration.

• Private GLSL issue #49: Clarify support for unary +.

• Private GLSL issue #43: Clarify precisions of constructors.

• Private GLSL issue #53: Clarify which qualifiers are allowed on Interface Blocks.

• Private GLSL issue #55: Clarify which expressions are valid interpolants for interpolation
functions.

• Fix public GLSL issue #83: It is only opaque-type variables that are required to keep their
memory qualifiers (e.g., readonly) when passed to a user-defined function.

• Subnormal values might be flushed to 0.0 by intBitsToFloat().

• Clarify error conditions when declaring atomic counters.

• Clarified that 'precise' cannot qualify structure definitions.

• Private Bugzilla #15755: Clarify storage size of precision qualified interface block members in
application visible memory.

1.1.3. Changes from GLSL ES 3.2 revision 5

• Incorporated the GL_KHR_vulkan_glsl specification.

• Clarify it is same location that triggers default-uniform block matching rules. See Uniform
Variable Layout Qualifiers.

1.1.4. Changes from GLSL ES 3.2 revision 4

• Clarified that this specification completely defines the OpenGL ES Shading Language.
Normatively reference C++ only for the preprocessor.

• Private GLSL issues 7, 38: Corrected the values of some builtin constants. The values were given
correctly in the OpenGL ES Specification.

• Private GLSL issue 30: Clarify that output packing rules apply to the last vertex pipeline stage,
not necessarily the vertex stage.

• Private GLSL issue 15: Clarify the ordering of bindings for arrays of arrays.

• Private GLSL issue 14: Uniform variables need only match at link time if they are statically used.

• For precise computations, the controlling expressions for control flow and ternary operators (
?:) are not included.

1.1.5. Changes from GLSL ES 3.2 revision 3

• Matching of default uniforms when shaders are linked.

• gl_DepthRange is only guaranteed to be available in the fragment stage.

• Clarification of definition of static use.

• Sampling behavior in the absence of sample and centroid.

• Clarified the requirements when the specification uses the terms should/should not and

3

undefined behavior.

• Arrayed blocks cannot have layout location qualifiers on members

• barrier() defines a partial order which includes tessellation control shader outputs.

• Vertex shader integer output qualification.

• Incorrect use of predefined pragmas.

• Clarified use of readonly and writeonly qualifiers.

• USAMPLERBUFFER added to grammar.

• Clarified precision qualifiers can be used in interface blocks.

• Clarified memoryBarrierShared only applies to the current workgroup.

• The layout qualifier invocations must not be zero.

• The layout qualifier local_size must not be zero.

• Clarified the definition of static assignment.

• Removed list of types with no default precision.

• Removed scoping rules from the grammar. Refer instead to the scoping section.

• Require a statement after the final label of a switch.

• Define gl_BoundingBox.

• length() expressions returning a constant-value may not include side effects.

• Clarified that variables may be declared readonly writeonly.

• Use of constant expressions within #line directives is undefined.

• gl_in can be redeclared using unsized-array syntax.

• Clarified which sampler types may be used for depth and stencil textures.

• Added order-of-operation and other explanations to the Precise Qualifier section.

• The precise qualifier applied to a block/struct applies recursively to the members.

1.1.6. Changes from GLSL ES 3.2 revision 2

• Updated value for gl_MaxTessControlTotalOutputComponents

• Clarified the allowed character set for pre-processing

• Integer division wrapping behavior

• Clarified pre-processor expressions (pp-constant-expression)

• UBO and SSBO precisions do not need to match for linked shaders (consistent with GLSL ES 3.1)

• modf function

• Sequence and ternary operators with void type

• Sequence and ternary operators with array types

4

1.1.7. Changes from GLSL ES 3.2 revision 1

• Signed zeros must be supported

• Layout qualifier table

• Allowed optimizations when evaluating expressions

• Updated value for gl_MaxTessControlInputComponents

• Updated value for gl_MaxTessControlOutputComponents

• Updated value for gl_MaxTessEvaluationInputComponents

• Updated value for gl_MaxTessEvaluationOutputComponents

• Updated value for gl_MaxGeometryOutputComponents

• Require precisions in blocks to match when linking

• Updated conclusions in issues section

1.1.8. Changes from GLSL ES 3.1 revision 4

• Added the following extensions:

◦ KHR_blend_equation_advanced

◦ OES_sample_variables

◦ OES_shader_image_atomic

◦ OES_shader_multisample_interpolation

◦ OES_texture_storage_multisample_2d_array

◦ OES_geometry_shader

◦ OES_gpu_shader5

◦ OES_primitive_bounding_box

◦ OES_shader_io_blocks

◦ OES_tessellation_shader

◦ OES_texture_buffer

◦ OES_texture_cube_map_array

◦ KHR_robustness

1.2. Overview
This document describes The OpenGL ES Shading Language, version 3.20.

Independent compilation units written in this language are called shaders. A program is a set of
shaders that are compiled and linked together. The aim of this document is to thoroughly specify
the programming language. The normative references will specify the API entry points used to
manipulate and communicate with programs and shaders.

5

https://www.opengl.org/registry/specs/KHR/blend_equation_advanced.txt
https://www.khronos.org/registry/gles/extensions/OES/OES_sample_variables.txt
https://www.khronos.org/registry/gles/extensions/OES/OES_shader_image_atomic.txt
https://www.khronos.org/registry/gles/extensions/OES/OES_shader_multisample_interpolation.txt
https://www.khronos.org/registry/gles/extensions/OES/OES_texture_storage_multisample_2d_array.txt
https://www.khronos.org/registry/gles/extensions/OES/OES_geometry_shader.txt
https://www.khronos.org/registry/gles/extensions/OES/OES_gpu_shader5.txt
https://www.khronos.org/registry/gles/extensions/OES/OES_primitive_bounding_box.txt
https://www.khronos.org/registry/gles/extensions/OES/OES_shader_io_blocks.txt
https://www.khronos.org/registry/gles/extensions/OES/OES_tessellation_shader.txt
https://www.khronos.org/registry/gles/extensions/OES/OES_texture_buffer.txt
https://www.khronos.org/registry/gles/extensions/OES/OES_texture_cube_map_array.txt
https://www.opengl.org/registry/specs/KHR/robustness.txt

1.3. Error Handling
Compilers, in general, accept programs that are ill-formed, due to the impossibility of detecting all
ill-formed programs. Portability is only ensured for well-formed programs, which this specification
describes. Compilers are encouraged to detect ill-formed programs and issue diagnostic messages,
but are not required to do so for all cases.

The compilation process is implementation-dependent but is generally split into a number of
stages, each of which occurs at one of the following times:

• A call to glCompileShader

• A call to glLinkProgram

• A draw call or a call to glValidateProgram

The implementation should report errors as early a possible but in any case must satisfy the
following:

• All lexical, grammatical and semantic errors must have been detected following a call to
glLinkProgram

• Errors due to mismatch between the shaders (link-time errors) must have been detected
following a call to glLinkProgram

• Errors due to exceeding resource limits must have been detected following any draw call or a
call to glValidateProgram

• A call to glValidateProgram must report all errors associated with a program object given the
current GL state.

Where the specification uses the terms required, must/must not, does/does not, disallowed, or not
supported, the compiler or linker is required to detect and report any violations. Similarly when a
condition or situation is an error, it must be reported. Use of any feature marked as reserved is an
error. Where the specification uses the terms should/should not, undefined behavior, undefined value
or undefined *results*, implementations will not produce a compile-time error but are encouraged
to issue a warning for violations. The run-time behavior of the program in these cases is not
constrained (and so may include termination or system instability). It is expected that systems will
be designed to handle these cases gracefully but specification of this is outside the scope of this
specification.

Implementations may not in general support functionality beyond the mandated parts of the
specification without use of the relevant extension. The only exceptions are:

1. If a feature is marked as optional.

2. Where a maximum value is stated (e.g. the maximum number of vertex outputs), the
implementation may support a higher value than that specified.

Where the implementation supports more than the mandated specification, off-target compilers are
encouraged to issue warnings if these features are used.

The compilation process is split between the compiler and linker. The allocation of tasks between

6

the compiler and linker is implementation dependent. Consequently there are many errors which
may be detected either at compile or link time, depending on the implementation.

1.4. Typographical Conventions
Italic, bold, and font choices have been used in this specification primarily to improve readability.
Code fragments use a fixed width font. Identifiers embedded in text are italicized. Keywords
embedded in text are bold. Operators are called by their name, followed by their symbol in bold in
parentheses. The clarifying grammar fragments in the text use bold for literals and italics for non-
terminals. The official grammar in “Shading Language Grammar” uses all capitals for terminals
and lower case for non-terminals.

1.5. Compatibility
The OpenGL ES 3.2 API is designed to work with GLSL ES v1.00, GLSL ES 3.00, GLSL ES 3.10 and
GLSL ES 3.20. In general a shader written for versions prior to OpenGL ES 3.2 should work without
modification in OpenGL ES 3.2.

When porting applications from an earlier to later version of the GLSL ES, the following points
should be noted:

• Not all language constructs present in earlier versions of the language are available in later
versions e.g. attribute and varying qualifiers are present in v1.00 but not v3.00. However, the
functionality of GLSL ES 3.20 is a super-set of GLSL ES 3.10.

• Some features of later versions of the API require language features that are not present in
earlier version of the language.

• It is an error to link shaders if they are written in different versions of the language.

• The OpenGL ES 2.0 and 3.0 APIs do not support shaders written in GLSL ES 3.20.

• Using GLSL ES 1.00 shaders within OpenGL ES 3.x may extend the resources available beyond
the minima specified in GLSL ES 1.0. Shaders which make use of this will not necessarily run on
an OpenGL ES 2.0 implementation: Similarly for GLSL ES 3.00 shaders running within OpenGL
ES 3.2.

• Support of line continuation and support of UTF-8 characters within comments is optional in
GLSL ES 1.00 when used with the OpenGL ES 2.0 API. However, support is mandated for both of
these when a GLSL ES 1.00 shader is used with the OpenGL ES 3.x APIs.

7

Chapter 2. Overview of Shading
The OpenGL ES Shading Language is actually several closely related languages. These languages are
used to create shaders for each of the programmable processors contained in the API’s processing
pipeline. Currently, these processors are the vertex, tessellation control, tessellation evaluation,
geometry, fragment, and compute processors.

Compilation units for these processors are referred to as shaders and the processors themselves are
also referred to as shader stages. Only one shader can be run on a processor at any one time; there
is no support for linking multiple compilation units together for a single shader stage. One or more
shaders are linked together to form a single program and each program contains shader
executables for one or more consecutive shader stages.

Unless otherwise noted in this paper, a language feature applies to all languages, and common
usage will refer to these languages as a single language. The specific languages will be referred to
by the name of the processor they target: vertex, tessellation control, tessellation evaluation,
geometry, fragment, or compute.

Most API state is not tracked or made available to shaders. Typically, user-defined variables will be
used for communicating between different stages of the API pipeline. However, a small amount of
state is still tracked and automatically made available to shaders, and there are a few built-in
variables for interfaces between different stages of the API pipeline.

2.1. Vertex Processor
The vertex processor is a programmable unit that operates on incoming vertices and their
associated data. Compilation units written in the OpenGL ES Shading Language to run on this
processor are called vertex shaders.

The vertex processor operates on one vertex at a time. It does not replace graphics operations that
require knowledge of several vertices at a time.

2.2. Tessellation Control Processor
The tessellation control processor is a programmable unit that operates on a patch of incoming
vertices and their associated data, emitting a new output patch. Compilation units written in the
OpenGL ES Shading Language to run on this processor are called tessellation control shaders.

The tessellation control shader is invoked for each vertex of the output patch. Each invocation can
read the attributes of any vertex in the input or output patches, but can only write per-vertex
attributes for the corresponding output patch vertex. The shader invocations collectively produce a
set of per-patch attributes for the output patch.

After all tessellation control shader invocations have completed, the output vertices and per-patch
attributes are assembled to form a patch to be used by subsequent pipeline stages.

Tessellation control shader invocations run mostly independently, with undefined relative
execution order. However, the built-in function barrier() can be used to control execution order by

8

synchronizing invocations, effectively dividing tessellation control shader execution into a set of
phases. Tessellation control shaders will get undefined results if one invocation reads from a per-
vertex or per-patch attribute written by another invocation at any point during the same phase, or
if two invocations attempt to write different values to the same per-patch output in a single phase.

2.3. Tessellation Evaluation Processor
The tessellation evaluation processor is a programmable unit that evaluates the position and other
attributes of a vertex generated by the tessellation primitive generator, using a patch of incoming
vertices and their associated data. Compilation units written in the OpenGL ES Shading Language to
run on this processor are called tessellation evaluation shaders.

Each invocation of the tessellation evaluation executable computes the position and attributes of a
single vertex generated by the tessellation primitive generator. The executable can read the
attributes of any vertex in the input patch, plus the tessellation coordinate, which is the relative
location of the vertex in the primitive being tessellated. The executable writes the position and
other attributes of the vertex.

2.4. Geometry Processor
The geometry processor is a programmable unit that operates on data for incoming vertices for a
primitive assembled after vertex processing and outputs a sequence of vertices forming output
primitives. Compilation units written in the OpenGL ES Shading Language to run on this processor
are called geometry shaders.

A single invocation of the geometry shader executable on the geometry processor will operate on a
declared input primitive with a fixed number of vertices. This single invocation can emit a variable
number of vertices that are assembled into primitives of a declared output primitive type and
passed to subsequent pipeline stages.

2.5. Fragment Processor
The fragment processor is a programmable unit that operates on fragment values and their
associated data. Compilation units written in the OpenGL ES Shading Language to run on this
processor are called fragment shaders.

A fragment shader cannot change a fragment’s (x, y) position. Access to neighboring fragments is
not allowed. The values computed by the fragment shader are ultimately used to update
framebuffer memory or texture memory, depending on the current API state and the API command
that caused the fragments to be generated.

2.6. Compute Processor
The compute processor is a programmable unit that operates independently from the other shader
processors. Compilation units written in the OpenGL ES Shading Language to run on this processor
are called compute shaders.

9

A compute shader has access to many of the same resources as fragment and other shader
processors, such as textures, buffers, image variables, and atomic counters. It does not have fixed-
function outputs. It is not part of the graphics pipeline and its visible side effects are through
changes to images, storage buffers, and atomic counters.

A compute shader operates on a group of work items called a workgroup. A workgroup is a
collection of shader invocations that execute the same code, potentially in parallel. An invocation
within a workgroup may share data with other members of the same workgroup through shared
variables and issue memory and control flow barriers to synchronize with other members of the
same workgroup.

10

Chapter 3. Basics

3.1. Character Set
The source character set used for the OpenGL ES Shading Language is Unicode in the UTF-8
encoding scheme. Invalid UTF-8 characters are ignored. During pre-processing, the following
applies:

• A byte with the value zero is always interpreted as the end of the string

• Backslash ('\'), is used to indicate line continuation when immediately preceding a new-line.

• White space consists of one or more of the following characters: the space character, horizontal
tab, vertical tab, form feed, carriage-return, line-feed.

• The number sign (#) is used for preprocessor directives

• Macro names are restricted to:

◦ The letters a-z, A-Z, and the underscore (_).

◦ The numbers 0-9, except for the first character of a macro name.

After preprocessing, only the following characters are allowed in the resulting stream of GLSL ES
tokens:

• The letters a-z, A-Z, and the underscore (_).

• The numbers 0-9.

• The symbols period (.), plus (+), dash (-), slash (/), asterisk (*), percent (%), angled brackets (< and
>), square brackets ([and]), parentheses ((and)), braces ({ and }), caret (^), vertical bar (|),
ampersand (&), tilde (~), equals (=), exclamation point (!), colon (:), semicolon (;), comma (,), and
question mark (?).

There are no digraphs or trigraphs. There are no escape sequences or other uses of the backslash
beyond use as the line-continuation character.

Lines are relevant for compiler diagnostic messages and the preprocessor. They are terminated by
carriage-return or line-feed. If both are used together, it will count as only a single line termination.
For the remainder of this document, any of these combinations is simply referred to as a new-line.
Lines may be of arbitrary length.

In general, the language’s use of this character set is case sensitive.

There are no character or string data types, so no quoting characters are included.

There is no end-of-file character.

3.2. Source Strings
The source for a single shader is an array of strings of characters from the character set. A single
shader is made from the concatenation of these strings. Each string can contain multiple lines,

11

separated by new-lines. No new-lines need be present in a string; a single line can be formed from
multiple strings. No new-lines or other characters are inserted by the implementation when it
concatenates the strings to form a single shader.

Diagnostic messages returned from compiling a shader must identify both the line number within a
string and which source string the message applies to. Source strings are counted sequentially with
the first string being string 0. Line numbers are one more than the number of new-lines that have
been processed, including counting the new-lines that will be removed by the line-continuation
character (\).

Lines separated by the line-continuation character preceding a new-line are concatenated together
before either comment processing or preprocessing. This means that no white space is substituted
for the line-continuation character. That is, a single token could be formed by the concatenation by
taking the characters at the end of one line concatenating them with the characters at the
beginning of the next line.

float f\
oo;
// forms a single line equivalent to "float foo;"
// (assuming '\' is the last character before the new-line and "oo" are
// the first two characters of the next line)

3.3. Version Declaration
Shaders must declare the version of the language they are written to. The version is specified in the
first line of a shader by a character string:

#version number es

where number must be a version of the language, following the same convention as __VERSION__
above. The directive “#version 320 es” is required in any shader that uses version 3.20 of the
language. Any number representing a version of the language a compiler does not support will
cause an error to be generated. Version 1.00 of the language does not require shaders to include
this directive, and shaders that do not include a #version directive will be treated as targeting
version 1.00.

Shaders declaring version 3.20 of the shading language cannot be linked with shaders declaring a
previous version.

The #version directive must be present in the first line of a shader and must be followed by a
newline. It may contain optional white-space as specified below but no other characters are
allowed. The directive is only permitted in the first line of a shader.

Processing of the #version directive occurs before all other preprocessing, including line
concatenation and comment processing.

12

version-declaration :

whitespaceopt POUND whitespaceopt VERSION whitespace number whitespace ES whitespaceopt

Tokens:

POUND #
VERSION version
ES es

3.4. Preprocessor
There is a preprocessor that processes the source strings as part of the compilation process. Except
as noted below, it behaves as the C++ standard preprocessor (see “Normative References”).

The complete list of preprocessor directives is as follows.

#
#define
#undef

#if
#ifdef
#ifndef
#else
#elif
#endif

#error
#pragma

#extension

#line

The following operator is also available:

defined

Note that the version directive is not considered to be a preprocessor directive and so is not listed
here.

Each number sign (#) can be preceded in its line only by spaces or horizontal tabs. It may also be

13

followed by spaces and horizontal tabs, preceding the directive. Each directive is terminated by a
new-line. Preprocessing does not change the number or relative location of new-lines in a source
string.

The number sign (#) on a line by itself is ignored. Any directive not listed above will cause an error.

#define and #undef functionality are defined as is standard for C++ preprocessors for macro
definitions both with and without macro parameters.

The following predefined macros are available:

__LINE__
__FILE__
__VERSION__
GL_ES

__LINE__ will substitute a decimal integer constant that is one more than the number of preceding
new-lines in the current source string.

__FILE__ will substitute a decimal integer constant that says which source string number is
currently being processed.

__VERSION__ will substitute a decimal integer reflecting the version number of the OpenGL ES
Shading Language. The version of the shading language described in this document will have
__VERSION__ substitute the decimal integer 320.

GL_ES will be defined and set to 1. This is not true for the non-ES OpenGL Shading Language, so it
can be used to do a compile time test to determine if a shader is compiling as an GLSL ES shader.

By convention, all macro names containing two consecutive underscores (__) are reserved for use
by underlying software layers. Defining such a name in a shader does not itself result in an error,
but may result in unintended behaviors that stem from having multiple definitions of the same
name. All macro names prefixed with “GL_” (“GL” followed by a single underscore) are also
reserved, and defining such a name results in a compile-time error.

It is an error to undefine or to redefine a built-in (pre-defined) macro name.

Implementations must support macro-name lengths of up to 1024 characters. It is an error to
declare a name with a length greater than this.

#if, #ifdef, #ifndef, #else, #elif, and #endif are defined to operate as is standard for C++
preprocessors except for the following:

• Expressions following #if and #elif are restricted to pp-constant-expressions as defined below.

• Undefined identifiers not consumed by the defined operator do not default to '0'. Use of such
identifiers causes an error.

• Character constants are not supported.

As in C++, a macro name defined with an empty replacement list does not default to '0' when used

14

in a preprocessor expression.

A pp-constant-expression is an integral expression, evaluated at compile-time during preprocessing
and formed from literal integer constants and the following operators:

Precedence Operator class Operators Associativity

1 (highest) parenthetical grouping () NA

2 unary defined
+ - ~ !

Right to Left

3 multiplicative * / % Left to Right

4 additive + - Left to Right

5 bit-wise shift << >> Left to Right

6 relational < > <= >= Left to Right

7 equality == != Left to Right

8 bit-wise and & Left to Right

9 bit-wise exclusive or ^ Left to Right

10 bit-wise inclusive or | Left to Right

11 logical and && Left to Right

12 (lowest) logical inclusive or || Left to Right

The defined operator can be used in either of the following ways:

defined identifier
defined (identifier)

There are no number sign based operators (e.g. no or@), no ## operator, nor is there a sizeof
operator.

The semantics of applying operators in the preprocessor match those standard in the C++
preprocessor with the following exceptions:

• The 2nd operand in a logical and ('&&') operation is evaluated if and only if the 1st operand
evaluates to non-zero.

• The 2nd operand in a logical or ('||') operation is evaluated if and only if the 1st operand
evaluates to zero.

• There is no boolean type and no boolean literals. A true or false result is returned as integer one
or zero respectively. Wherever a boolean operand is expected, any non-zero integer is
interpreted as true and a zero integer as false.

If an operand is not evaluated, the presence of undefined identifiers in the operand will not cause
an error.

#error will cause the implementation to put a compile-time diagnostic message into the shader

15

object’s information log (see section 7.12 “Shader, Program and Program Pipeline Queries” of the
OpenGL ES Specification for how to access a shader object’s information log). The message will be
the tokens following the #error directive, up to the first new-line. The implementation must treat
the presence of a #error directive as a compile-time error.

#pragma allows implementation-dependent compiler control. Tokens following #pragma are not
subject to preprocessor macro expansion. If an implementation does not recognize the tokens
following #pragma, then it will ignore that pragma. The following pragmas are defined as part of
the language.

#pragma STDGL

The STDGL pragma is used to reserve pragmas for use by future revisions of this language. No
implementation may use a pragma whose first token is STDGL.

#pragma optimize(on)
#pragma optimize(off)

can be used to turn off optimizations as an aid in developing and debugging shaders. It can only be
used outside function definitions. By default, optimization is turned on for all shaders. The debug
pragma

#pragma debug(on)
#pragma debug(off)

can be used to enable compiling and annotating a shader with debug information, so that it can be
used with a debugger. It can only be used outside function definitions. By default, debug is turned
off.

The scope as well as the effect of the optimize and debug pragmas is implementation-dependent
except that their use must not generate an error. Incorrect use of predefined pragmas does not
cause an error.

By default, compilers of this language must issue compile-time syntactic, semantic, and
grammatical errors for shaders that do not conform to this specification. Any extended behavior
must first be enabled. Directives to control the behavior of the compiler with respect to extensions
are declared with the #extension directive

#extension extension_name : behavior
#extension all : behavior

where extension_name is the name of an extension. Extension names are not documented in this
specification. The token all means the behavior applies to all extensions supported by the compiler.
The behavior can be one of the following:

16

Behavior Effect

require Behave as specified by the extension
extension_name.
Give a compile-time error on the #extension if
the extension extension_name is not supported,
or if all is specified.

enable Behave as specified by the extension
extension_name.
Warn on the #extension if the extension
extension_name is not supported.
Give an error on the #extension if all is
specified.

warn Behave as specified by the extension
extension_name, except issue warnings on any
detectable use of that extension, unless such use
is supported by other enabled or required
extensions.
If all is specified, then warn on all detectable
uses of any extension used.
Warn on the #extension if the extension
extension_name is not supported.

disable Behave (including issuing errors and warnings)
as if the extension extension_name is not part of
the language definition.
If all is specified, then behavior must revert
back to that of the non-extended core version of
the language being compiled to.
Warn on the #extension if the extension
extension_name is not supported.

The extension directive is a simple, low-level mechanism to set the behavior for each extension. It
does not define policies such as which combinations are appropriate, those must be defined
elsewhere. Order of directives matters in setting the behavior for each extension: Directives that
occur later override those seen earlier. The all variant sets the behavior for all extensions,
overriding all previously issued extension directives, but only for the behaviors warn and disable.

The initial state of the compiler is as if the directive

#extension all : disable

was issued, telling the compiler that all error and warning reporting must be done according to this
specification, ignoring any extensions.

Each extension can define its allowed granularity of scope. If nothing is said, the granularity is a
shader (that is, a single compilation unit), and the extension directives must occur before any non-
preprocessor tokens. If necessary, the linker can enforce granularities larger than a single

17

compilation unit, in which case each involved shader will have to contain the necessary extension
directive.

Macro expansion is not done on lines containing #extension and #version directives.

For each extension there is an associated macro. The macro is always defined in an implementation
that supports the extension. This allows the following construct to be used:

#ifdef OES_extension_name
 #extension OES_extension_name : enable
 // code that requires the extension
#else
 // alternative code
#endif

#line must have, after macro substitution, one of the following forms:

#line line
#line line source-string-number

where line and source-string-number are pp-constant-expressions. If these constant expressions are
not integer literals then behavior is undefined. After processing this directive (including its new-
line), the implementation will behave as if it is compiling at line number line and source string
number source-string-number. Subsequent source strings will be numbered sequentially, until
another #line directive overrides that numbering.

Note

Some implementations have allowed constant expressions in #line directives and
some have not. Even where expressions are supported the grammar is ambiguous
and so results are implementation dependent. For example, + #line +2 +2 // Line
number set to 4, or file to 2 and line to 2

When targeting Vulkan, the following predefined macro is available:

#define VULKAN 100

If during macro expansion a preprocessor directive is encountered, the results are undefined; the
compiler may or may not report an error in such cases.

3.5. Comments
Comments are delimited by /* and */, or by // and a new-line. // style comments include the initial //
marker and continue up to, but not including, the terminating newline. /*...*/ comments include
both the start and end marker. The begin comment delimiters (/* or //) are not recognized as
comment delimiters inside of a comment, hence comments cannot be nested. Comments are treated

18

syntactically as a single space.

3.6. Tokens
The language, after preprocessing, is a sequence of tokens. A token can be

token :

keyword
identifier
integer-constant
floating-constant
operator
; { }

3.7. Keywords
The following are the keywords in the language and (after preprocessing) can only be used as
described in this specification, or an error results:

const uniform buffer shared

coherent volatile restrict readonly writeonly

atomic_uint

layout

centroid flat smooth

patch sample

invariant precise

break continue do for while switch case default

if else

19

in out inout

int void bool true false float

discard return

vec2 vec3 vec4 ivec2 ivec3 ivec4 bvec2 bvec3 bvec4

uint uvec2 uvec3 uvec4

mat2 mat3 mat4

mat2x2 mat2x3 mat2x4

mat3x2 mat3x3 mat3x4

mat4x2 mat4x3 mat4x4

lowp mediump highp precision

sampler2D sampler2DShadow sampler2DArray sampler2DArrayShadow

isampler2D isampler2DArray usampler2D usampler2DArray

sampler2DMS isampler2DMS usampler2DMS

sampler2DMSArray isampler2DMSArray usampler2DMSArray

sampler3D isampler3D usampler3D

samplerCube samplerCubeShadow isamplerCube usamplerCube

20

samplerCubeArray samplerCubeArrayShadow

isamplerCubeArray usamplerCubeArray

samplerBuffer isamplerBuffer usamplerBuffer

image2D iimage2D uimage2D

image2DArray iimage2DArray uimage2DArray

image3D iimage3D uimage3D

imageCube iimageCube uimageCube

imageCubeArray iimageCubeArray uimageCubeArray

imageBuffer iimageBuffer uimageBuffer

struct

In addition, when targeting Vulkan, the following keywords also exist:

texture2D texture2DArray

itexture2D itexture2DArray utexture2D utexture2DArray

texture2DMS itexture2DMS utexture2DMS

texture2DMSArray itexture2DMSArray utexture2DMSArray

texture3D itexture3D utexture3D

21

textureCube itextureCube utextureCube

textureCubeArray itextureCubeArray utextureCubeArray

textureBuffer itextureBuffer utextureBuffer

sampler samplerShadow

subpassInput isubpassInput usubpassInput

subpassInputMS isubpassInputMS usubpassInputMS

The following are the keywords reserved for future use. Using them will result in an error:

attribute varying

noperspective

subroutine

common partition active

asm

class union enum typedef template this

resource

goto

inline noinline public static extern external interface

22

long short half fixed unsigned superp double

input output

hvec2 hvec3 hvec4 fvec2 fvec3 fvec4

dvec2 dvec3 dvec4

dmat2 dmat3 dmat4

dmat2x2 dmat2x3 dmat2x4

dmat3x2 dmat3x3 dmat3x4

dmat4x2 dmat4x3 dmat4x4

filter

sizeof cast

namespace using

sampler1D sampler1DShadow sampler1DArray sampler1DArrayShadow

isampler1D isampler1DArray usampler1D usampler1DArray

sampler2DRect sampler2DRectShadow isampler2DRect usampler2DRect

sampler3DRect

image1D iimage1D uimage1D

23

image1DArray iimage1DArray uimage1DArray

image2DRect iimage2DRect uimage2DRect

image2DMS iimage2DMS uimage2DMS

image2DMSArray iimage2DMSArray uimage2DMSArray

In addition, all identifiers containing two consecutive underscores (__) are reserved for use by
underlying software layers. Defining such a name in a shader does not itself result in an error, but
may result in unintended behaviors that stem from having multiple definitions of the same name.

3.8. Identifiers
Identifiers are used for variable names, function names, structure names, and field selectors (field
selectors select components of vectors and matrices, similarly to structure members). Identifiers
have the form:

identifier :

nondigit
identifier nondigit
identifier digit

nondigit : one of

_ a b c d e f g h i j k l m n o p q r s t u v w x y z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

digit : one of

0 1 2 3 4 5 6 7 8 9

Identifiers starting with “gl_” are reserved, and in general, may not be declared in a shader; this
results in an error. However, as noted in the specification, there are some cases where previously
declared variables can be redeclared, and predeclared “gl_” names are allowed to be redeclared in
a shader only for these specific purposes.

Implementations must support identifier lengths of up to 1024 characters. It is an error if the length
exceeds this value.

3.9. Definitions
Some language rules described below depend on the following definitions.

24

3.9.1. Static Use

A shader contains a static use of a variable x if, after preprocessing, the shader contains a statement
that would access any part of x, whether or not flow of control will cause that statement to be
executed. Such a variable is referred to as being statically used. If the access is a write then x is
further said to be statically assigned.

3.9.2. Dynamically Uniform Expressions and Uniform Control Flow

Some operations require an expression to be dynamically uniform, or that it be located in uniform
control flow. These requirements are defined by the following set of definitions.

An invocation is a single execution of main() for a particular stage, operating only on the amount of
data explicitly exposed within that stage’s shaders. (Any implicit operation on additional instances
of data would comprise additional invocations.) For example, in compute execution models, a
single invocation operates only on a single work item, or, in a vertex execution model, a single
invocation operates only on a single vertex.

An invocation group is the complete set of invocations collectively processing a particular compute
workgroup or graphical operation, where the scope of a "graphical operation" is implementation-
dependent, but at least as large as a single triangle or patch, and at most as large as a single
rendering command, as defined by the client API.

Within a single invocation, a single shader statement can be executed multiple times, giving
multiple dynamic instances of that instruction. This can happen when the instruction is executed in
a loop, or in a function called from multiple call sites, or combinations of multiple of these.
Different loop iterations and different dynamic function-call-site chains yield different dynamic
instances of such an instruction. Dynamic instances are distinguished by their control-flow path
within an invocation, not by which invocation executed it. That is, different invocations of main()
execute the same dynamic instances of an instruction when they follow the same control-flow path.

An expression is dynamically uniform for a dynamic instance consuming it when its value is the
same for all invocations (in the invocation group) that execute that dynamic instance.

Uniform control flow (or converged control flow) occurs when all invocations in the invocation
group execute the same control-flow path (and hence the same sequence of dynamic instances of
instructions). Uniform control flow is the initial state at the entry into main(), and lasts until a
conditional branch takes different control paths for different invocations (non-uniform or
divergent control flow). Such divergence can reconverge, with all the invocations once again
executing the same control-flow path, and this re-establishes the existence of uniform control flow.
If control flow is uniform upon entry into a selection or loop, and all invocations in the invocation
group subsequently leave that selection or loop, then control flow reconverges to be uniform.

For example:

main()
{
 float a = ...; // this is uniform control flow
 if (a < b) { // this expression is true for some fragments, not all

25

 ...; // non-uniform control flow
 } else {
 ...; // non-uniform control flow
 }
 ...; // uniform control flow again
}

Other examples of non-uniform control flow can occur within loops where some invocations
execute iterations that others do not, after conditional breaks, continues, early returns, and after
fragment discards, when the condition is true for some fragments but not others.

Note that constant expressions are trivially dynamically uniform. It follows that typical loop
counters based on these are also dynamically uniform.

3.10. Logical Phases of Compilation
The compilation units for the shader processors are processed separately before optionally being
linked together in the final stage of compilation. The logical phases of compilation are:

1. Source strings are input as byte sequences. The value 'zero' is interpreted as a terminator.

2. Source strings are concatenated to form a single input. Zero bytes are discarded but all other
values are retained.

3. Each string is interpreted according to the UTF-8 standard, with the exception that all invalid
byte sequences are retained in their original form for subsequent processing.

4. Each {carriage-return, line-feed} and {line-feed, carriage return} sequence is replaced by a
single newline. All remaining carriage-return and line-feed characters are then each replaced
by a newline.

5. Line numbering for each character, which is equal to the number of preceding newlines plus
one, is noted. Note this can only be subsequently changed by the #line directive and is not
affected by the removal of newlines in phase 6 of compilation.

6. Wherever a backslash ('\') occurs immediately before a newline, both are deleted. Note that no
whitespace is substituted, thereby allowing a single preprocessing token to span a newline. This
operation is not recursive; any new {backslash newline} sequences generated are not removed.

7. All comments are replaced with a single space. All (non-zero) characters and invalid UTF-8 byte
sequences are allowed within comments. '//' style comments include the initial '//' marker and
continue up to, but not including, the terminating newline. '/…/' comments include both the
start and end marker.

8. The source string is converted into a sequence of preprocessing tokens. These tokens include
preprocessing numbers, identifiers and preprocessing operations. The line number associated
with each token is copied from the line number of the first character of the token.

9. The preprocessor is run. Directives are executed and macro expansion is performed.

10. White space and newlines are discarded.

11. Preprocessing tokens are converted into tokens.

26

12. The syntax is analyzed according to the GLSL ES grammar.

13. The result is checked according to the semantic rules of the language.

14. Optionally, the shaders are linked together to form one or more programs or separable
programs. When a pair of shaders from consecutive stages are linked into the same program,
any outputs and corresponding inputs not used in both shaders may be discarded.

15. The binary is generated.

27

Chapter 4. Variables and Types
All variables and functions must be declared before being used. Variable and function names are
identifiers.

There are no default types. All variable and function declarations must have a declared type, and
optionally qualifiers. A variable is declared by specifying its type followed by one or more names
separated by commas. In many cases, a variable can be initialized as part of its declaration by using
the assignment operator (=).

User-defined types may be defined using struct to aggregate a list of existing types into a single
name.

The OpenGL ES Shading Language is type safe. There are no implicit conversions between types.

4.1. Basic Types
Definition

A basic type is a type defined by a keyword in the language.

The OpenGL ES Shading Language supports the following basic data types, grouped as follows.

Transparent Types

Type Meaning

void for functions that do not return a value

bool a conditional type, taking on values of true or
false

int a signed integer

uint an unsigned integer

float a single-precision floating-point scalar

vec2 a two-component single-precision floating-point
vector

vec3 a three-component single-precision floating-
point vector

vec4 a four-component single-precision floating-point
vector

bvec2 a two-component Boolean vector

bvec3 a three-component Boolean vector

bvec4 a four-component Boolean vector

ivec2 a two-component signed integer vector

ivec3 a three-component signed integer vector

28

Type Meaning

ivec4 a four-component signed integer vector

uvec2 a two-component unsigned integer vector

uvec3 a three-component unsigned integer vector

uvec4 a four-component unsigned integer vector

mat2 a 2 × 2 single-precision floating-point matrix

mat3 a 3 × 3 single-precision floating-point matrix

mat4 a 4 × 4 single-precision floating-point matrix

mat2x2 same as a mat2

mat2x3 a single-precision floating-point matrix with 2
columns and 3 rows

mat2x4 a single-precision floating-point matrix with 2
columns and 4 rows

mat3x2 a single-precision floating-point matrix with 3
columns and 2 rows

mat3x3 same as a mat3

mat3x4 a single-precision floating-point matrix with 3
columns and 4 rows

mat4x2 a single-precision floating-point matrix with 4
columns and 2 rows

mat4x3 a single-precision floating-point matrix with 4
columns and 3 rows

mat4x4 same as a mat4

Note that where the following tables say “accessing a texture”, the sampler* opaque types access
textures, and the image* opaque types access images, of a specified type.

Floating-Point Opaque Types

Type Meaning

sampler2D
texture2D
image2D

a handle for accessing a 2D texture

sampler2DShadow a handle for accessing a 2D depth texture with
comparison

sampler2DArray
texture2DArray
image2DArray

a handle for accessing a 2D array texture

sampler2DArrayShadow a handle for accessing a 2D array depth texture
with comparison

29

Type Meaning

sampler2DMS
texture2DMS

a handle for accessing a 2D multisample texture

sampler2DMSArray a handle for accessing a 2D multisample array
texture

sampler3D
texture3D
image3D

a handle for accessing a 3D texture

samplerCube
textureCube
imageCube

a handle for accessing a cube mapped texture

samplerCubeShadow a handle for accessing a cube map depth texture
with comparison

samplerCubeArray
textureCubeArray
imageCubeArray

a handle for accessing a cube map array texture

samplerCubeArrayShadow a handle for accessing a cube map array depth
texture with comparison

samplerBuffer
textureBuffer
imageBuffer

a handle for accessing a buffer texture

subpassInput a handle for accessing a floating-point subpass
input

subpassInputMS a handle for accessing a multi-sampled floating-
point subpass input

Signed Integer Opaque Types

Type Meaning

isampler2D
itexture2D
iimage2D

a handle for accessing an integer 2D texture

isampler2DArray
itexture2DArray
iimage2DArray

a handle for accessing an integer 2D array
texture

isampler2DMS
itexture2DMS

a handle for accessing an integer 2D
multisample texture

isampler2DMSArray
itexture2DMSArray

a handle for accessing an integer 2D
multisample array texture

isampler3D
itexture3D
iimage3D

a handle for accessing an integer 3D texture

30

Type Meaning

isamplerCube
itextureCube
iimageCube

a handle for accessing an integer cube mapped
texture

isamplerCubeArray
itextureCubeArray
iimageCubeArray

a handle for accessing an integer cube map
array texture

isamplerBuffer
itextureBuffer
iimageBuffer

a handle for accessing an integer buffer texture

isubpassInput a handle for accessing an integer subpass input

isubpassInputMS a handle for accessing a multi-sampled integer
subpass input

Unsigned Integer Opaque Types

Type Meaning

usampler2D
utexture2D
uimage2D

a handle for accessing an unsigned integer 2D
texture

usampler2DArray
utexture1DArray
uimage2DArray

a handle for accessing an unsigned integer 2D
array texture

usampler2DMS
utexture2DMS

a handle for accessing an unsigned integer 2D
multisample texture

usampler2DMSArray
utexture2DMSArray

a handle for accessing an unsigned integer 2D
multisample array texture

usampler3D
utexture3D
uimage3D

a handle for accessing an unsigned integer 3D
texture

usamplerCube
utextureCube
uimageCube

a handle for accessing an unsigned integer cube
mapped texture

usamplerCubeArray
utextureCubeArray
uimageCubeArray

a handle for accessing an unsigned integer cube
map array texture

usamplerBuffer
utextureBuffer
uimageBuffer

a handle for accessing an unsigned integer
buffer texture

atomic_uint a handle for accessing an unsigned integer
atomic counter

31

Type Meaning

usubpassInput a handle for accessing an unsigned-integer
subpass input

usubpassInputMS a handle for accessing a multi-sampled
unsigned-integer subpass input

Sampler Opaque Types

Type Meaning

sampler a handle for accessing state describing how to
sample a texture

samplerShadow a handle for accessing state describing how to
sample a depth texture with comparison

In addition, a shader can aggregate these basic types using arrays and structures to build more
complex types.

There are no pointer types.

4.1.1. Void

Functions that do not return a value must be declared as void. There is no default function return
type. The keyword void cannot be used in any other declarations (except for empty formal or
actual parameter lists), or an error results.

4.1.2. Booleans

Definition

A boolean type is any boolean scalar or vector type (bool, bvec2, bvec3, bvec4)

To make conditional execution of code easier to express, the type bool is supported. There is no
expectation that hardware directly supports variables of this type. It is a genuine Boolean type,
holding only one of two values meaning either true or false. Two keywords true and false can be
used as literal Boolean constants. Booleans are declared and optionally initialized as in the follow
example:

bool success; // declare "success" to be a Boolean
bool done = false; // declare and initialize "done"

Expressions used for conditional jumps (if, for, ?:, while, do-while) must evaluate to the type bool.

4.1.3. Integers

Definitions

An integral type is any signed or unsigned, scalar or vector integer type. It excludes arrays and
structures.

32

A scalar integral type is a scalar signed or unsigned integer type:

A vector integral type is a vector of signed or unsigned integers:

Signed and unsigned integer variables are fully supported. In this document, the term integer is
meant to generally include both signed and unsigned integers.

highp unsigned integers have exactly 32 bits of precision.

highp signed integers use 32 bits, including a sign bit, in two’s complement form.

When targeting Vulkan, mediump and lowp integers are as defined by the SPIR-V
RelaxedPrecision decoration. Otherwise, mediump and lowp integers have implementation-
defined numbers of bits. See “Range and Precision” for details.

For all precisions, addition, subtraction and multiplication resulting in overflow or underflow will
result in the low-order n bits of the correct result R, where n is the size in bits of the integer and R is
computed with enough precision to avoid overflow or underflow. Division resulting in overflow
will result in an undefined value.

Integers are declared and optionally initialized with integer expressions, as in the following
example:

int i, j = 42; // default integer literal type is int
uint k = 3u; // "u" establishes the type as uint

Literal integer constants can be expressed in decimal (base 10), octal (base 8), or hexadecimal (base
16) as follows.

integer-constant :

decimal-constant integer-suffixopt

octal-constant integer-suffixopt

hexadecimal-constant integer-suffixopt

integer-suffix : one of

u U

decimal-constant :

nonzero-digit
decimal-constant digit

octal-constant :

0
octal-constant octal-digit

33

hexadecimal-constant :

0x hexadecimal-digit
0X hexadecimal-digit
hexadecimal-constant hexadecimal-digit

digit :

0
nonzero-digit

nonzero-digit : one of

1 2 3 4 5 6 7 8 9

octal-digit : one of

0 1 2 3 4 5 6 7

hexadecimal-digit : one of

0 1 2 3 4 5 6 7 8 9
a b c d e f
A B C D E F

No white space is allowed between the digits of an integer constant, including after the leading 0 or
after the leading 0x or 0X of a constant, or before the suffix u or U. When the suffix u or U is
present, the literal has type uint, otherwise the type is int. A leading unary minus sign (-) is
interpreted as an arithmetic unary negation, not as part of the constant. Hence, literals themselves
are always expressed with non-negative syntax, though they could result in a negative value.

It is an error to provide a literal integer whose bit pattern cannot fit in 32 bits. The bit pattern of the
literal is always used unmodified. So a signed literal whose bit pattern includes a set sign bit creates
a negative value.

For example,

1 // OK. Signed integer, value 1
1u // OK. Unsigned integer, value 1
-1 // OK. Unary minus applied to signed integer.
 // result is a signed integer, value -1
-1u // OK. Unary minus applies to unsigned integer.
 // Result is an unsigned integer, value 0xffffffff
0xA0000000 // OK. 32-bit signed hexadecimal
0xABcdEF00u // OK. 32-bit unsigned hexadecimal
0xffffffff // OK. Signed integer, value -1
0x80000000 // OK. Evaluates to -2147483648
0xffffffffu // OK. Unsigned integer, value 0xffffffff
0xfffffffff // Error: needs more than 32 bits
3000000000 // OK. A signed decimal literal taking 32 bits.
 // It evaluates to -1294967296
2147483648 // OK. Evaluates to -2147483648 (the literal set the sign bit)
5000000000 // Error: needs more than 32 bits

34

4.1.4. Floats

Definition

A floating-point type is any floating-point scalar, vector or matrix type. It excludes arrays and
structures.

Floats are available for use in a variety of scalar calculations. Floating-point variables are defined
as in the following example:

float a, b = 1.5;

As an input value to one of the processing units, a floating-point variable is expected to match the
IEEE 754 single precision floating-point definition for precision and dynamic range. highp floating-
point variables within a shader are encoded according to the IEEE 754 specification for single-
precision floating-point values (logically, not necessarily physically). While encodings are logically
IEEE 754, operations (addition, multiplication, etc.) are not necessarily performed as required by
IEEE 754. See “Range and Precision” for more details on precision and usage of NaNs (Not a
Number) and Infs (positive or negative infinities).

Floating-point constants are defined as follows.

floating-constant :

fractional-constant exponent-partopt floating-suffixopt

digit-sequence exponent-part floating-suffixopt

fractional-constant :

digit-sequence . digit-sequence
digit-sequence .
. digit-sequence

exponent-part :

e signopt digit-sequence
E signopt digit-sequence

sign : one of

+ -

digit-sequence :

digit
digit-sequence digit

floating-suffix : one of

f F

A decimal point (.) is not needed if the exponent part is present. No white space may appear
anywhere within a floating-point constant, including before a suffix. A leading unary minus sign (-)
is interpreted as a unary operator and is not part of the floating-point constant.

35

There is no limit on the number of digits in any digit-sequence. If the value of the floating-point
number is too large (small) to be stored as a single precision value, it is converted to positive
(negative) infinity. A value with a magnitude too small to be represented as a mantissa and
exponent is converted to zero. Implementations may also convert subnormal (denormalized)
numbers to zero.

4.1.5. Vectors

The OpenGL ES Shading Language includes data types for generic 2-, 3-, and 4-component vectors of
floating-point values, integers, and Booleans. Floating-point vector variables can be used to store
colors, normals, positions, texture coordinates, texture lookup results and the like. Boolean vectors
can be used for component-wise comparisons of numeric vectors. Some examples of vector
declarations are:

vec2 texcoord1, texcoord2;
vec3 position;
vec4 myRGBA;
ivec2 textureLookup;
bvec3 less;

Initialization of vectors can be done with constructors. See “Vector and Matrix Constructors”.

4.1.6. Matrices

The OpenGL ES Shading Language has built-in types for 2 × 2, 2 × 3, 2 × 4, 3 × 2, 3 × 3, 3 × 4, 4 × 2, 4 ×
3, and 4 × 4 matrices of floating-point numbers. The first number in the type is the number of
columns, the second is the number of rows. If there is only one number, the matrix is square.
Example matrix declarations:

mat2 mat2D;
mat3 optMatrix;
mat4 view, projection;
mat4x4 view; // an alternate way of declaring a mat4
mat3x2 m; // a matrix with 3 columns and 2 rows

Initialization of matrix values is done with constructors (described in “Vector and Matrix
Constructors”) in column-major order.

mat2 is an alias for mat2x2, not a distinct type. Similarly for mat3 and mat4. The following is legal:

mat2 a;
mat2x2 b = a;

4.1.7. Opaque Types

36

Definition

An opaque type is a type where the internal structure of the type is hidden from the language.

The opaque types, as listed in the following sections, declare variables that are effectively opaque
handles to other objects. These objects are accessed through built-in functions, not through direct
reading or writing of the declared variable. They can only be declared as function parameters or in
uniform-qualified variables (see “Uniform Variables”). The only opaque types that take memory
qualifiers are the image types. Except for array indexing, structure member selection, and
parentheses, opaque variables are not allowed to be operands in expressions; such use results in a
compile-time error.

When aggregated into arrays within a shader, opaque types can only be indexed with a
dynamically uniform integral expression (see “Dynamically Uniform Expressions”) unless
otherwise noted; otherwise, results are undefined.

Opaque variables cannot be treated as l-values; hence cannot be used as out or inout function
parameters, nor can they be assigned into. Any such use results in a compile-time error. However,
they can be passed as in parameters with matching types and memory qualifiers. They cannot be
declared with an initializer.

Because a single opaque type declaration effectively declares two objects, the opaque handle itself
and the object it is a handle to, there is room for both a storage qualifier and a memory qualifier.
The storage qualifier will qualify the opaque handle, while the memory qualifier will qualify the
object it is a handle to.

Texture-Combined Samplers

Texture-combined sampler types (e.g. sampler2D) are the sampler types described in the Basic
Types tables as handles for accessing textures. (They do not include sampler and samplerShadow.)
There are distinct texture-combined sampler types for each texture target, and for each of float,
integer, and unsigned integer data types. Texture accesses are done through built-in texture
functions (described in “Texture Functions”) and texture-combined samplers are used to specify
which texture to access and how it is to be filtered.

Texture-combined sampler types are opaque types, declared and behaving as described above for
opaque types.

Images

Image types are opaque types, declared and behaving as described above for opaque types. They
can be further qualified with memory qualifiers. When aggregated into arrays within a shader,
images can only be indexed with a constant integral expression.

Image variables are handles to two-, or three-dimensional images corresponding to all or a portion
of a single level of a texture image bound to an image unit. There are distinct image variable types
for each texture target, and for each of float, integer, and unsigned integer data types. Image
accesses should use an image type that matches the target of the texture whose level is bound to the
image unit, or for non-layered bindings of 3D or array images should use the image type that
matches the dimensionality of the layer of the image (i.e., a layer of 3D, 2DArray, Cube, or
CubeArray should use image2D). If the image target type does not match the bound image in this

37

manner, if the data type does not match the bound image, or if the format layout qualifier does not
match the image unit format as described in section 8.22 “Texture Image Loads and Stores” of the
OpenGL ES Specification, the results of image accesses are undefined but cannot include program
termination.

Image variables are used in the image load, store, and atomic functions described in “Image
Functions” to specify an image to access.

Atomic Counters

Atomic counter types (e.g. atomic_uint) are opaque handles to counters, declared and behaving as
described above for opaque types. The variables they declare specify which counter to access when
using the built-in atomic counter functions as described in “Atomic Counter Functions”. They are
bound to buffers as described in “Atomic Counter Layout Qualifiers”.

Atomic counters aggregated into arrays within a shader can only be indexed with dynamically
uniform integral expressions, otherwise results are undefined.

Members of structures cannot be declared as atomic counter types.

The default precision of all atomic types is highp. It is an error to declare an atomic type with a
different precision or to specify the default precision for an atomic type to be lowp or mediump.

Atomic counter types are not available when targeting Vulkan.

Texture, sampler, and samplerShadow Types

Texture (e.g., texture2D), sampler, and samplerShadow types are opaque types, declared and
behaving as described above for opaque types. These types are only available when targeting
Vulkan. When aggregated into arrays within a shader, these types can only be indexed with a
dynamically uniform expression, or texture lookup will result in undefined values. Texture
variables are handles to one-, two-, and three-dimensional textures, cube maps, etc., as enumerated
in the basic types tables. There are distinct texture types for each texture target, and for each of
float, integer, and unsigned integer data types. Textures can be combined with a variable of type
sampler or samplerShadow to create a texture-combined sampler type (e.g., sampler2D, or
sampler2DShadow). This is done with a constructor, e.g., sampler2D(texture2D, sampler),
sampler2DShadow(texture2D, sampler), sampler2DShadow(texture2D, samplerShadow), or
sampler2D(texture2D, samplerShadow) and is described in more detail in section 5.4 "Constructors".

Subpass Inputs

Subpass-input types are only available when targeting Vulkan.

Subpass-input types (e.g., subpassInput) are opaque types, declared and behaving as described
above for opaque types. When aggregated into arrays within a shader, they can only be indexed
with a dynamically uniform integral expression, otherwise results are undefined.

Subpass-input types are handles to two-dimensional single sampled or multi-sampled images, with
distinct types for each of float, integer, and unsigned integer data types.

Subpass-input types are only available in fragment shaders. It is an error to use them in any other

38

stage.

4.1.8. Structures

User-defined types can be created by aggregating other already defined types into a structure using
the struct keyword. For example,

struct light {
 float intensity;
 vec3 position;
} lightVar;

In this example, light becomes the name of the new type, and lightVar becomes a variable of type
light. To declare variables of the new type, use its name (without the keyword struct).

light lightVar2;

More formally, structures are declared as follows. However, the definitive grammar is as given in
“Shading Language Grammar”.

struct-definition :

qualifieropt struct nameopt_ { member-list } declaratorsopt ;

member-list :

member-declaration ;
member-declaration member-list ;

member-declaration :

basic-type declarators ;

where name becomes the user-defined type, and can be used to declare variables to be of this new
type. The name shares the same name space as other variables, types, and functions. All previously
visible variables, types, constructors, or functions with that name are hidden. The optional qualifier
only applies to any declarators, and is not part of the type being defined for name.

Structures must have at least one member declaration. Bit fields are not supported. Member types
must be already defined (there are no forward references).

Member declarations may contain precision qualifiers, but use of any other qualifier results in an
error. Where a member declaration does not include a precision qualifier the member’s precision
is inferred as described in Default Precision Qualifiers at the point of the struct type’s declaration.

A compile-time error results if a member declaration contains an initializer. Member declarators
can contain arrays. Such arrays must have a size specified, and the size must be a constant integral
expression that’s greater than zero (see “Constant Expressions”). Each level of structure has its own
name space for names given in member declarators; such names need only be unique within that
name space.

39

Anonymous structures are not supported. Embedded structure definitions are not supported.

struct S { float f; }; // Allowed: S is defined as a structure.

struct T {
 S; // Error: anonymous structures disallowed
 struct { ... }; // Error: embedded structures disallowed
 S s; // Allowed: nested structure with a name.
};

Structures can be initialized at declaration time using constructors, as discussed in “Structure
Constructors”.

Any restrictions on the usage of a type or qualifier also apply to any structure that contains a
member of that type or qualifier. This also applies to structure members that are structures,
recursively.

Structures can contain variables of any type except:

• atomic_uint (since there is no mechanism to specify the binding)

• image types (since there is no mechanism to specify the format qualifier)

4.1.9. Arrays

Variables of the same type can be aggregated into arrays by declaring a name followed by brackets
([]) enclosing an optional size.

When present, the array size must be a constant integral expression (see “Constant Expressions”)
greater than zero. The type of the size parameter can be a signed or unsigned integer and the
choice of type does not affect the type of the resulting array. Arrays only have a single dimension (a
single number within “[]”), however, arrays of arrays can be declared. Any type can be formed into
an array.

Arrays are sized either at compile-time or at run-time. To size an array at compile-time, either the
size must be specified within the brackets as above or must be inferred from the type of the
initializer.

If an array is declared as the last member of a shader storage block and the size is not specified at
compile-time, it is sized at run-time. In all other cases, arrays are sized only at compile-time. An
array declaration sized at compile-time which leaves the size of the array unspecified is an error.

For compile-time sized arrays, it is illegal to index an array with a constant integral expression
greater than or equal to the declared size or with a negative constant expression. Arrays declared
as formal parameters in a function declaration must also specify a size. Undefined behavior results
from indexing an array with a non-constant expression that’s greater than or equal to the array’s
size or less than 0. If robust buffer access is enabled (see section 10.3.5 “Robust Buffer Access” of the
OpenGL ES Specification), such indexing must not result in abnormal program termination. The
results are still undefined, but implementations are encouraged to produce zero values for such
accesses.

40

Some examples are:

float frequencies[3];
uniform vec4 lightPosition[4u];
const int numLights = 2;
light lights[numLights];
vec4 a[3][2];
a.length() // this is 3
a[x].length() // this is 2
// a shader storage block, introduced in section 4.3.7 "Buffer Variables"
buffer b {
 float u[]; // an error
 vec4 v[]; // okay, v will be sized at run-time
} name[3]; // when the block is arrayed, all u will be the same size,
 // but not necessarily all v, if sized dynamically

When the length() method will return a compile-time constant, the expression in brackets (x above)
will be evaluated and subject to the rules required for array indices, but the array will not be
dereferenced. Thus, behavior is well defined even if the run-time value of the expression is out of
bounds.

An array type can be formed by specifying a non-array type ([type_specifier_nonarray]) followed by
an [array_specifier].

float[5]

Note that the construct type [size] does not always result in an array of length size of type type:

float[2][3] // an array of size [2] of array of size [3] of float,
 // not size [3] of float[2]

This type can be used anywhere any other type can be used, including as the return value from a
function

float[5] foo() { }

as a constructor of an array:

float[5](3.4, 4.2, 5.0, 5.2, 1.1)

as an unnamed parameter:

void foo(float[5])

41

and as an alternate way of declaring a variable or function parameter:

float[5] a;

An array type can also be formed without specifying a size if the definition includes an initializer:

float x[] = float[2] (1.0, 2.0); // declares an array of size 2
float y[] = float[] (1.0, 2.0, 3.0); // declares an array of size 3
float a[5];
float b[] = a;

Note that the initializer itself does not need to be a constant expression but the length of the
initializer will be a constant expression.

Arrays can have initializers formed from array constructors:

float a[5] = float[5](3.4, 4.2, 5.0, 5.2, 1.1);
float a[5] = float[](3.4, 4.2, 5.0, 5.2, 1.1); // same thing

An array of arrays can be declared as:

vec4 a[3][2]; // size-3 array of size-2 array of vec4

which declares a one-dimensional array of size 3 of one-dimensional arrays of size 2 of vec4. The
following declarations do the same thing:

vec4[2] a[3]; // size-3 array of size-2 array of vec4
vec4[3][2] a; // size-3 array of size-2 array of vec4

When in transparent memory (like in a uniform block), the layout is that the inner-most (right-most
in declaration) dimensions iterate faster than the outer dimensions. That is, for the above, the order
in memory would be:

Low address : a[0][0] : a[0][1] : a[1][0] : a[1][1] : a[2][0] : a[2][1] : High address

The last member of a shader storage block (see “Buffer Variables”), may be declared without
specifying a size. For such arrays, the effective array size is inferred at run-time from the size of the
data store backing the shader storage block. Such runtime-sized arrays may be indexed with
general integer expressions, but may not be passed as an argument to a function or indexed with a
negative constant expression.

struct S { float f; };
buffer ShaderStorageBlock1

42

{
 vec4 a[]; // illegal
 vec4 b[]; // legal, runtime-sized arrays are last member
};
buffer ShaderStorageBlock2
{
 vec4 a[4]; // legal, size declared
 S b[]; // legal, runtime-sized arrays are allowed,
 // including arrays of structures
};

However, it is a compile-time error to assign to a runtime-sized array. Assignments to individual
elements of the array is allowed.

Arrays have a fixed number of elements. This can be obtained by using the length() method:

float a[5];
a.length(); // returns 5

The return value is a signed integral expression. For compile-time sized arrays, the value returned
by the length method is a constant expression. For run-time sized arrays , the value returned will
not be constant expression and will be determined at run time based on the size of the buffer object
providing storage for the block.

The precision is determined using the same rules as for other cases where there is no intrinsic
precision. See “Precision Qualifiers”.

Any restrictions on the usage of a type also apply to arrays of that type. This applies recursively.

4.2. Scoping
The scope of a declaration determines where the declaration is visible. GLSL ES uses a system of
statically nested scopes. This allows names to be redefined within a shader.

4.2.1. Definition of Terms

The term scope refers to a specified region of the program where names are guaranteed to be
visible. For example, a compound_statement_with_scope ('{' statement statement … '}') defines a
scope.

A nested scope is a scope defined within an outer scope.

The terms 'same scope' and 'current scope' are equivalent to the term 'scope' but used to emphasize
that nested scopes are excluded.

The scope of a declaration is the region or regions of the program where that declaration is visible.

A name space defines where names may be defined. Within a single name space, a name has at

43

most one entry, specifying it to be one of: structure, variable, or function.

In general, each scope has an associated name space. However, in certain cases e.g. for uniforms,
multiple scopes share the same name space. In these cases, conflicting declarations are an error,
even though the name is only visible in the scopes where it is declared.

4.2.2. Types of Scope

The scope of a variable is determined by where it is declared. If it is declared outside all function
definitions, it has global scope, which starts from where it is declared and persists to the end of the
shader it is declared in. If it is declared in a while test or a for statement, then it is scoped to the
end of the following sub-statement (specified as statement-no-new-scope in the grammar).
Otherwise, if it is declared as a statement within a compound statement, it is scoped to the end of
that compound statement. If it is declared as a parameter in a function definition, it is scoped until
the end of that function definition. A function’s parameter declarations and body together form a
single scope.

int f(/* nested scope begins here */ int k)
{
 int k = k + 3; // redeclaration error of the name k
 ...
}
int f(int k)
{
 {
 int k = k + 3; // 2nd k is parameter, initializing nested first k
 int m = k // use of new k, which is hiding the parameter
 }
}

For both for and while loops, the sub-statement itself does not introduce a new scope for variable
names, so the following has a redeclaration compile-time error:

for (/* nested scope begins here */ int i = 0; i < 10; i++)
{
 int i; // redeclaration error
}

The body of a do-while loop introduces a new scope lasting only between the do and while (not
including the while test expression), whether or not the body is simple or compound:

int _i_ = 17;
do
 int i = 4; // okay, in nested scope
while (i == 0); // i is 17, scoped outside the do-while body

The statement following a switch (…) forms a nested scope.

44

Representing the if construct as:

if if-expression then if-statement else else-statement,

a variable declared in the if-statement is scoped to the end of the if-statement. A variable declared
in the else-statement is scoped to the end of the else-statement. This applies both when these
statements are simple statements and when they are compound statements. The if-expression does
not allow new variables to be declared, hence does not form a new scope.

Within a declaration, the scope of a name starts immediately after the initializer if present or
immediately after the name being declared if not. Several examples:

int x = 1;
{
 int x = 2,/* 2nd x visible here */ y = x; // y is initialized to 2
 int z = z; // error if z not previously defined.
}
{
int x = x; // x is initialized to '1'
}

A structure name declaration is visible at the end of the struct_specifier in which it was declared:

struct S
{
 int x;
};
{
 S S = S(0); // 'S' is only visible as a struct and constructor
 S; // 'S' is now visible as a variable
}
int x = x; // Error if x has not been previously defined.

4.2.3. Redeclaring Names

All variable names, structure type names, and function names in a given scope share the same
name space. Function names can be redeclared in the same scope, with the same or different
parameters, without error. Otherwise, within a shader, a declared name cannot be redeclared in
the same scope; doing so results in a redeclaration error. If a nested scope redeclares a name used
in an outer scope, it hides all existing uses of that name. There is no way to access the hidden name
or make it unhidden, without exiting the scope that hid it.

Names of built-in functions cannot be redeclared as functions. Therefore overloading or redefining
built-in functions is an error.

A declaration is considered to be a statement that adds a name or signature to the symbol table. A
definition is a statement that fully defines that name or signature. E.g.

45

int f();// declaration;
int f() {return 0;}// declaration and definition
int x; // declaration and definition
int a[4];// array declaration and definition
struct S {int x;};// structure declaration and definition

The determination of equivalence of two declarations depends on the type of declaration. For
functions, the whole function signature must be considered (see “Function Definitions”). For
variables (including arrays) and structures only the names must match.

Within each scope, a name may be declared either as a variable declaration or as function
declarations or as a structure.

Examples of combinations that are allowed:

1.

void f(int) {...}
void f(float) {...}// function overloading allowed

2.

void f(int);// 1^st^ declaration (allowed)
void f(int);// repeated declaration (allowed)
void f(int) {...}// single definition (allowed)

Examples of combinations that are disallowed:

1.

void f(int) {...}
void f(int) {...}// Error: repeated definition

2.

void f(int);
struct f {int x;};// Error: type 'f' conflicts with function 'f'

3.

struct f {int x;};
int f;// Error: conflicts with the type 'f'

4.

46

int a[3];
int a[3];// Error: repeated array definition

5.

int x;
int x;// Error: repeated variable definition

4.2.4. Global Scope

The built-in functions are scoped in the global scope users declare global variables in. That is, a
shader’s global scope, available for user-defined functions and global variables, is the same as the
scope containing the built-in functions. Function declarations (prototypes) cannot occur inside of
functions; they must be at global scope. Hence it is not possible to hide a name with a function.

4.2.5. Shared Globals

Shared globals are variables that can be accessed by multiple compilation units. In GLSL ES the
only shared globals are uniforms. Vertex shader outputs are not considered to be shared globals
since they must pass through the rasterization stage before they are used as input by the fragment
shader.

Shared globals share the same name space, and must be declared with the same type and precision.
They will share the same storage. Shared global arrays must have the same base type and the same
explicit size. Scalars must have exactly the same precision, type name and type definition.
Structures must have the same name, sequence of type names, and type definitions, and member
names to be considered the same type. This rule applies recursively for nested or embedded types.

4.3. Storage Qualifiers
Variable declarations may have at most one storage qualifier specified in front of the type. These
are summarized as

Storage Qualifier Meaning

<none: default> local read/write memory, or an input parameter
to a function

const a compile-time constant

in linkage into a shader from a previous stage,
variable is copied in

out linkage out of a shader to a subsequent stage,
variable is copied out

uniform value does not change across the primitive being
processed, uniforms form the linkage between a
shader, API, and the application

47

Storage Qualifier Meaning

buffer value is stored in a buffer object, and can be
read or written both by shader invocations and
the API

shared compute shader only; variable storage is shared
across all work items in a workgroup

Some input and output qualified variables can be qualified with at most one additional auxiliary
storage qualifier:

Auxiliary Storage Qualifier Meaning

centroid centroid-based interpolation

sample per-sample interpolation

patch per-tessellation-patch attributes

Local variables can only use the const storage qualifier (or use no storage qualifier).

Note that function parameters can use const, in, and out qualifiers, but as parameter qualifiers.
Parameter qualifiers are discussed in “Function Calling Conventions”.

Function return types and structure members do not use storage qualifiers.

Data types for communication from one run of a shader executable to its next run (to communicate
between fragments or between vertices) do not exist. This would prevent parallel execution of the
same shader executable on multiple vertices or fragments.

In declarations of global variables with no storage qualifier or with a const qualifier, any initializer
must be a constant expression. Declarations of global variables with other storage qualifiers may
not contain initializers. Global variables without storage qualifiers that are not initialized in their
declaration or by the application will not be initialized, but rather will enter main() with undefined
values.

4.3.1. Default Storage Qualifier

If no qualifier is present on a global variable, then the variable has no linkage to the application or
shaders running on other pipeline stages. For either global or local unqualified variables, the
declaration will appear to allocate memory associated with the processor it targets. This variable
will provide read/write access to this allocated memory.

4.3.2. Constant Qualifier

Named compile-time constants can be declared using the const qualifier. Any variables qualified as
constant are read-only variables for that shader. Declaring variables as constant allows more
descriptive shaders than using hard-wired numerical constants. The const qualifier can be used
with any of the non-void transparent basic data types, as well as with structures and arrays of
these. It is an error to write to a const variable outside of its declaration, so they must be initialized
when declared. For example,

48

const vec3 zAxis = vec3 (0.0, 0.0, 1.0);

Structure members may not be qualified with const. Structure variables can be declared as const,
and initialized with a structure constructor.

Initializers for const declarations must be constant expressions, as defined in “Constant
Expressions”.

4.3.3. Constant Expressions

SPIR-V specialization constants are expressed in GLSL ES as const with the layout qualifier
constant_id, as described in “Specialization-Constant Qualifier.”

A constant expression is one of

• A literal value (e.g. 5 or true).

• A variable declared with the const qualifier and an initializer, where the initializer is a constant
expression. This includes both const declared with a specialization-constant layout qualifier,
e.g. layout(constant_id = …), and those declared without a specialization-constant layout
qualifier.

• Built-in variables qualified as const.

• An expression formed by an operator on operands that are all constant expressions, including
getting an element of a constant array, or a member of a constant structure, or components of a
constant vector. However, the lowest precedence operators of the sequence operator (,) and the
assignment operators (=, +=, …) are not included in the operators that can create a constant
expression. Also, an array access with a specialization constant as an index does not result in a
constant expression.

• The length() method on a compile-time sized array, whether or not the object itself is constant.

• A constructor whose arguments are all constant expressions.

• For non-specialization constants only: A built-in function call whose arguments are all constant
expressions, with the exception of the texture lookup functions. This rule excludes functions
with a void return or functions that have an out parameter. The built-in functions dFdx, dFdy,
and fwidth must return 0 when evaluated inside an initializer with an argument that is a
constant expression.

Function calls to user-defined functions (non-built-in functions) cannot be used to form constant
expressions.

Scalar, vector, matrix, array and structure variables are constant expressions if qualified as const.
Opaque types cannot be constant expressions.

A constant integral expression is a constant expression that evaluates to a scalar signed or unsigned
integer.

Constant expressions will be evaluated in an invariant way so as to create the same value in
multiple shaders when the same constant expressions appear in those shaders. See “The Invariant

49

Qualifier” for more details on how to create invariant expressions and “Precision Qualifiers” for
detail on how expressions are evaluated.

Constant expressions respect the precise and invariant qualifiers but will be always be evaluated
in an invariant way, independent of the use of such qualification, so as to create the same value in
multiple shaders when the same constant expressions appear in those shaders. See “The Invariant
Qualifier” and “The Precise Qualifier” for more details on how to create invariant expressions.

Constant-expressions may be evaluated by a host platform, and are therefore not required to
compute the same value that the same expression would evaluate to on the shader execution target.
However, the host must use the same or greater precision than the target would use. When the
precision qualification cannot be determined, the expression is evaluated at highp. See “Default
Precision Qualifiers”.

Specialization-constant expressions are never evaluated by the compiler front end, but instead
retain the expression’s operations needed to evaluate them later on the host.

4.3.4. Input Variables

Shader input variables are declared with the in storage qualifier. They form the input interface
between previous stages of the API pipeline and the declaring shader. Input variables must be
declared at global scope. Values from the previous pipeline stage are copied into input variables at
the beginning of shader execution. It is an error to write to a variable declared as an input.

Only the input variables that are actually read need to be written by the previous stage; it is
allowed to have superfluous declarations of input variables.

See “Built-In Variables” for a list of the built-in input names.

Vertex shader input variables (or attributes) receive per-vertex data. It is an error to use auxiliary
storage or interpolation qualifiers on a vertex shader input. The values copied in are established by
the API or through the use of the layout identifier location.

It is a compile-time error to declare a vertex shader input with, or that contains, any of the
following types:

• A boolean type

• An opaque type

• An array

• A structure

Example declarations in a vertex shader:

in vec4 position;
in vec3 normal;

It is expected that graphics hardware will have a small number of fixed vector locations for passing
vertex inputs. Therefore, the OpenGL ES Shading Language defines each non-matrix input variable

50

as taking up one such vector location. There is an implementation-dependent limit on the number
of locations that can be used, and if this is exceeded it will cause a link-time error. (Declared input
variables that are not statically used do not count against this limit.) A scalar input counts the same
amount against this limit as a vec4, so applications may want to consider packing groups of four
unrelated float inputs together into a vector to better utilize the capabilities of the underlying
hardware. A matrix input will use up multiple locations. The number of locations used will equal
the number of columns in the matrix.

Tessellation control, evaluation, and geometry shader input variables get the per-vertex values
written out by output variables of the same names in the previous active shader stage. For these
inputs, centroid and interpolation qualifiers are allowed, but have no effect. Since tessellation
control, tessellation evaluation, and geometry shaders operate on a set of vertices, each input
variable (or input block, see Interface Blocks below) needs to be declared as an array. For example,

in float foo[]; // geometry shader input for vertex "out float foo"

Each element of such an array corresponds to one vertex of the primitive being processed. Each
array can optionally have a size declared. For geometry shaders, the array size will be set by, (or if
provided must be consistent with) the input layout declaration(s) establishing the type of input
primitive, as described later in “Input Layout Qualifiers”.

Some inputs and outputs are arrayed, meaning that for an interface between two shader stages
either the input or output declaration requires an extra level of array indexing for the declarations
to match. For example, with the interface between a vertex shader and a geometry shader, vertex
shader output variables and geometry shader input variables of the same name must have
matching types, except that the geometry shader will have one more array dimension than the
vertex shader, to allow for vertex indexing. If such an arrayed interface variable is not declared
with the necessary additional input or output array dimension, a link-time error will result.
Geometry shader inputs, tessellation control shader inputs and outputs, and tessellation evaluation
inputs all have an additional level of arrayness relative to other shader inputs and outputs. These
inputs and outputs are known as per-vertex-arrayed inputs and outputs. Component limits for
arrayed interfaces (e.g. gl_MaxTessControlInputComponents) are limits per vertex, not limits for the
entire interface.

For non-arrayed interfaces (meaning array dimensionally stays the same between stages), it is a
link-time error if the input variable is not declared with the same type, including array
dimensionality, as the matching output variable.

The link-time type-matching rules apply to all declared input and output variables, whether or not
they are used.

Additionally, tessellation evaluation shaders support per-patch input variables declared with the
patch and in qualifiers. Per-patch input variables are filled with the values of per-patch output
variables written by the tessellation control shader. Per-patch inputs may be declared as one-
dimensional arrays, but are not indexed by vertex number. Applying the patch qualifier to inputs
can only be done in tessellation evaluation shaders. As with other input variables, per-patch inputs
must be declared using the same type and qualification as per-patch outputs from the previous
(tessellation control) shader stage. It is a compile-time error to use patch with inputs in any other

51

stage.

It is a compile-time error to declare a tessellation control, tessellation evaluation or geometry
shader input with, or that contains, any of the following types:

• A boolean type

• An opaque type

• A structure containing an array

• A structure containing a structure

• For per-vertex-arrayed variables:

◦ Per-vertex-arrayed arrays of arrays

◦ Per-vertex-arrayed arrays of structures

• For non-per-vertex-arrayed variables:

◦ An array of arrays

◦ An array of structures

Fragment shader inputs get per-fragment values, typically interpolated from a previous stage’s
outputs.

It is a compile-time error to declare a fragment shader input with, or that contains, any of the
following types:

• A boolean type

• An opaque type

• An array of arrays

• An array of structures

• A structure containing an array

• A structure containing a structure

Fragment shader inputs that are, or contain, integral types must be qualified with the interpolation
qualifier flat.

Fragment inputs are declared as in the following examples:

in vec3 normal;
centroid in vec2 TexCoord;
flat in vec3 myColor;

The fragment shader inputs form an interface with the last active shader in the vertex processing
pipeline. For this interface, the last active shader stage output variables and fragment shader input
variables of the same name must match in type and qualification, with a few exceptions: The
storage qualifiers must, of course, differ (one is in and one is out). Also, auxiliary qualification (e.g.
centroid) may differ. When auxiliary qualifiers do not match, those provided in the fragment

52

shader supersede those provided in previous stages. If any such qualifiers are completely missing
in the fragment shaders, then the default is used, rather than any qualifiers that may have been
declared in previous stages. That is, what matters is what is declared in the fragment shaders, not
what is declared in shaders in previous stages.

When an interface between shader stages is formed using shaders from two separate program
objects, it is not possible to detect mismatches between inputs and outputs when the programs are
linked. When there are mismatches between inputs and outputs on such interfaces, attempting to
use the two programs in the same program pipeline will result in program pipeline validation
failures, as described in section 7.4.1 “Shader Interface Matching” of the OpenGL ES Specification.

Shaders can ensure matches across such interfaces either by using input and output layout
qualifiers (sections “Input Layout Qualifiers” and “Output Layout Qualifiers”) or by using identical
input and output declarations of blocks or variables. Complete rules for interface matching are
found in section 7.4.1 “Shader Interface Matching” of the OpenGL ES Specification.

Compute shaders do not permit user-defined input variables and do not form a formal interface
with any other shader stage. See “Compute Shader Special Variables” for a description of built-in
compute shader input variables. All other input to a compute shader is retrieved explicitly through
image loads, texture fetches, loads from uniforms or uniform buffers, or other user supplied code.

4.3.5. Uniform Variables

The uniform qualifier is used to declare global variables whose values are the same across the
entire primitive being processed. All uniform variables are read-only. Except for variables declared
within a uniform block, all uniform variables are initialized to 0 at link time and may be updated
through the API. When targeting Vulkan, it is an error to declare uniform variables outside a block.

Example declarations are:

uniform vec4 lightPosition;

The uniform qualifier can be used with any of the basic data types, or when declaring a variable
whose type is a structure, or an array of any of these.

There is an implementation-dependent limit on the amount of storage for uniforms that can be
used for each type of shader and if this is exceeded it will cause a compile-time or link-time error.
Uniform variables that are declared but not statically used do not count against this limit. The
number of user-defined uniform variables and the number of built-in uniform variables that are
used within a shader are added together to determine whether available uniform storage has been
exceeded.

Uniforms in shaders all share a single global name space when linked into a program or separable
program. Hence, the types, precisions, and any location specifiers of all statically used uniform
variables with the same name must match across all shaders that are linked into a single program.
However it is not required to repeat the location specifier in all the linked shaders. While this single
uniform name space is cross stage, a uniform variable name’s scope is per stage: If a uniform
variable name is declared in one stage (e.g. a vertex shader) but not in another (e.g. a fragment

53

shader), then that name is still available in the other stage for a different use.

A compile or link-time error is generated if any of the explicitly given or compiler generated
uniform locations is greater than the implementation-defined maximum number of uniform
locations minus one.

Unlike locations for inputs and outputs, uniform locations are logical values, not register locations,
and there is no concept of overlap. For example:

layout(location = 2) uniform mat4 x;
layout(location = 3) uniform mat4 y; // No overlap with x
layout(location = 2) in mat4 x;
layout(location = 3) in mat4 y; // Error, locations conflict with x

4.3.6. Output Variables

Shader output variables are declared with the out storage qualifier. They form the output interface
between the declaring shader and the subsequent stages of the API pipeline. Output variables must
be declared at global scope. During shader execution they will behave as normal unqualified global
variables. Their values are copied out to the subsequent pipeline stage on shader exit. Only output
variables that are read by the subsequent pipeline stage need to be written; it is allowed to have
superfluous declarations of output variables.

There is not an inout storage qualifier for declaring a single variable name as both input and
output to a shader. Also, a variable cannot be declared with both the in and the out qualifiers, this
will result in a compile-time or link-time error. Output variables must be declared with different
names than input variables. However, nesting an input or output inside an interface block with an
instance name allows the same names with one referenced through a block instance name.

Vertex, tessellation evaluation, and geometry output variables output per-vertex data and are
declared using the out storage qualifier. Applying patch to an output can only be done in a
tessellation control shader. It is a compile-time error to use patch on outputs in any other stage.

It is a compile-time error to declare a vertex, tessellation evaluation, tessellation control, or
geometry shader output with, or that contains, any of the following types:

• A boolean type

• An opaque type

• A structure containing an array

• A structure containing a structure

• For per-vertex-arrayed variables (applies to tessellation control, tessellation evaluation and
geometry shaders):

◦ Per-vertex-arrayed arrays of arrays

◦ Per-vertex-arrayed arrays of structures

• For non-per-vertex-arrayed variables:

54

◦ An array of arrays

◦ An array of structures

Vertex shader outputs may be qualified with the interpolation qualifier flat1.

1

Unlike previous versions of the OpenGL ES Shading Language, there is no requirement for
outputs containing integers to be qualified as flat, since the vertex shader may interface with
the tessellation control shader. However, in all cases, the qualifier must match across interfaces.

Individual outputs are declared as in the following examples:

out vec3 normal;
centroid out vec2 TexCoord;
invariant centroid out vec4 Color;
flat out vec3 myColor;
sample out vec4 perSampleColor;

These can also appear in interface blocks, as described in “Interface Blocks”. Interface blocks allow
simpler addition of arrays to the interface from vertex to geometry shader. They also allow a
fragment shader to have the same input interface as a geometry shader for a given vertex shader.

Tessellation control shader output variables are used to output per-vertex and per-patch data. Per-
vertex output variables are arrayed (see arrayed under “Input Variables”) and declared using the
out qualifier without the patch qualifier. Per-patch output variables are declared using the patch
and out qualifiers.

Since tessellation control shaders produce an arrayed primitive comprising multiple vertices, each
per-vertex output variable (or output block, see Interface Blocks below) needs to be declared as an
array. For example,

out float foo[]; // feeds next stage input "in float foo[]"

Each element of such an array corresponds to one vertex of the primitive being produced. Each
array can optionally have a size declared. The array size will be set by (or if provided must be
consistent with) the output layout declaration(s) establishing the number of vertices in the output
patch, as described later in “Tessellation Control Outputs”.

Each tessellation control shader invocation has a corresponding output patch vertex, and may
assign values to per-vertex outputs only if they belong to that corresponding vertex. If a per-vertex
output variable is used as an l-value, it is a compile-time or link-time error if the expression
indicating the vertex index is not the identifier gl_InvocationID.

The order of execution of a tessellation control shader invocation relative to the other invocations
for the same input patch is undefined unless the built-in function barrier() is used. This provides
some control over relative execution order. When a shader invocation calls barrier(), its execution
pauses until all other invocations have reached the same point of execution. Output variable

55

assignments performed by any invocation executed prior to calling barrier() will be visible to any
other invocation after the call to barrier() returns.

Because tessellation control shader invocations execute in undefined order between barriers, the
values of per-vertex or per-patch output variables will sometimes be undefined. Consider the
beginning and end of shader execution and each call to barrier() as synchronization points. The
value of an output variable will be undefined in any of the three following cases:

1. At the beginning of execution.

2. At each synchronization point, unless

◦ the value was well-defined after the previous synchronization point and was not written by
any invocation since, or

◦ the value was written by exactly one shader invocation since the previous synchronization
point, or

◦ the value was written by multiple shader invocations since the previous synchronization
point, and the last write performed by all such invocations wrote the same value.

3. When read by a shader invocation, if

◦ the value was undefined at the previous synchronization point and has not been written by
the same shader invocation since, or

◦ the output variable is written to by any other shader invocation between the previous and
next synchronization points, even if that assignment occurs in code following the read.

Fragment outputs output per-fragment data and are declared using the out storage qualifier. It is
an error to use auxiliary storage qualifiers or interpolation qualifiers in a fragment shader output
declaration. It is a compile-time error to declare a fragment shader output with, or that contains,
any of the following types:

• A boolean type

• An opaque type

• A matrix type

• A structure

• An array of arrays

Fragment shader outputs declared as arrays may only be indexed by a constant integral expression.

Fragment outputs are declared as in the following examples:

out vec4 FragmentColor;
out uint Luminosity;

Compute shaders have no built-in output variables, do not support user-defined output variables
and do not form a formal interface with any other shader stage. All outputs from a compute shader
take the form of the side effects such as image stores and operations on atomic counters.

56

4.3.7. Buffer Variables

The buffer qualifier is used to declare global variables whose values are stored in the data store of
a buffer object bound through the API. Buffer variables can be read and written, with the
underlying storage shared among all active shader invocations. Buffer variable memory reads and
writes within a single shader invocation are processed in order. However, the order of reads and
writes performed in one invocation relative to those performed by another invocation is largely
undefined. Buffer variables may be qualified with memory qualifiers affecting how the underlying
memory is accessed, as described in “Memory Qualifiers”.

The buffer qualifier can be used to declare interface blocks (see “Interface Blocks”), which are then
referred to as shader storage blocks. It is a compile-time error to declare buffer variables outside a
block.

// use buffer to create a buffer block (shader storage block)
buffer BufferName { // externally visible name of buffer
 int count; // typed, shared memory...
 ... // ...
 vec4 v[]; // last member may be an array that is not sized
 // until after link time (dynamically sized)
} Name; // name of block within the shader

There are implementation-dependent limits on the number of shader storage blocks used for each
type of shader, the combined number of shader storage blocks used for a program, and the amount
of storage required by each individual shader storage block. If any of these limits are exceeded, it
will cause a compile-time or link-time error.

If multiple shaders are linked together, then they will share a single global buffer variable name
space. Hence, the types of all declared buffer variables with the same name must match across all
shaders that are linked into a single program.

Precision qualifiers for such variables need not match.

4.3.8. Shared Variables

The shared qualifier is used to declare global variables that have storage shared between all work
items in a compute shader workgroup. Variables declared as shared may only be used in compute
shaders (see “Compute Processor”). Any other declaration of a shared variable is an error. Shared
variables are implicitly coherent (see “Memory Qualifiers”).

Variables declared as shared may not have initializers and their contents are undefined at the
beginning of shader execution. Any data written to shared variables will be visible to other work
items (executing the same shader) within the same workgroup.

In the absence of synchronization, the order of reads and writes to the same shared variable by
different invocations of a shader is not defined.

In order to achieve ordering with respect to reads and writes to shared variables, control flow
barriers must be employed using the barrier() function (see “Shader Invocation Control

57

Functions”).

There is a limit to the total size of all variables declared as shared in a single program. This limit,
expressed in units of basic machine units may be determined by using the OpenGL ES API to query
the value of MAX_COMPUTE_SHARED_MEMORY_SIZE.

4.3.9. Interface Blocks

Input, output, uniform, and buffer variable declarations can be grouped into named interface
blocks to provide coarser granularity backing than is achievable with individual declarations. They
can have an optional instance name, used in the shader to reference their members. An output
block of one programmable stage is backed by a corresponding input block in the subsequent
programmable stage. A uniform block is backed by the application with a buffer object. A buffer
block, also known as a shader storage block, is also backed by the application with a buffer object. It
is a compile-time error to have an input block in a vertex shader or an output block in a fragment
shader. These uses are reserved for future use.

An interface block declaration is defined in the grammar as follows:

interface-block :

type_qualifier block-name { member-list } instance-nameopt ;

block-name :

identifier

member-list :

member-declaration
member-declaration member-list

member-declaration :

layout-qualifieropt qualifiersopt type declarators ;

instance-name :

identifier
identifier array-specifier

Each of the above elements is discussed below.

First, an example,

uniform Transform {
 mat4 ModelViewMatrix;
 mat4 ModelViewProjectionMatrix;
 uniform mat3 NormalMatrix; // allowed restatement of qualifier
 float Deformation;
};

The above establishes a uniform block named “Transform” with four uniforms grouped inside it.

58

type-qualifier determines the interface of which the block will be a part and, optionally, additional
qualifiers that are applied to the block. It is a compile-time error if it does not include one of the
storage qualifiers in, out, uniform or buffer. It may optionally include layout qualifiers, the
auxiliary storage qualifier patch, and the precise qualifier. buffer blocks may additionally include
[memory qualifiers]. It is a compile-time error to include any other qualifiers.

member-list declares the variables that are to be grouped into the block. Types and declarators are
the same as for other input, output, uniform, and buffer variable declarations outside blocks, with
these exceptions:

• Initializers are not allowed

• Opaque types are not allowed

• Structure definitions cannot be nested inside a block

• Arrays of arrays of blocks are not allowed, except for the cases in the tessellation and geometry
stages where the declaration is a per-vertex-array of arrays of blocks.

If no optional qualifier is used in a member-declaration, the qualification of the member includes
all in, out, patch, uniform, or buffer as determined by interface-qualifier. If optional qualifiers are
used, they can include interpolation qualifiers, auxiliary storage qualifiers, precision qualifiers, and
storage qualifiers and they must declare an input, output, or uniform member consistent with the
interface qualifier of the block: Input variables, output variables, uniform variables, and buffer
members can only be in in blocks, out blocks, uniform blocks, and shader storage blocks,
respectively.

Repeating the in, out, patch, uniform, or buffer interface qualifier for a member’s storage
qualifier is optional. For example,

in Material {
 smooth in vec4 Color1; // legal, input inside in block
 smooth vec4 Color2; // legal, 'in' inherited from 'in Material'
 vec2 TexCoord; // legal, TexCoord is an input
 uniform float Atten; // illegal, mismatched storage qualifier
};

Members of uniform or buffer storage blocks are always represented in memory as highp,
regardless of any precision qualifier associated with the declaration. When values are read from or
written to such variables they are converted to or from the declared precision as described in
Conversion Between Precisions. Operations on the values within the shader will take place using
the declared precision as normal.

A shader interface is defined to be one of these:

• All the uniform variables and uniform blocks declared in a program. This spans all compilation
units linked together within one program.

• All the buffer blocks declared in a program.

• The boundary between adjacent programmable pipeline stages: This spans all the outputs
declared in all compilation units of the first stage and all the inputs declared in all compilation

59

units of the second stage. Note that for the purposes of this definition, the fragment shader and
the preceding shader are considered to have a shared boundary even though in practice, all
values passed to the fragment shader first pass through the rasterizer and interpolator.

The block name (block-name) is used to match within shader interfaces: an output block of one
pipeline stage will be matched to an input block with the same name in the subsequent pipeline
stage. For uniform or shader storage blocks, the application uses the block name to identify the
block. Block names have no other use within a shader beyond interface matching; it is an error to
use a block name at global scope for anything other than as a block name (e.g. use of a block name
for a global variable name or function name is currently reserved). It is a compile-time error to use
the same block name for more than one block declaration in the same shader interface (as defined
above) within one shader, even if the block contents are identical.

Matched block names within a shader interface (as defined above) must match in terms of having
the same number of declarations with the same sequence of types and the same sequence of
member names, as well as having matching member-wise layout qualification as defined in
“Matching of Qualifiers”. Matched uniform or shader storage block names (but not input or output
block names) must also either all be lacking an instance name or all having an instance name,
putting their members at the same scoping level. When instance names are present on matched
block names, it is allowed for the instance names to differ; they need not match for the blocks to
match. Furthermore, if a matching block is declared as an array, then the array sizes must also
match (or follow array matching rules for the shader interface between consecutive shader stages).
Any mismatch will generate a link-time error. A block name is allowed to have different definitions
in different shader interfaces within the same shader, allowing, for example, an input block and
output block to have the same name.

If an instance name (instance-name) is not used, the names declared inside the block are scoped at
the global level and accessed as if they were declared outside the block. If an instance name
(instance-name) is used, then it puts all the members inside a scope within its own name space,
accessed with the field selector (.) operator (analogously to structures). For example,

in Light {
 vec4 LightPos;
 vec3 LightColor;
};
in ColoredTexture {
 vec4 Color;
 vec2 TexCoord;
} Material; // instance name
vec3 Color; // different Color than Material.Color
vec4 LightPos; // illegal, already defined
...
... = LightPos; // accessing LightPos
... = Material.Color; // accessing Color in ColoredTexture block

Outside the shading language (i.e., in the API), members are similarly identified except the block
name is always used in place of the instance name (API accesses are to shader interfaces, not to
shaders). If there is no instance name, then the API does not use the block name to access a

60

member, just the member name.

Within a shader interface, all declarations of the same global name must be for the same object and
must match in type and in whether they declare a variable or member of a block with no instance
name. The API also needs this name to uniquely identify an object in the shader interface. It is a
link-time error if any particular shader interface contains

• two different blocks, each having no instance name, and each having a member of the same
name, or

• a variable outside a block, and a block with no instance name, where the variable has the same
name as a member in the block.

out Vertex {
 vec4 Position; // API transform/feedback will use "Vertex.Position"
 vec2 Texture;
} Coords; // shader will use "Coords.Position"
out Vertex2 {
 vec4 Color; // API will use "Color"
 float Color2;
};

// in same program as Vertex2 above:
out Vertex3 {
 float Intensity;
 vec4 Color; // ERROR, name collision with Color in Vertex2
};
float Color2; // ERROR, collides with Color2 in Vertex2

For blocks declared as arrays, the array index must also be included when accessing members, as in
this example

uniform Transform { // API uses "Transform[2]" to refer to instance 2
 mat4 ModelViewMatrix;
 mat4 ModelViewProjectionMatrix;
 float Deformation;
} transforms[4];
...
... = transforms[2].ModelViewMatrix; // shader access of instance 2
// API uses "Transform.ModelViewMatrix" to query an offset or other query

For uniform or shader storage blocks declared as an array, each individual array element
corresponds to a separate buffer object bind range, backing one instance of the block. As the array
size indicates the number of buffer objects needed, uniform and shader storage block array
declarations must specify an array size. All indices used to index a shader storage block array must
be constant integral expressions. A uniform block array can only be indexed with a dynamically
uniform integral expression, otherwise results are undefined.

When using OpenGL ES API entry points to identify the name of an individual block in an array of

61

blocks, the name string may include an array index (e.g. Transform[2]). When using OpenGL ES API
entry points to refer to offsets or other characteristics of a block member, an array index must not
be specified (e.g. Transform.ModelViewMatrix). See section 7.3.1 “Program Interfaces” of the
OpenGL ES Specification for details.

Tessellation control, tessellation evaluation and geometry shader input blocks must be declared as
arrays and follow the array declaration and linking rules for all shader inputs for the respective
stages. All other input and output block arrays must specify an array size.

There are implementation-dependent limits on the number of uniform blocks and the number of
shader storage blocks that can be used per stage. If either limit is exceeded, it will cause a link-time
error.

4.4. Layout Qualifiers
Layout qualifiers can appear in several forms of declaration. They can appear as part of an
interface block definition or block member, as shown in the grammar in the previous section. They
can also appear with just an interface-qualifier to establish layouts of other declarations made with
that qualifier:

layout-qualifier interface-qualifier ;

Or, they can appear with an individual variable declared with an interface qualifier:

layout-qualifier interface-qualifier declaration ;

Declarations of layouts can only be made at global scope or block members, and only where
indicated in the following subsections; their details are specific to what the interface qualifier is,
and are discussed individually.

The layout-qualifier expands to:

layout-qualifier :

layout (layout-qualifier-id-list)

layout-qualifier-id-list :

layout-qualifier-id
layout-qualifier-id , layout-qualifier-id-list

layout-qualifier-id :

layout-qualifier-name
layout-qualifier-name = layout-qualifier-value
shared

layout-qualifier-value :

integer-constant

The tokens used for layout-qualifier-name are identifiers, not keywords, however, the shared
keyword is allowed as a layout-qualifier-id. Generally, they can be listed in any order. Order-

62

dependent meanings exist only if explicitly called out below. As for other identifiers, they are case
sensitive.

The set of allowed layout qualifiers depends on the shader, the interface and the variable type as
specified in the following sections. For example, a sampler in the default uniform block in a
fragment shader can have location and binding layout qualifiers but no others. Invalid use of
layout qualifiers is an error.

The following table summarizes the use of layout qualifiers. It shows for each one what kinds of
declarations it may be applied to. These are all discussed in detail in the following sections.

Layout
Qualifier

Qualifier Only
Individual
Variable

Block Block Member
Allowed
Interfaces

shared
packed
std140
std430

X X

uniform /
buffer

row_major
column_major

X X X

binding =
opaque types

only
X

offset =
atomic

counters only
Vulkan only

align = Vulkan only Vulkan only

set =
opaque types

only
X

uniform /
buffer (Vulkan
only)

push_constant X
uniform
(Vulkan only)

input_attachm
ent_index =

subpass types
only

uniform
(Vulkan only)

location = X
uniform /
buffer

location = X1 X X
all in / out,
except for
compute

triangles
quads
isolines

X
tessellation
evaluation in

63

Layout
Qualifier

Qualifier Only
Individual
Variable

Block Block Member
Allowed
Interfaces

equal_spacing
fractional_eve
n_spacing
fractional_odd
_spacing

X
tessellation
evaluation in

cw
ccw

X
tessellation
evaluation in

point_mode X
tessellation
evaluation in

points X
geometry in
/out

[points]
lines
lines_adjacenc
y
triangles
triangles_adja
cency

X geometry in

invocations = X geometry in

early_fragmen
t_tests

X fragment in

local_size_x =
local_size_y =
local_size_z =

X compute in

local_size_x_id
=
local_size_y_id
=
local_size_z_id
=

X
compute in
(SPIR-V only)

vertices = X
tessellation
control out

[points]
line_strip

triangle_strip

X

geometry out

max_vertices
=

X

64

Layout
Qualifier

Qualifier Only
Individual
Variable

Block Block Member
Allowed
Interfaces

constant_id = scalar only
const (SPIR-V
only)

rgba32f
rgba16f
r32f
rgba8
rgba8_snorm
rgba32i
rgba16i
rgba8i
r32i
rgba32ui
rgba16ui
rgba8ui
r32ui

image types
only

uniform

65

Layout
Qualifier

Qualifier Only
Individual
Variable

Block Block Member
Allowed
Interfaces

blend_support
_multiply
blend_support
_screen
blend_support
_overlay
blend_support
_darken
blend_support
_lighten
blend_support
_colordodge
blend_support
_colorburn
blend_support
_hardlight
blend_support
_softlight
blend_support
_difference
blend_support
_exclusion
blend_support
_hsl_hue
blend_support
_hsl_saturatio
n
blend_support
_hsl_color
blend_support
_hsl_luminosit
y
blend_support
_all_equations

X fragment out

1

Location qualifiers are not allowed for members of an arrayed block, except for per-vertex-
arrays (see “Interface Blocks”).

4.4.1. Input Layout Qualifiers

Layout qualifiers specific to a particular shader language are discussed in separate sections below.

All shaders except compute shaders allow location layout qualifiers on input variable declarations,
input block declarations, and input block member declarations.

66

layout-qualifier-id :

location = layout-qualifier-value

For example,

layout(location = 3) in vec4 normal;

will establish that the shader input normal is assigned to vector location number 3. For vertex
shader inputs, the location specifies the number of the vertex attribute from which input values are
taken. For inputs of all other shader types, the location specifies a vector number that can be used
to match against outputs from a previous shader stage, even if that shader is in a different program
object.

The following language describes how many locations are consumed by a given type. However,
geometry shader inputs, tessellation control shader inputs and outputs, and tessellation evaluation
inputs all have an additional level of arrayness relative to other shader inputs and outputs. This
outer array level is removed from the type before considering how many locations the type
consumes.

If a shader input is any scalar or vector type, it will consume a single location.

If the declared input (after potentially removing an outer array level as just described above) is an
array of size n and each of the elements takes m locations, it will be assigned m * n consecutive
locations starting with the location specified. For example,

layout(location = 6) in vec4 colors[3];

will establish that the shader input colors is assigned to vector location numbers 6, 7, and 8.

If the declared input is an n × m matrix, it will be assigned multiple locations starting with the
location specified. The number of locations assigned for each matrix will be the same as for an n
-element array of m-component vectors. For example,

layout(location = 9) in mat4 transforms[2];

will establish that shader input transforms is assigned to vector locations 9-16, with transforms[0]
being assigned to locations 9-12, and transforms[1] being assigned to locations 13-16.

If the declared input is a structure or block, its members will be assigned consecutive locations in
their order of declaration, with the first member assigned the location provided in the layout
qualifier. For a structure, this process applies to the entire structure. It is a compile-time error to
use a location qualifier on a member of a structure. For a block, this process applies to the entire
block, or until the first member is reached that has a location layout qualifier.

When a block member is declared with a location qualifier, its location comes from that qualifier;
the member’s location qualifier overrides the block-level declaration. Subsequent members are
again assigned consecutive locations, based on the newest location, until the next member declared

67

with a location qualifier. The values used for locations do not have to be declared in increasing
order.

If a block has no block-level location layout qualifier, it is required that either all or none of its
members have a location layout qualifier, or a compile-time error results.

If an input is declared as an array of blocks, excluding per-vertex-arrays as required for
tessellation, it is an error to declare a member of the block with a location qualifier.

When generating SPIR-V, all in and out qualified user-declared (non built-in) variables and blocks
(or all their members) must have a shader-specified location. Otherwise, a compile-time error is
generated.

The locations consumed by block and structure members are determined by applying the rules
above recursively as though the structure member were declared as an input variable of the same
type. For example:

layout(location = 3) in struct S
{
 vec3 a; // gets location 3
 mat2 b; // gets locations 4 and 5
 vec4 c[2]; // gets locations 6 and 7
 layout(location = 8) vec2 A; // ERROR, can't use on struct member
} s;
layout(location = 4) in block
{
 vec4 d; // gets location 4
 vec4 e; // gets location 5
 layout(location = 7) vec4 f; // gets location 7
 vec4 g; // gets location 8
 layout(location = 1) vec4 h; // gets location 1
 vec4 i; // gets location 2
 vec4 j; // gets location 3
 vec4 k; // ERROR, location 4 already used
};

The number of input locations available to a shader is limited. For vertex shaders, the limit is the
advertised number of vertex attributes. For all other shaders, the limit is implementation-
dependent and must be no less than one fourth of the advertised maximum input component
count.

A program will fail to link if any attached shader uses a location greater than or equal to the
number of supported locations, unless device-dependent optimizations are able to make the
program fit within available hardware resources.

A program will fail to link if explicit location assignments leave the linker unable to find space for
other variables without explicit assignments.

For the purposes of determining if a non-vertex input matches an output from a previous shader
stage, the location layout qualifier (if any) must match.

68

If a vertex shader input variable with no location assigned in the shader text has a location
specified through the OpenGL ES API, the API-assigned location will be used. Otherwise, such
variables will be assigned a location by the linker. See section 11.1.1 “Vertex Attributes” of the
OpenGL ES Specification for more details.

It is an error if more than one input or element of a matrix input is bound to the same location.

Tessellation Evaluation Inputs

Additional input layout qualifier identifiers allowed for tessellation evaluation shaders are
described below.

layout-qualifier-id :

primitive_mode
vertex_spacing
ordering
point_mode

The primitive-mode is used to specify a tessellation primitive mode to be used by the tessellation
primitive generator.

primitive-mode:

triangles
quads
isolines

If present, the primitive-mode specifies that the tessellation primitive generator should subdivide a
triangle into smaller triangles, a quad into triangles, or a quad into a collection of lines,
respectively.

A second group of layout identifiers, vertex spacing, is used to specify the spacing used by the
tessellation primitive generator when subdividing an edge.

vertex-spacing:

equal_spacing
fractional_even_spacing
fractional_odd_spacing

equal_spacing specifies that edges should be divided into a collection of equal-sized segments;

fractional_even_spacing specifies that edges should be divided into an even number of equal-
length segments plus two additional shorter “fractional” segments; or

fractional_odd_spacing specifies that edges should be divided into an odd number of equal-length
segments plus two additional shorter “fractional” segments.

A third group of layout identifiers, ordering, specifies whether the tessellation primitive generator
produces triangles in clockwise or counter-clockwise order, according to the coordinate system
depicted in the OpenGL ES Specification.

69

ordering:

cw
ccw

The identifiers cw and ccw indicate clockwise and counter-clockwise triangles, respectively. If the
tessellation primitive generator does not produce triangles, the order is ignored.

Finally, point mode indicates that the tessellation primitive generator should produce one point for
each distinct vertex in the subdivided primitive, rather than generating lines or triangles.

point-mode:

point_mode

Any or all of these identifiers may be specified one or more times in a single input layout
declaration.

The tessellation evaluation shader object in a program must declare a primitive mode in its input
layout. Declaring vertex spacing, ordering, or point mode identifiers is optional. If spacing or vertex
ordering declarations are omitted, the tessellation primitive generator will use equal spacing or
counter-clockwise vertex ordering, respectively. If a point mode declaration is omitted, the
tessellation primitive generator will produce lines or triangles according to the primitive mode.

Geometry Shader Inputs

Additional layout qualifier identifiers for geometry shader inputs include primitive identifiers and
an invocation count identifier:

layout-qualifier-id :

points
lines
lines_adjacency
triangles
triangles_adjacency
invocations = layout-qualifier-value

The identifiers points, lines, lines_adjacency, triangles, and triangles_adjacency are used to
specify the type of input primitive accepted by the geometry shader, and only one of these is
accepted. The geometry shader must declare this input primitive layout.

The identifier invocations is used to specify the number of times the geometry shader executable is
invoked for each input primitive received. Invocation count declarations are optional. If no
invocation count is declared in the geometry shader, it will be run once for each input primitive. If
an invocation count is declared, all such declarations must specify the same count. If a shader
specifies an invocation count greater than the implementation-dependent maximum, or less than
or equal to zero, a compile-time error results.

For example,

70

layout(triangles, invocations = 6) in;

will establish that all inputs to the geometry shader are triangles and that the geometry shader
executable is run six times for each triangle processed.

All geometry shader input unsized array declarations will be sized by an earlier input primitive
layout qualifier, when present, as per the following table.

Layout Size of Input Arrays

points 1

lines 2

lines_adjacency 4

triangles 3

triangles_adjacency 6

The intrinsically declared input array gl_in[] will also be sized by any input primitive-layout
declaration. Hence, the expression

gl_in.length()

will return the value from the table above.

An input can be declared without an array size if there is a previous layout which specifies the size.
For built-in inputs (e.g. gl_in[]), a layout must be declared before any use.

It is a compile-time error if a layout declaration’s array size (from the table above) does not match
all the explicit array sizes specified in declarations of an input variables in the same shader. The
following includes examples of compile-time errors:

// code sequence within one shader...
in vec4 Color2[2]; // legal, size is 2
in vec4 Color3[3]; // illegal, input sizes are inconsistent
layout(lines) in; // legal for Color2, input size is 2, matching Color2
in vec4 Color4[3]; // illegal, contradicts layout of lines
layout(lines) in; // legal, matches other layout() declaration
layout(triangles) in; // illegal, does not match earlier layout() declaration

It is a link-time error if not all provided sizes (sized input arrays and layout size) match in the
geometry shader of a program.

Fragment Shader Inputs

Fragment shaders allow the following layout qualifier on in only (not with variable declarations):

71

layout-qualifier-id :

early_fragment_tests

to request that fragment tests be performed before fragment shader execution, as described in
section 13.8.4 “Early Fragment Tests” of the OpenGL ES Specification.

For example,

layout(early_fragment_tests) in;

Specifying this will make per-fragment tests be performed before fragment shader execution. In
addition it is an error to statically write to gl_FragDepth in the fragment shader. If this is not
declared, per-fragment tests will be performed after fragment shader execution.

Compute Shader Inputs

There are no layout location qualifiers for compute shader inputs.

Layout qualifier identifiers for compute shader inputs are the workgroup size qualifiers:

layout-qualifier-id :

local_size_x = layout-qualifier-value
local_size_y = layout-qualifier-value
local_size_z = layout-qualifier-value

The local_size_x, local_size_y, and local_size_z qualifiers are used to declare a fixed workgroup
size by the compute shader in the first, second, and third dimension, respectively. If a shader does
not specify a size for one of the dimensions, that dimension will have a size of 1.

For example, the following declaration in a compute shader

layout(local_size_x = 32, local_size_y = 32) in;

is used to declare a two-dimensional compute shader with a workgroup size of 32 X 32 elements,
which is equivalent to a three-dimensional compute shader where the third dimension has size
one.

As another example, the declaration

layout(local_size_x = 8) in;

effectively specifies that a one-dimensional compute shader is being compiled, and its size is 8
elements.

If the fixed workgroup size of the shader in any dimension is less than or equal to zero or greater
than the maximum size supported by the implementation for that dimension, a compile-time error
results. Also, if such a layout qualifier is declared more than once in the same shader, all those

72

declarations must set the same set of workgroup sizes and set them to the same values; otherwise a
compile-time error results.

Furthermore, if a program object contains a compute shader, that shader must contain an input
layout qualifier specifying a fixed workgroup size for the program, or a link-time error will occur.

4.4.2. Output Layout Qualifiers

Some output layout qualifiers apply to all shader stages and some apply only to specific stages. The
latter are discussed in separate sections below.

As with input layout qualifiers, all shaders except compute shaders allow location layout qualifiers
on output variable declarations, output block declarations, and output block member declarations.

layout-qualifier-id :

location = layout-qualifier-value

The usage and rules for applying the location qualifier to blocks and structures are exactly as
described in “Input Layout Qualifiers”.

The qualifier may appear at most once within a declaration. For example, in a fragment shader,

layout(location = 3) out vec4 color;

will establish that the fragment shader output color is assigned to fragment color 3.

For fragment shader outputs, the location specifies the color output number receiving the values of
the output. For outputs of all other shader stages, the location specifies a vector number that can be
used to match against inputs in a subsequent shader stage, even if that shader is in a different
program object.

Declared outputs of scalar or vector type consume a single location.

If the declared output is an array, it will be assigned consecutive locations starting with the location
specified. For example,

layout(location = 2) out vec4 colors[3];

will establish that colors is assigned to vector location numbers 2, 3, and 4.

If the declared output is an n × m matrix, it will be assigned multiple locations starting with the
location specified. The number of locations assigned will be the same as for an n-element array of m
-component vectors.

If the declared output is a structure, its members will be assigned consecutive locations in the order
of declaration, with the first member assigned the location specified for the structure. The number
of locations consumed by a structure member is determined by applying the rules above
recursively as though the structure member were declared as an output variable of the same type.

73

location layout qualifiers may be used on output variables declared as structures. However, it is a
compile-time error to use a location qualifier on a structure member. Location layout qualifiers
may be used on output blocks and output block members.

If an output is declared as an array of blocks, excluding per-vertex-arrays as required for
tessellation, it is an error to declare a member of the block with a location qualifier.

The number of output locations available to a shader is limited. For fragment shaders, the limit is
the advertised number of draw buffers.

For all other shaders, the limit is implementation-dependent and must be no less than one fourth of
the advertised maximum output component count (compute shaders have no outputs). A program
will fail to link if any attached shader uses a location greater than or equal to the number of
supported locations, unless device-dependent optimizations are able to make the program fit
within available hardware resources.

Compile-time errors may also be given if at compile time it is known the link will fail. A negative
output location will result in an error.

It is a compile-time or link-time error if any of the following occur:

• any two fragment shader output variables are assigned to the same location.

• if any two output variables from the same vertex, tessellation or geometry shader stage are
assigned to the same location.

For all shader types, a program will fail to link if explicit location assignments leave the linker
unable to find space for other variables without explicit assignments.

If an output variable has no location assigned in the shader text, it will be assigned a location by the
linker. See section 11.1.3 “Shader Execution” of the OpenGL ES Specification for more details.

If there is only a single output, the location does not need to be specified, in which case it defaults to
zero. This applies for all output types, including arrays. If there is more than one fragment output,
the location must be specified for all outputs.

For the purposes of determining if a non-fragment output matches an input from a subsequent
shader stage, the location layout qualifier (if any) must match.

Tessellation Control Outputs

Tessellation control shaders allow output layout qualifiers only on the interface qualifier out, not
on an output block, block member, or variable declaration. The output layout qualifier identifiers
allowed for tessellation control shaders are:

layout-qualifier-id :

vertices = layout-qualifier-value

The identifier vertices specifies the number of vertices in the output patch produced by the
tessellation control shader, which also specifies the number of times the tessellation control shader
is invoked. It is a compile- or link-time error for the output vertex count to be less than or equal to

74

zero, or greater than the implementation-dependent maximum patch size.

The intrinsically declared tessellation control output array gl_out[] will also be sized by any output
layout declaration. Hence, the expression

gl_out.length()

will return the output patch vertex count specified in a previous output layout qualifier. For
outputs declared without an array size, including intrinsically declared outputs (i.e., gl_out), a
layout must be declared before any use of the method length() or other array use that requires its
size to be known.

It is a compile-time error if the output patch vertex count specified in an output layout qualifier
does not match the array size specified in any output variable declaration in the same shader.

All tessellation control shader layout declarations in a program must specify the same output patch
vertex count. There must be at least one layout qualifier specifying an output patch vertex count in
any program containing a tessellation control shader.

Geometry Outputs

Geometry shaders can have two additional types of output layout identifiers: an output primitive
type and a maximum output vertex count. The primitive type and vertex count identifiers are
allowed only on the interface qualifier out, not on an output block, block member, or variable
declaration.

The layout qualifier identifiers for geometry shader outputs are

layout-qualifier-id :

points
line_strip
triangle_strip
max_vertices = layout-qualifier-value

The primitive type identifiers points, line_strip, and triangle_strip are used to specify the type of
output primitive produced by the geometry shader, and only one of these is accepted. The geometry
shader object in a program must declare an output primitive type, and all geometry shader output
primitive type declarations in a program must declare the same primitive type.

The vertex count identifier max_vertices is used to specify the maximum number of vertices the
shader will ever emit in a single invocation. The geometry shader object in a program must declare
a maximum output vertex count, and all geometry shader output vertex count declarations in a
program must declare the same count.

In this example,

layout(triangle_strip, max_vertices = 60) out; // order does not matter
layout(max_vertices = 60) out; // redeclaration okay
layout(triangle_strip) out; // redeclaration okay

75

layout(points) out; // error, contradicts triangle_strip
layout(max_vertices = 30) out; // error, contradicts 60

all outputs from the geometry shader are triangles and at most 60 vertices will be emitted by the
shader. It is an error for the maximum number of vertices to be greater than
gl_MaxGeometryOutputVertices.

All geometry shader output layout declarations in a program must declare the same layout and
same value for max_vertices. If geometry shaders are in a program, there must be at least one
geometry output layout declaration somewhere in that program.

Fragment Outputs

Fragment shaders can have an output layout for redeclaring the built-in variable gl_FragDepth:

// redeclaration that changes nothing is allowed +
out float gl_FragDepth;

The built-in gl_FragDepth is only predeclared in fragment shaders, so redeclaring it in any other
shader language results in an error.

Fragment shaders additionally support layout qualifiers specifying a set of advanced blend
equations supported when the fragment shader is used. These layout qualifiers are only permitted
on the interface qualifier out, and use the identifiers specified in the “Layout Qualifier” column of
the table below.

If a layout qualifier in the table below is specified in the fragment shader, the fragment shader may
be used with the corresponding advanced blend equation in the “Blend Equation(s) Supported”
column. Additionally, the special qualifier blend_support_all_equations indicates that the shader
may be used with any advanced blending equation supported by the OpenGL ES Specification. It is
not an error to specify more than one of these identifiers in any fragment shader. Specifying more
than one qualifier or blend_support_all_equations means that the fragment shader may be used
with multiple advanced blend equations. Additionally, it is not an error to specify any single one of
these layout qualifiers more than once.

Layout Qualifier Blend Equations(s) Supported

blend_support_multiply MULTIPLY

blend_support_screen SCREEN

blend_support_overlay OVERLAY

blend_support_darken DARKEN

blend_support_lighten LIGHTEN

blend_support_colordodge COLORDODGE

blend_support_colorburn COLORBURN

blend_support_hardlight HARDLIGHT

76

blend_support_softlight SOFTLIGHT

blend_support_difference DIFFERENCE

blend_support_exclusion EXCLUSION

blend_support_hsl_hue HSL_HUE

blend_support_hsl_saturation HSL_SATURATION

blend_support_hsl_color HSL_COLOR

blend_support_hsl_luminosity HSL_LUMINOSITY

blend_support_all_equations all blend equations

4.4.3. Uniform Variable Layout Qualifiers

The following layout qualifier can be used for all default-block uniform variables but not for
variables in uniform or shader storage blocks. The layout qualifier identifier for uniform variables
is:

layout-qualifier-id :

location = layout-qualifier-value

The location specifies the location by which the API can reference the uniform and update its value.
Individual elements of a uniform array are assigned consecutive locations with the first element
taking location location. Default-block uniform variable declarations sharing the same location
linked in the program have to match by name, type, qualifiers and arrayness. For arrays their array
dimensionality and array sizes must match. For structs this rule applies recursively to all members.
Valid locations for default-block uniform variable locations are in the range of 0 to the
implementation-defined maximum number of uniform locations minus one.

Locations can be assigned to default-block uniform arrays and structures. The first inner-most
scalar, vector or matrix member or element takes the specified location and the compiler assigns
the next inner-most member or element the next incremental location value. Each subsequent
inner-most member or element gets incremental locations for the entire structure or array. This
rule applies to nested structures and arrays and gives each inner-most scalar, vector, or matrix
member a unique location. When the linker generates locations for uniforms without an explicit
location, it assumes for all uniforms with an explicit location all their array elements and structure
members are used and the linker will not generate a conflicting location, even if that element or
member is deemed unused.

When targeting Vulkan, the push_constant qualifier is used to declare an entire block, and
represents a set of push constants, as defined by the Vulkan API. It is an error to apply this to
anything other than a uniform block declaration, or when not targeting Vulkan. The values in the
block will be initialized as per the Vulkan API specification. A block declared with
layout(push_constant) may optionally include an instance-name. There can be only one
push_constant block per stage, or a compile-time or link-time error will result. A push-constant
array can only be indexed with dynamically uniform indices. Uniform blocks declared with
push_constant use different resources than those without; and are accounted for separately.

77

4.4.4. Uniform and Shader Storage Block Layout Qualifiers

Layout qualifiers can be used for uniform and shader storage blocks, but not for non-block uniform
declarations. The layout qualifier identifiers (and shared keyword) for uniform and shader storage
blocks are:

layout-qualifier-id :

shared
packed
std140
std430
row_major
column_major
binding = layout-qualifier-value
offset = layout-qualifier-value // Vulkan only
align = layout-qualifier-value // Vulkan only

None of these have any semantic effect at all on the usage of the variables being declared; they only
describe how data is laid out in memory. For example, matrix semantics are always column-based,
as described in the rest of this specification, no matter what layout qualifiers are being used.

Uniform and shader storage block layout qualifiers can be declared for global scope, on a single
uniform or shader storage block, or on a single block member declaration.

Default layouts are established at global scope for uniform blocks as:

layout(layout-qualifier-id-list) uniform;

and for shader storage blocks as:

layout(layout-qualifier-id-list) buffer;

When this is done, the previous default qualification is first inherited and then overridden as per
the override rules listed below for each qualifier listed in the declaration. The result becomes the
new default qualification scoped to subsequent uniform or shader storage block definitions.

The initial state of compilation when generating SPIR-V is as if the following were declared:

layout(std140, column_major) uniform;
layout(std430, column_major) buffer;

However, when push_constant is declared, the default layout of the buffer will be std430. There is
no method to globally set this default.

The initial state of compilation when not generating SPIR-V is as if the following were declared:

78

layout(shared, column_major) uniform;
layout(shared, column_major) buffer;

Uniform and shader storage blocks can be declared with optional layout qualifiers, and so can their
individual member declarations. Such block layout qualification is scoped only to the content of the
block. As with global layout declarations, block layout qualification first inherits from the current
default qualification and then overrides it. Similarly, individual member layout qualification is
scoped just to the member declaration, and inherits from and overrides the block’s qualification.

The shared qualifier overrides only the std140, std430, and packed qualifiers; other qualifiers are
inherited. The compiler/linker will ensure that multiple programs and programmable stages
containing this definition will share the same memory layout for this block, as long as they also
matched in their row_major and/or column_major qualifications. This allows use of the same
buffer to back the same block definition across different programs. It is a compile-time error to use
the shared qualifier when generating SPIR-V.

The packed qualifier overrides only std140, std430, and shared; other qualifiers are inherited.
When packed is used, no shareable layout is guaranteed. The compiler and linker can optimize
memory use based on what variables actively get used and on other criteria. Offsets must be
queried, as there is no other way of guaranteeing where (and which) variables reside within the
block.

It is a link-time error to access the same packed uniform or shader storage block in multiple stages
within a program. Attempts to access the same packed uniform or shader storage block across
programs can result in conflicting member offsets and in undefined values being read. However,
implementations may aid application management of packed blocks by using canonical layouts for
packed blocks. It is a compile-time error to use the packed qualifier when generating SPIR-V.

The std140 and std430 qualifiers override only the packed, shared, std140, and std430 qualifiers;
other qualifiers are inherited. The std430 qualifier is supported only for shader storage blocks; a
shader using the std430 qualifier on a uniform block will result in an error, unless it is also
declared with push_constant.

The layout is explicitly determined by this, as described in section 7.6.2.2 “Standard Uniform Block
Layout” of the OpenGL ES Specification. Hence, as in shared above, the resulting layout is
shareable across programs.

Layout qualifiers on member declarations cannot use the shared, packed, std140, or std430
qualifiers. These can only be used at global scope (without an object) or on a block declaration, or
an error results.

The row_major and column_major qualifiers only affect the layout of matrices, including all
matrices contained in structures and arrays they are applied to, to all depths of nesting. These
qualifiers can be applied to other types, but will have no effect.

The row_major qualifier overrides only the column_major qualifier; other qualifiers are
inherited. Elements within a matrix row will be contiguous in memory.

The column_major qualifier overrides only the row_major qualifier; other qualifiers are

79

inherited. Elements within a matrix column will be contiguous in memory.

The binding qualifier specifies the uniform buffer binding point corresponding to the uniform or
shader storage block, which will be used to obtain the values of the member variables of the block.
It is a compile-time error to specify the binding qualifier for the global scope or for block member
declarations. Any uniform or shader storage block declared without a binding qualifier is initially
assigned to block binding point zero. After a program is linked, the binding points used for uniform
(but not shader storage) blocks declared with or without a binding qualifier can be updated by the
API.

When used with OpenGL ES, if the binding qualifier is used with a uniform block or shader storage
block instanced as an array, the first element of the array takes the specified block binding and each
subsequent element takes the next consecutive binding point. For an array of arrays, each element
(e.g. 6 elements for a[2][3]) gets a binding point, and they are ordered per the array of array
ordering described in “Arrays.”

When targeting Vulkan, if the binding qualifier is used with a uniform block or buffer block
instanced as an array, the entire array takes only the provided binding number. The next
consecutive binding number is available for a different object. For an array of arrays, descriptor set
array element numbers used in descriptor set accesses are ordered per the array-of-array ordering
described in “Arrays.”

If the binding point for any uniform or shader storage block instance is less than zero, or greater
than or equal to the corresponding implementation-dependent maximum number of buffer
bindings, a compile-time error will occur. When the binding qualifier is used with a uniform or
shader storage block instanced as an array of size N, all elements of the array from binding
through binding + N - 1 must be within this range.

The set qualifier is only available when targeting Vulkan. It specifies the descriptor set this object
belongs to. It is an error to apply set to a standalone qualifier, to a member of a block, or when not
targeting an API that supports descriptor sets. It is an error to apply set to a block qualified as
push_constant. By default, any non-push-constant uniform or shader storage block declared
without a set identifier is assigned to descriptor set 0. Similarly, any sampler, texture, or subpass-
input type declared as a uniform without a set identifier is also assigned to descriptor set 0.

If applied to an object declared as an array, all elements of the array belong to the specified set.

When generating SPIR-V, it is an error for either the set or binding value to exceed a front-end-
configuration supplied maximum value.

When multiple arguments are listed in a layout declaration, the effect will be the same as if they
were declared one at a time, in order from left to right, each in turn inheriting from and overriding
the result from the previous qualification.

For example

layout(row_major, column_major)

results in the qualification being column_major. Other examples:

80

layout(shared, row_major) uniform; // default is now shared and row_major

layout(std140) uniform Transform { // layout of this block is std140
 mat4 M1; // row major
 layout(column_major) mat4 M2; // column major
 mat3 N1; // row major
};

uniform T2 { // layout of this block is shared
 ...
};

layout(column_major) uniform T3 { // shared and column major
 mat4 M3; // column major
 layout(row_major) mat4 m4; // row major
 mat3 N2; // column major
};

When targeting Vulkan, the offset and align qualifiers for blocks and block members can only be
used with uniform and buffer blocks. When not targeting Vulkan, they cannot be used with blocks
or block members.

The offset qualifier can only be used on block members. The offset qualifier forces the qualified
member to start at or after the specified layout-qualifier-value, which will be its byte offset from the
beginning of the buffer. It is a compile-time error to have any offset, explicit or assigned, that lies
within another member of the block. Two blocks linked together in the same program with the
same block name must have the exact same set of members qualified with offset and their layout-
qualifier-value values must be the same, or a link-time error results. The specified offset must be a
multiple of the base alignment of the type of the block member it qualifies, or a compile-time error
results.

The align qualifier makes the start of each block member have a minimum byte alignment. It does
not affect the internal layout within each member, which will still follow the std140 or std430
rules. The specified alignment must be greater than 0 and a power of 2, or a compile-time error
results.

The actual alignment of a member will be the greater of the specified align alignment and the
standard (e.g. std140) base alignment for the member’s type. The actual offset of a member is
computed as follows: If offset was declared, start with that offset, otherwise start with the offset
immediately following the preceding member (in declaration order). If the resulting offset is not a
multiple of the actual alignment, increase it to the first offset that is a multiple of the actual
alignment. This results in the actual offset the member will have.

When align is applied to an array, it affects only the start of the array, not the array’s internal
stride. Both an offset and an align qualifier can be specified on a declaration.

The align qualifier, when used on a block, has the same effect as qualifying each member with the
same align value as declared on the block, and gets the same compile-time results and errors as if
this had been done. As described in general earlier, an individual member can specify its own

81

align, which overrides the block-level align, but just for that member.

Examples:

layout(std140) uniform block {
 vec4 a; // a takes offsets 0-15
 layout(offset = 32) vec3 b; // b takes offsets 32-43
 layout(offset = 40) vec2 c; // ERROR, lies within previous member
 layout(offset = 48) vec2 d; // d takes offsets 48-55
 layout(align = 16) float e; // e takes offsets 64-67
 layout(align = 2) double f; // f takes offsets 72-79
 layout(align = 6) double g; // ERROR, 6 is not a power of 2
 layout(offset = 80) float h; // h takes offsets 80-83
 layout(align = 64) dvec3 i; // i takes offsets 128-151
 layout(offset = 164, align = 8)
 float j; // j takes offsets 168-171
};

4.4.5. Opaque Uniform Layout Qualifiers

Opaque uniform variables can take the uniform layout qualifier for binding:

layout-qualifier-id :

binding = layout-qualifier-value

The binding qualifier specifies the point where the variable will be bound. Any opaque variable
declared without a binding qualifier has a default binding of zero.

When used with OpenGL ES, if the binding qualifier is used with an array, the first element of the
array takes the specified binding point and each subsequent element takes the next consecutive
binding point. For an array of arrays, each element (e.g. 6 elements for a[2][3]) gets a binding point,
and they are ordered per the array of array ordering described in “Arrays.”

When targeting Vulkan, if the binding qualifier is used with an array, the entire array takes only
the provided binding number. The next consecutive binding number is available for a different
object.

If the binding is less than zero, or greater than or equal to the implementation-dependent
maximum supported number of binding points, a compile-time error will occur. When the binding
qualifier is used with an array of size N, all elements of the array from binding through binding + N
- 1 must be within this range.

A link-time error will result if two shaders in a program specify different layout-qualifier-value
bindings for the same opaque-uniform name. However, it is not an error to specify a binding on
some but not all declarations for the same name, as shown in the examples below.

// in one shader...
layout(binding=3) uniform sampler2D s; // s bound to point 3

82

// in another shader...
uniform sampler2D s; // okay, s still bound at 3

// in another shader...
layout(binding=4) uniform sampler2D s; // ERROR: contradictory bindings

4.4.6. Atomic Counter Layout Qualifiers

Atomic counters are not available when targeting Vulkan.

Atomic counter layout qualifiers can be used on atomic counter declarations or at global scope to
establish defaults. The atomic counter qualifiers are:

layout-qualifier-id :

binding = layout-qualifier-value
offset = layout-qualifier-value

Each binding has a default offset that is initially 0 and is updated following each declaration
containing the type atomic_uint. If such a declaration does not declare a variable then it
establishes a default for the named binding. It is a compile-time error if any such declaration does
not include a binding layout qualifier.

If a declaration contains an offset qualifier then that offset is used in the declaration, otherwise the
default offset for the named binding is used. Each atomic counter that is declared is assigned to the
named buffer binding point, at the current offset, and then the offset is increased by 4. Arrays of
atomic counters assign one such offset to each member, and if multiple variables are declared in
the same statement then they will have offsets assigned in order from left to right. Having assigned
offsets to variables, if any, the binding’s default offset will be set to the current offset value.

For example,

layout(binding = 2, offset = 4) uniform atomic_uint a;

will establish that the opaque handle to the atomic counter a will be bound to atomic counter
buffer binding point 2 at an offset of 4 basic machine units into that buffer. The default offset for
binding point 2 will be post incremented by 4 (the size of an atomic counter).

It is a compile-time error to bind an atomic counter with a binding value greater than or equal to
gl_MaxAtomicCounterBindings. It is a compile-time error to declare an atomic counter whose offset
is such that the buffer containing it would be larger than gl_MaxAtomicCounterBufferSize. It is a
compile-time error to declare an atomic counter whose offset is not aligned to a multiple of 4. It is a
compile- or link-time error to declare two atomic counters with the same binding and the same
offset.

Examples of atomic declarations:

layout(binding = 2, offset = 4) uniform atomic_uint; // Sets binding's default
 // offset = 4

83

layout(binding = 2) uniform atomic_uint a; // offset 4
layout(binding = 2) uniform atomic_uint b; // offset 8
layout(binding = 3) uniform atomic_uint c[2]; // offsets 0, 4
layout(binding = 2) uniform atomic_uint d; // offset 12
layout(binding = 4, offset = 16) uniform atomic_uint e; // offset 16
layout(binding = 4) uniform atomic_uint f; // offset 20

layout(offset = 8) uniform atomic_uint ea; // error, no binding
 // specified
layout(binding = 2, offset = 6) uniform atomic_uint eb; // error, offset not aligned
layout(binding = 3, offset = 4) uniform atomic_uint ec; // error, overlaps c[1]
layout(binding = 3, offset = 4) uniform atomic_uint; // OK, no counter declared
layout(binding = 3) uniform atomic_uint ed; // error, overlaps c[1]

4.4.7. Format Layout Qualifiers

Format layout qualifiers can be used on image variable declarations (those declared with a basic
type having “image” in its keyword). The format layout qualifier identifiers for image variable
declarations are:

layout-qualifier-id :

float-image-format-qualifier
int-image-format-qualifier
uint-image-format-qualifier
binding = layout-qualifier-value

float-image-format-qualifier :

rgba32f
rgba16f
r32f
rgba8
rgba8_snorm

int-image-format-qualifier :

rgba32i
rgba16i
rgba8i
r32i

uint-image-format-qualifier :

rgba32ui
rgba16ui
rgba8ui
r32ui

A format layout qualifier specifies the image format associated with a declared image variable.
Only one format qualifier may be specified for any image variable declaration. For image variables
with floating-point component types (keywords starting with “image”), signed integer component

84

types (keywords starting with “iimage”), or unsigned integer component types (keywords starting
with “uimage”), the format qualifier used must match the float-image-format-qualifier, int-image-
format-qualifier, or uint-image-format-qualifier grammar rules, respectively. It is an error to declare
an image variable where the format qualifier does not match the image variable type.

Any image variable must specify a format layout qualifier.

The binding qualifier was described in “Opaque Uniform Layout Qualifiers”.

4.4.8. Subpass Input Qualifier

Subpass inputs are only available when targeting Vulkan.

Subpass inputs are declared with the basic subpassInput types. They must be declared with the
layout qualifier input_attachment_index, or an error results. For example:

layout(input_attachment_index = 2) uniform subpassInput t;

This selects which subpass input is being read from. The value assigned to
input_attachment_index, say i (input_attachment_index = i), selects that entry (i th entry) in the
input list for the pass. See the API documentation for more detail about passes and the input list.

If an array of size N is declared, it consumes N consecutive input_attachment_index values,
starting with the one provided.

It is a compile-time or link-time error to have different variables declared with the same
input_attachment_index. This includes any overlap in the implicit input_attachment_index
consumed by array declarations.

It is an error if the value assigned to an input_attachment_index is greater than or equal to
gl_MaxInputAttachments.

4.5. Interpolation Qualifiers
Inputs and outputs that could be interpolated can be further qualified by at most one of the
following interpolation qualifiers:

Qualifier Meaning

smooth perspective correct interpolation

flat no interpolation

The presence of and type of interpolation is controlled by the above interpolation qualifiers as well
as the auxiliary storage qualifiers centroid and sample. When no interpolation qualifier is present,
smooth interpolation is used. It is a compile-time error to use more than one interpolation qualifier.
The auxiliary storage qualifier patch is not used for interpolation; it is a compile-time error to use
interpolation qualifiers with patch.

A variable qualified as flat will not be interpolated. Instead, it will have the same value for every

85

fragment within a primitive. This value will come from a single provoking vertex, as described by
the API. A variable qualified as flat may also be qualified as centroid or sample, which will mean
the same thing as qualifying it only as flat.

A variable qualified as smooth will be interpolated in a perspective-correct manner over the
primitive being rendered.

Interpolation in a perspective correct manner is specified in equations 13.4 of the OpenGL ES
Specification, section 13.4.1 “Line Segments” and equation 13.7, section 13.5.1 “Polygon
Interpolation”.

When multisample rasterization is disabled, or for fragment shader input variables qualified with
neither centroid nor sample, the value of the assigned variable may be interpolated anywhere
within the pixel and a single value may be assigned to each sample within the pixel, to the extent
permitted by the OpenGL ES Specification.

When multisample rasterization is enabled, centroid and sample may be used to control the
location and frequency of the sampling of the qualified fragment shader input. If a fragment shader
input is qualified with centroid, a single value may be assigned to that variable for all samples in
the pixel, but that value must be interpolated at a location that lies in both the pixel and in the
primitive being rendered, including any of the pixel’s samples covered by the primitive. Because
the location at which the variable is interpolated may be different in neighboring pixels, and
derivatives may be computed by computing differences between neighboring pixels, derivatives of
centroid-sampled inputs may be less accurate than those for non-centroid interpolated variables. If
a fragment shader input is qualified with sample, a separate value must be assigned to that
variable for each covered sample in the pixel, and that value must be sampled at the location of the
individual sample.

4.6. Parameter Qualifiers
In addition to precision qualifiers and memory qualifiers, parameters can have these parameter
qualifiers.

Qualifier Meaning

<none: default> same as in

in for function parameters passed into a function

out for function parameters passed back out of a
function, but not initialized for use when passed
in

inout for function parameters passed both into and
out of a function

Parameter qualifiers are discussed in more detail in “Function Calling Conventions”.

86

4.7. Precision and Precision Qualifiers
When targeting Vulkan: For interface matching, uniform variables and uniform and buffer block
members must have the same precision qualification. Global variables declared in different
compilation units linked into the same shader stage must be declared with the same precision
qualification.

For the purposes of determining if an output from one shader stage matches an input of the next
stage, the precision qualifier need not match.

This specification only governs the minimum required precision for storage and operations on
values. Implementations are free to calculate and/or store any results at higher precisions. If
necessary, this variance can be controlled using the invariance qualifier.

4.7.1. Range and Precision

The precision of highp floating-point variables is defined by the IEEE 754 standard for 32-bit
floating-point numbers.

This includes support for NaNs (Not a Number) and Infs (positive or negative infinities) and
positive and negative zeros.

The following rules apply to highp operations: Signed infinities and zeros are generated as dictated
by IEEE, but subject to the precisions allowed in the following table. Any subnormal (denormalized)
value input into a shader or potentially generated by any operation in a shader can be flushed to 0.
The rounding mode cannot be set and is undefined but must not affect the result by more than 1
ULP. NaNs are not required to be generated. Support for signaling NaNs is not required and
exceptions are never raised. Operations including built-in functions that operate on a NaN are not
required to return a NaN as the result. However if NaNs are generated, isnan() must return the
correct value.

Precisions are expressed in terms of maximum relative error in units of ULP (units in the last
place), unless otherwise noted.

For single precision operations, precisions are required as follows:

Operation Precision

a + b, a - b, a * b Correctly rounded.

<, <=, ==, >, >= Correct result.

a / b, 1.0 / b 2.5 ULP for |b| in the range [2-126, 2126].

a * b + c Correctly rounded single operation or sequence
of two correctly rounded operations.

fma() Inherited from a * b + c.

pow(x, y) Inherited from exp2(y * log2(x)).

exp(x), exp2(x) (3 + 2 · |x|) ULP.

87

Operation Precision

log(), log2() 3 ULP outside the range [0.5,2.0].
Absolute error < 2-21 inside the range [0.5,2.0].

sqrt() Inherited from 1.0 / inversesqrt().

inversesqrt() 2 ULP.

implicit and explicit conversions between types Correctly rounded.

Built-in functions defined in the specification with an equation built from the above operations
inherit the above errors. These include, for example, the geometric functions, the common
functions, and many of the matrix functions. Built-in functions not listed above and not defined as
equations of the above have undefined precision. These include, for example, the trigonometric
functions and determinant.

Storage requirements are declared through use of precision qualifiers. The precision of operations
must preserve the storage precisions of the variables involved.

highp floating-point values are stored in IEEE 754 single precision floating-point format. mediump
and lowp floating-point values have minimum range and precision requirements as detailed below
and have maximum range and precision as defined by IEEE 754.

All integral types are assumed to be implemented as integers and so may not be emulated by
floating-point values. highp signed integers are represented as twos-complement 32-bit signed
integers. highp unsigned integers are represented as unsigned 32-bit integers. mediump integers
(signed and unsigned) must be represented as an integer with between 16 and 32 bits inclusive.
lowp integers (signed and unsigned) must be represented as an integer with between 9 and 32 bits
inclusive.

The required ranges and precisions for precision qualifiers are:

Qualifier Floating-Point
Range

Floating-Point
Magnitude
Range

Floating-Point
Precision

Signed Integer
Range

Unsigned
Integer Range

highp Subset of IEEE-
754
(-2128,2128)

Subset of IEEE-
754
0.0, [2-126,2128)

Subset of IEEE-
754 relative:
2-23

[-231,231-1] [0,232-1]

mediump
(minimum
requirements)

(-214,214) 0.0, [2-14,214) Relative:
2-10

[-215,215-1] [0,216-1]

lowp
(minimum
requirements)

(-2,2) (2-8,2) Absolute:
2-8

[-28,28-1] [0,29-1]

The semi-open interval notation used for the magnitude ranges means that the lower end of the
interval is included, but the upper end is excluded. Thus the largest required magnitude is half of
the relative precision less than the value given. The largest required value for highp, for example, is
2128 × (1 - 2-24).

88

Relative precision is defined as the worst case (i.e. largest) ratio of the smallest step in relation to the
value for all non-zero values in the required ranges, above:

It is therefore twice the maximum rounding error when converting from a real number.
Subnormal numbers may be supported and may have lower relative precision.

In addition, the range and precision of a mediump floating-point value must be the same as or
greater than the range and precision of a lowp floating-point value. The range and precision of a
highp floating-point value must be the same as or greater than the range and precision of a
mediump floating-point value.

The range of a mediump integer value must be the same as or greater than the range of a lowp
integer value. The range of a highp integer value must be the same as or greater than the range of a
mediump integer value.

The actual ranges and precisions provided by an implementation can be queried through the API.
See the normative references for details on how to do this.

4.7.2. Conversion between precisions

Within the same type, conversion from a lower to a higher precision must be exact. When
converting from a higher precision to a lower precision, if the value is representable by the
implementation of the target precision, the conversion must also be exact. If the value is not
representable, the behavior is dependent on the type:

• For signed and unsigned integers, the value is truncated; bits in positions not present in the
target precision are set to zero. (Positions start at zero and the least significant bit is considered
to be position zero for this purpose.)

• For floating-point values, the value should either clamp to +Inf or -Inf, or to the maximum or
minimum value that the implementation supports. While this behavior is implementation-
dependent, it should be consistent for a given implementation.

4.7.3. Precision Qualifiers

Any floating-point, integer, or opaque-type declaration can have the type preceded by one of these
precision qualifiers:

Qualifier Meaning

highp The variable satisfies the minimum
requirements for highp described above. highp
variables have the maximum range and
precision available but may cause operations to
run more slowly on some implementations.

89

mediump SPIR-V RelaxedPrecision when targeting
Vulkan, otherwise the variable satisfies the
minimum requirements for mediump described
above. mediump variables may typically be
used to store high dynamic range colors and low
precision geometry.

lowp SPIR-V RelaxedPrecision when targeting
Vulkan, otherwise the variable satisfies the
minimum requirements for lowp described
above. lowp variables may typically be used to
store 8-bit color values.

For example:

lowp float color;
out mediump vec2 P;
lowp ivec2 foo(lowp mat3);
highp mat4 m;

Literal constants do not have precision qualifiers. Neither do Boolean variables.

For this paragraph, “operation” includes operators, built-in functions, and constructors, and
“operand” includes function arguments and constructor arguments. The precision qualification
associated with any operation is the highest precision qualification of the operands consumed by
the operation, if any operand has an associated precision. In cases where no operand has a
precision qualifier, the precision qualifications of the operands of the next consuming operation in
the expression will be used. This rule can be applied recursively until a precision qualified operand
is found. If necessary, it will also include the precision qualification of l-values for assignments, of
the declared variable for initializers, of formal parameters for function call arguments, or of
function return types for function return values. If the precision cannot be determined by this
method e.g. if an entire expression is composed only of operands with no precision qualifier, and
the result is not assigned or passed as an argument, then it is evaluated at the default precision of
the type or greater. When this occurs in the fragment shader, the default precision must be defined.

For example, consider the statements:

uniform highp float h1;
highp float h2 = 2.3 * 4.7; // operation and result are highp
precision
mediump float m;
m = 3.7 * h1 * h2; // all operations are highp precision
h2 = m * h1; // operation is highp precision
m = h2 - h1; // operation is highp precision
h2 = m + m; // addition and result at mediump precision
void f(highp float p);
f(3.3); // 3.3 will be passed in at highp precision

90

Precision qualifiers, as with other qualifiers, do not affect the basic type of the variable. In
particular, there are no constructors for precision conversions; constructors only convert types.
Similarly, precision qualifiers, as with other qualifiers, do not contribute to function overloading
based on parameter types. As discussed in “Function Calling Conventions”, function input and
output is done through copies, and therefore qualifiers do not have to match.

Precision qualifiers for outputs in one shader matched to inputs in another shader need not match
when both shaders are linked into the same program. When both shaders are in separate
programs, mismatched precision qualifiers will result in a program interface mismatch that will
result in program pipeline validation failures, as described in section 7.4.1 “Shader Interface
Matching” of the OpenGL ES Specification.

The precision of a variable is determined when the variable is declared and cannot be
subsequently changed.

Where the precision of a constant integral or constant floating-point expression is not specified,
evaluation is performed at highp. This rule does not affect the precision qualification of the
expression.

The evaluation of constant expressions must be invariant and will usually be performed at compile
time.

4.7.4. Default Precision Qualifiers

The precision statement

precision precision-qualifier type;

can be used to establish a default precision qualifier. The type field can be either int, float, or any
of the opaque types, and the precision-qualifier can be lowp, mediump, or highp.

Any other types or qualifiers will result in an error. If type is float, the directive applies to non-
precision-qualified floating-point type (scalar, vector, and matrix) declarations. If type is int, the
directive applies to all non-precision-qualified integer type (scalar, vector, signed, and unsigned)
declarations. This includes global variable declarations, function return declarations, function
parameter declarations, and local variable declarations.

Non-precision qualified declarations will use the precision qualifier specified in the most recent
precision statement that is still in scope. The precision statement has the same scoping rules as
variable declarations. If it is declared inside a compound statement, its effect stops at the end of the
inner-most statement it was declared in. Precision statements in nested scopes override precision
statements in outer scopes. Multiple precision statements for the same basic type can appear inside
the same scope, with later statements overriding earlier statements within that scope.

All languages except for the fragment language have the following predeclared globally scoped
default precision statements:

precision highp float;

91

precision highp int;
precision lowp sampler2D;
precision lowp samplerCube;
precision highp atomic_uint;

The fragment language has the following predeclared globally scoped default precision statements:

precision mediump int;
precision lowp sampler2D;
precision lowp samplerCube;
precision highp atomic_uint;

The fragment language has no default precision qualifier for floating-point types. Hence for float,
floating-point vector and matrix variable declarations, either the declaration must include a
precision qualifier or the default float precision must have been previously declared. Similarly,
there is no default precision qualifier in any of the languages for any type not listed above.

4.7.5. Available Precision Qualifiers

The built-in macro GL_FRAGMENT_PRECISION_HIGH is defined to one:

#define GL_FRAGMENT_PRECISION_HIGH 1

This macro is available in all languages except compute.

4.8. Variance and the Invariant Qualifier
In this section, variance refers to the possibility of getting different values from the same
expression in different programs. For example, consider the situation where two vertex shaders, in
different programs, each set gl_Position with the same expression, and the input values into that
expression are the same when both shaders run. It is possible, due to independent compilation of
the two shaders, that the values assigned to gl_Position are not exactly the same when the two
shaders run. In this example, this can cause problems with alignment of geometry in a multi-pass
algorithm.

In general, such variance between shaders is allowed. When such variance does not exist for a
particular output variable, that variable is said to be invariant.

4.8.1. The Invariant Qualifier

To ensure that a particular output variable is invariant, it is necessary to use the invariant
qualifier. It can either be used to qualify a previously declared variable as being invariant:

invariant gl_Position; // make existing gl_Position be invariant
out vec3 Color;

92

invariant Color; // make existing Color be invariant

or as part of a declaration when a variable is declared:

invariant centroid out vec3 Color;

Only variables output from a shader can be candidates for invariance. This includes user-defined
output variables and the built-in output variables. As only outputs can be declared as invariant, an
output from one shader stage will still match an input of a subsequent stage without the input
being declared as invariant.

The invariant keyword can be followed by a comma separated list of previously declared
identifiers. All uses of invariant must be at global scope or on block members, and before any use
of the variables being declared as invariant.

To guarantee invariance of a particular output variable across two programs, the following must
also be true:

• The output variable is declared as invariant in both programs.

• The same values must be input to all shader input variables consumed by expressions and
control flow contributing to the value assigned to the output variable.

• The texture formats, texel values, and texture filtering are set the same way for any texture
function calls contributing to the value of the output variable.

• All input values are all operated on in the same way. All operations in the consuming
expressions and any intermediate expressions must be the same, with the same order of
operands and same associativity, to give the same order of evaluation. Intermediate variables
and functions must be declared as the same type with the same explicit or implicit precision
qualifiers and the same constant qualifiers. Any control flow affecting the output value must be
the same, and any expressions consumed to determine this control flow must also follow these
invariance rules.

• All the data flow and control flow leading to setting the invariant output variable reside in a
single compilation unit.

Essentially, all the data flow and control flow leading to an invariant output must match.

Initially, by default, all output variables are allowed to be variant. To force all output variables to be
invariant, use the pragma

#pragma STDGL invariant(all)

before all declarations in a shader. If this pragma is used after the declaration of any variables or
functions, then the set of outputs that behave as invariant is undefined.

Generally, invariance is ensured at the cost of flexibility in optimization, so performance can be
degraded by use of invariance. Hence, use of this pragma is intended as a debug aid, to avoid

93

individually declaring all output variables as invariant.

4.8.2. Invariance Within a Shader

When a value is stored in a variable, it is usually assumed it will remain constant unless explicitly
changed. However, during the process of optimization, it is possible that the compiler may choose
to recompute a value rather than store it in a register. Since the precision of operations is not
completely specified (e.g. a low precision operation may be done at medium or high precision), it
would be possible for the recomputed value to be different from the original value.

Values are allowed to be variant within a shader. To prevent this, the invariant qualifier or
invariant pragma must be used.

Within a shader, there is no invariance for values generated by different non-constant expressions,
even if those expressions are identical.

Example 1:

precision mediump;
vec4 col;
vec2 a = ...
...
col = texture(tex, a);// a has a value _a1 _
...
col = texture(tex, a); // a has a value a2 where possibly a1 != a2

To enforce invariance in this example use:

#pragma STDGL invariant(all)

Example 2:

vec2 m = ...;
vec2 n = ...;
vec2 a = m + n;
vec2 b = m + n; // a and b are not guaranteed to be exactly equal

There is no mechanism to enforce invariance between a and b.

4.8.3. Invariance of Constant Expressions

Invariance must be guaranteed for constant expressions. A particular constant expression must
evaluate to the same result if it appears again in the same shader or a different shader. This
includes the same expression appearing in two shaders of the same language or shaders of two
different languages.

Constant expressions must evaluate to the same result when operated on as already described

94

above for invariant variables. Constant expressions are not invariant with respect to equivalent
non-constant expressions, even when the invariant qualifier or pragma is used.

4.8.4. Invariance of Undefined Values

Undefined values are not invariant nor can they be made invariant by use of the invariant qualifier
or pragma. In some implementations, undefined values may cause unexpected behavior if they are
used in control-flow expressions e.g. in the following case, one, both or neither functions may be
executed and this may not be consistent over multiple invocations of the shader:

int x; // undefined value
if (x == 1)
{
 f(); // Undefined whether f() is executed
}
if (x == 2)
{
 g(); // Undefined whether g() is executed.
}

Note that an undefined value is a value that has not been specified. A value that has been specified
but has a potentially large error due to, for example, lack of precision in an expression, is not
undefined and so can be made invariant.

4.9. The Precise Qualifier
Some algorithms require floating-point computations to exactly follow the order of operations
specified in the source code and to treat all operations consistently, even if the implementation
supports optimizations that could produce nearly equivalent results with higher performance. For
example, many GL implementations support a “multiply-add” instruction that can compute a
floating-point expression such as

result = (a * b) + (c * d);

in two operations instead of three operations; one multiply and one multiply-add instead of two
multiplies and one add. The result of a floating-point multiply-add might not always be identical to
first doing a multiply yielding a floating-point result and then doing a floating-point add. Hence, in
this example, the two multiply operations would not be treated consistently; the two multiplies
could effectively appear to have differing precisions.

The key computation that needs to be made consistent appears when tessellating, where
intermediate points for subdivision are synthesized in different directions, yet need to yield the
same result, as shown in the diagram below.

95

Subdivision
points need to
land on the same
location to
prevent cracking

Corner points start
with the same values

Corner points start
with the same values

Opposing
directions of
edge walking
for subdivision

As stated in “Evaluation of Expressions”, the compiler may transform expressions even if this
changes the resulting value. Without any qualifiers, implementations are permitted to perform
optimizations that effectively modify the order or number of operations used to evaluate an
expression, even if those optimizations may produce slightly different results relative to
unoptimized code.

The precise qualifier ensures that operations contributing to a variable’s value are done in their
stated order and with operator consistency. The order is determined by operator precedence and
parentheses, as described in “Operators”. Operator consistency means that for each operator, its
result is always computed with the same precision. Specifically, values computed by compiler-
generated code must adhere to the following identities:

1. a + b = b + a

2. a * b = b * a

3. a * b + c * d = b * a + c* d = d * c + b * a = <any other mathematically valid combination>

While the following are prevented:

1. a + (b + c) is not allowed to become (a + b) + c

2. a * (b * c) is not allowed to become (a * b) * c

3. a * b + c is not allowed to become a single operation fma(a, b, c)

Where a, b, c, and d, are scalars or vectors, not matrices. (Matrix multiplication generally does not
commute.) It is the shader writer’s responsibility to express the computation in terms of these rules
and the compiler’s responsibility to follow these rules. See the description of gl_TessCoord for the
rules the tessellation stages are responsible for following, which in conjunction with the above
allow avoiding cracking when subdividing.

For example,

precise out vec4 position;

96

declares that operations used to produce the value of position must be performed in exactly the
order specified in the source code and with all operators being treated consistently. As with the
invariant qualifier (see “The Invariant Qualifier”), the precise qualifier may be used to qualify a
built-in or previously declared user-defined variable as being precise:

out vec3 Color;
precise Color; // make existing Color be precise

When applied to a block or a variable of structure type, precise applies to each contained member,
recursively.

This qualifier will affect the evaluation of an r-value in a particular function if and only if the result
is eventually consumed in the same function by an l-value qualified as precise. Any other
expressions within a function are not affected, including return values and output parameters not
declared as precise but that are eventually consumed outside the function by a variable qualified
as precise. Unaffected expressions also include the controlling expressions in selection and
iteration statements and the condition in ternary operators (?:).

Some examples of the use of precise:

in vec4 a, b, c, d;
precise out vec4 v;

float func(float e, float f, float g, float h)
{
 return (e*f) + (g*h); // no constraint on order or operator consistency
}

float func2(float e, float f, float g, float h)
{
 precise float result = (e*f) + (g*h); // ensures same precision for the two
multiplies
 return result;
}

float func3(float i, float j, precise out float k)
{
 k = i * i + j; // precise, due to <k> declaration
}

void main()
{
 vec3 r = vec3(a * b); // precise, used to compute v.xyz
 vec3 s = vec3(c * d); // precise, used to compute v.xyz
 v.xyz = r + s; // precise
 v.w = (a.w * b.w) + (c.w * d.w); // precise
 v.x = func(a.x, b.x, c.x, d.x); // values computed in func() are NOT precise
 v.x = func2(a.x, b.x, c.x, d.x); // precise!
 func3(a.x * b.x, c.x * d.x, v.x); // precise!

97

}

For the purposes of determining if an output from one shader stage matches an input of the next
stage, the precise qualifier need not match between the input and the output.

All constant expressions are evaluated as if precise was present, whether or not it is present.
However, as described in “Constant Expressions”, there is no requirement that a compile-time
constant expression evaluates to the same value as a corresponding non-constant expression.

4.10. Memory Qualifiers
Shader storage blocks, variables declared within shader storage blocks and variables declared as
image types (the basic opaque types with “image” in their keyword), can be further qualified with
one or more of the following memory qualifiers:

Qualifier Meaning

coherent memory variable where reads and writes are
coherent with reads and writes from other
shader invocations

volatile memory variable whose underlying value may
be changed at any point during shader
execution by some source other than the current
shader invocation

restrict memory variable where use of that variable is
the only way to read and write the underlying
memory in the relevant shader stage

readonly memory variable that can be used to read the
underlying memory, but cannot be used to write
the underlying memory

writeonly memory variable that can be used to write the
underlying memory, but cannot be used to read
the underlying memory

Memory accesses to image variables declared using the coherent qualifier are performed
coherently with accesses to the same location from other shader invocations.

As described in section 7.11 “Shader Memory Access” of the OpenGL ES Specification, shader
memory reads and writes complete in a largely undefined order. The built-in function
memoryBarrier() can be used if needed to guarantee the completion and relative ordering of
memory accesses performed by a single shader invocation.

When accessing memory using variables not declared as coherent, the memory accessed by a
shader may be cached by the implementation to service future accesses to the same address.
Memory stores may be cached in such a way that the values written may not be visible to other
shader invocations accessing the same memory. The implementation may cache the values fetched
by memory reads and return the same values to any shader invocation accessing the same memory,

98

even if the underlying memory has been modified since the first memory read. While variables not
declared as coherent may not be useful for communicating between shader invocations, using
non-coherent accesses may result in higher performance.

Memory accesses to image variables declared using the volatile qualifier must treat the underlying
memory as though it could be read or written at any point during shader execution by some source
other than the executing shader invocation. When a volatile variable is read, its value must be re-
fetched from the underlying memory, even if the shader invocation performing the read had
previously fetched its value from the same memory. When a volatile variable is written, its value
must be written to the underlying memory, even if the compiler can conclusively determine that its
value will be overwritten by a subsequent write. Since the external source reading or writing a
volatile variable may be another shader invocation, variables declared as volatile are
automatically treated as coherent.

Memory accesses to image variables declared using the restrict qualifier may be compiled
assuming that the variable used to perform the memory access is the only way to access the
underlying memory using the shader stage in question. This allows the compiler to coalesce or
reorder loads and stores using restrict-qualified image variables in ways that wouldn’t be
permitted for image variables not so qualified, because the compiler can assume that the
underlying image won’t be read or written by other code. Applications are responsible for ensuring
that image memory referenced by variables qualified with restrict will not be referenced using
other variables in the same scope; otherwise, accesses to restrict-qualified variables will have
undefined results.

Memory accesses to image variables declared using the readonly qualifier may only read the
underlying memory, which is treated as read-only memory and cannot be written to. It is an error
to pass an image variable qualified with readonly to imageStore() or other built-in functions that
modify image memory.

Memory accesses to image variables declared using the writeonly qualifier may only write the
underlying memory; the underlying memory cannot be read. It is an error to pass an image
variable qualified with writeonly to imageLoad() or other built-in functions that read image
memory.

A variable could be qualified as both readonly and writeonly, disallowing both read and write.
Such variables can still be used with some queries, for example imageSize() and .length().

Except for image variables qualified with the format qualifiers r32f, r32i, and r32ui, image
variables must specify a memory qualifier (readonly, writeonly, or both).

The memory qualifiers coherent, volatile, restrict, readonly, and writeonly may be used in the
declaration of buffer variables (i.e., members of shader storage blocks). When a buffer variable is
declared with a memory qualifier, the behavior specified for memory accesses involving image
variables described above applies identically to memory accesses involving that buffer variable. It
is a compile-time error to assign to a buffer variable qualified with readonly or to read from a
buffer variable qualified with writeonly. The combination readonly writeonly is allowed.

Additionally, memory qualifiers may be used at the block-level declaration of a shader storage
block, including the combination readonly writeonly. When a block declaration is qualified with a

99

memory qualifier, it is as if all of its members were declared with the same memory qualifier. For
example, the block declaration

coherent buffer Block {
 readonly vec4 member1;
 vec4 member2;
};

is equivalent to

buffer Block {
 coherent readonly vec4 member1;
 coherent vec4 member2;
};

Memory qualifiers are only supported in the declarations of image variables, buffer variables, and
shader storage blocks; it is an error to use such qualifiers in any other declarations.

When calling user-defined functions, opaque-type variables qualified with coherent, volatile,
readonly, or writeonly may not be passed to functions whose formal parameters lack such
qualifiers. (See “Function Definitions” for more detail on function calling.) It is legal to have any
additional memory qualifiers on a formal parameter, but only restrict can be taken away from an
opaque-type calling argument, by a formal parameter that lacks the restrict qualifier. For non-
opaque argument types, where the values operated on by the called function are copied-in/copied-
out, memory qualifiers are not required match.

When a built-in function is called, the code generated is to be based on the actual qualification of
the calling argument, not on the list of memory qualifiers specified on the formal parameter in the
prototype.

vec4 funcA(restrict image2D a) { ... }
vec4 funcB(image2D a) { ... }
layout(rgba32f) uniform image2D img1;
layout(rgba32f) coherent uniform image2D img2;

funcA(img1); // OK, adding "restrict" is allowed
funcB(img2); // illegal, stripping "coherent" is not

Layout qualifiers cannot be used on formal function parameters, and layout qualification is not
included in parameter matching.

Note that the use of const in an image variable declaration is qualifying the const-ness of the
variable being declared, not the image it refers to. The qualifier readonly qualifies the image
memory (as accessed through that variable) while const qualifies the variable itself.

100

4.11. Specialization-Constant Qualifier
Specialization constants are used only for SPIR-V and declared using the constant_id layout
qualifier. For example:

layout(constant_id = 17) const int arraySize = 12;

The above makes a specialization constant with a default value of 12. The number 17 is an example
author-chosen id by which the API or other tools can later refer to this specific specialization
constant. If it is never changed before final lowering, it will retain the value of 12. It is a compile-
time error to use the constant_id qualifier on anything but SPIR-V generation of a scalar bool, int,
uint, float, or double.

Built-in constants can be declared to be specialization constants. For example:

layout(constant_id = 31) gl_MaxClipDistances; // add specialization_id

The declaration uses just the name of the previously declared built-in variable, with a constant_id
layout-qualifier declaration. It is a compile-time error to do this after the constant has been used:
Constants are strictly either non-specialization constants or specialization constants, not both.

The built-in constant vector gl_WorkGroupSize can be specialized using the local_size_{xyz}_id
qualifiers, to individually give the components an id. For example:

layout(local_size_x_id = 18, local_size_z_id = 19) in;

This leaves gl_WorkGroupSize.y as a non-specialization constant, with gl_WorkGroupSize being a
partially specialized vector. Its x and z components can be later specialized, after generating SPIR-V,
using the ids 18 and 19. These ids are declared independently from declaring the workgroup size:

layout(local_size_x = 32, local_size_y = 32) in; // size is (32,32,1)
layout(local_size_x_id = 18) in; // constant_id for x
layout(local_size_z_id = 19) in; // constant_id for z

Existing rules for declaring local_size_x, local_size_y, and local_size_z are not changed. For the
local-size ids, it is a compile-time error to provide different id values for the same local-size id, or to
provide them after any use. Otherwise, order, placement, number of statements, and replication do
not cause errors.

Two arrays sized with specialization constants are the same type only if sized with the same
symbol, and involving no operations. For example:

layout(constant_id = 51) const int aSize = 20;
const int pad = 2;
const int total = aSize + pad; // specialization constant

101

int a[total], b[total]; // a and b have the same type
int c[22]; // different type than a or b
int d[aSize + pad]; // different type than a, b, or c
int e[aSize + 2]; // different type than a, b, c, or d

Types containing arrays sized with a specialization constant cannot be compared, assigned as
aggregates, declared with an initializer, or used as an initializer. They can, however, be passed as
arguments to functions having formal parameters of the same type. Only the outer-most dimension
of a variable declared as an array of arrays can be a specialization constant, otherwise a compile-
time error results.

Arrays inside a block may be sized with a specialization constant, but the block will have a static
layout. Changing the specialized size will not re-layout the block. In the absence of explicit offsets,
the layout will be based on the default size of the array.

4.12. Order and Repetition of Qualification
When multiple qualifiers are present in a declaration, they may appear in any order, but they must
all appear before the type. The layout qualifier is the only qualifier that can appear more than
once. Further, a declaration can have at most one storage qualifier, at most one auxiliary storage
qualifier, and at most one interpolation qualifier. Multiple memory qualifiers can be used. Any
violation of these rules will cause a compile-time error.

4.13. Empty Declarations
Empty declarations are declarations without a variable name, meaning no object is instantiated by
the declaration. Generally, empty declarations are allowed. Some are useful when declaring
structures, while many others have no effect. For example:

int; // No effect
struct S {int x;}; // Defines a struct S

The combinations of qualifiers that cause compile-time or link-time errors are the same whether or
not the declaration is empty, for example:

invariant in float x; // Error. An input cannot be invariant.
invariant in float; // Error even though no variable is declared.

102

Chapter 5. Operators and Expressions

5.1. Operators
The OpenGL ES Shading Language has the following operators.

Precedence Operator Class Operators Associativity

1 (highest) parenthetical grouping () NA

2 array subscript
function call and
constructor structure
field or method
selector, swizzle
post fix increment and
decrement

[]
()
.
++ --

Left to Right

3 prefix increment and
decrement
unary

++ --
+ - ~ !

Right to Left

4 multiplicative * / % Left to Right

5 additive + - Left to Right

6 bit-wise shift << >> Left to Right

7 relational < > <= >= Left to Right

8 equality == != Left to Right

9 bit-wise and & Left to Right

10 bit-wise exclusive or ^ Left to Right

11 bit-wise inclusive or | Left to Right

12 logical and && Left to Right

13 logical exclusive or ^^ Left to Right

14 logical inclusive or || Left to Right

15 selection ? : Right to Left

16 Assignment
arithmetic assignments

=
+= -=
*= /=
%= <<= >>=
&= ^= |=

Right to Left

17 (lowest) sequence , Left to Right

There is no address-of operator nor a dereference operator. There is no typecast operator;
constructors are used instead.

103

5.2. Array Operations
These are now described in “Structure and Array Operations”.

5.3. Function Calls
If a function returns a value, then a call to that function may be used as an expression, whose type
will be the type that was used to declare or define the function.

Function definitions and calling conventions are discussed in “Function Definitions”.

5.4. Constructors
Constructors use the function call syntax, where the function name is a type, and the call makes an
object of that type. Constructors are used the same way in both initializers and expressions. (See
“Shading Language Grammar” for details.) The parameters are used to initialize the constructed
value. Constructors can be used to request a data type conversion to change from one scalar type to
another scalar type, or to build larger types out of smaller types, or to reduce a larger type to a
smaller type.

In general, constructors are not built-in functions with predetermined prototypes. For arrays and
structures, there must be exactly one argument in the constructor for each element or member. For
the other types, the arguments must provide a sufficient number of components to perform the
initialization, and it is an error to include so many arguments that they cannot all be used. Detailed
rules follow. The prototypes actually listed below are merely a subset of examples.

5.4.1. Conversion and Scalar Constructors

Converting between scalar types is done as the following prototypes indicate:

int(uint) // converts an unsigned integer to a signed integer
int(bool) // converts a Boolean value to an int
int(float) // converts a float value to an int
uint(int) // converts a signed integer value to an unsigned integer
uint(bool) // converts a Boolean value to an unsigned integer
uint(float) // converts a float value to an unsigned integer
bool(int) // converts a signed integer value to a Boolean
bool(uint) // converts an unsigned integer value to a Boolean value
bool(float) // converts a float value to a Boolean
float(int) // converts a signed integer value to a float
float(uint) // converts an unsigned integer value to a float value
float(bool) // converts a Boolean value to a float

When constructors are used to convert a floating-point type to an integer type, the fractional part of
the floating-point value is dropped. It is undefined to convert a negative floating-point value to an
uint.

104

Integer values having more bits of precision than a single-precision floating-point mantissa will
lose precision when converted to float.

When a constructor is used to convert any integer or floating-point type to a bool, 0 and 0.0 are
converted to false, and non-zero values are converted to true. When a constructor is used to
convert a bool to any integer or floating-point type, false is converted to 0 or 0.0, and true is
converted to 1 or 1.0.

The constructor int(uint) preserves the bit pattern in the argument, which will change the
argument’s value if its sign bit is set. The constructor uint(int) preserves the bit pattern in the
argument, which will change its value if it is negative.

Identity constructors, like float(float) are also legal, but of little use.

Scalar constructors with non-scalar parameters can be used to take the first element from a non-
scalar. For example, the constructor float(vec3) will select the first component of the vec3
parameter.

5.4.2. Vector and Matrix Constructors

Constructors can be used to create vectors or matrices from a set of scalars, vectors, or matrices.
This includes the ability to shorten vectors.

If there is a single scalar parameter to a vector constructor, it is used to initialize all components of
the constructed vector to that scalar’s value. If there is a single scalar parameter to a matrix
constructor, it is used to initialize all the components on the matrix’s diagonal, with the remaining
components initialized to 0.0.

If a vector is constructed from multiple scalars, one or more vectors, or one or more matrices, or a
mixture of these, the vector’s components will be constructed in order from the components of the
arguments. The arguments will be consumed left to right, and each argument will have all its
components consumed, in order, before any components from the next argument are consumed.
Similarly for constructing a matrix from multiple scalars or vectors, or a mixture of these. Matrix
components will be constructed and consumed in column major order. In these cases, there must
be enough components provided in the arguments to provide an initializer for every component in
the constructed value. It is an error to provide extra arguments beyond this last used argument.

If a matrix is constructed from a matrix, then each component (column i, row j) in the result that
has a corresponding component (column i, row j) in the argument will be initialized from there. All
other components will be initialized to the identity matrix. If a matrix argument is given to a matrix
constructor, it is an error to have any other arguments.

If the basic type (bool, int, or float) of a parameter to a constructor does not match the basic type of
the object being constructed, the scalar construction rules (above) are used to convert the
parameters.

Some useful vector constructors are as follows:

vec3(float) // initializes each component of the vec3 with the float
vec4(ivec4) // makes a vec4 with component-wise conversion

105

vec4(mat2) // the vec4 is column 0 followed by column 1
vec2(float, float) // initializes a vec2 with 2 floats
ivec3(int, int, int) // initializes an ivec3 with 3 ints
bvec4(int, int, float, float) // uses 4 Boolean conversions
vec2(vec3) // drops the third component of a vec3
vec3(vec4) // drops the fourth component of a vec4
vec3(vec2, float) // vec3.x = vec2.x, vec3.y = vec2.y, vec3.z = float
vec3(float, vec2) // vec3.x = float, vec3.y = vec2.x, vec3.z = vec2.y
vec4(vec3, float)
vec4(float, vec3)
vec4(vec2, vec2)

Some examples of these are:

vec4 color = vec4(0.0, 1.0, 0.0, 1.0);
vec4 rgba = vec4(1.0); // sets each component to 1.0
vec3 rgb = vec3(color); // drop the 4th component

To initialize the diagonal of a matrix with all other elements set to zero:

mat2(float)
mat3(float)
mat4(float)

That is, result[i][j] is set to the float argument for all and set to 0 for all .

To initialize a matrix by specifying vectors or scalars, the components are assigned to the matrix
elements in column-major order.

mat2(vec2, vec2); // one column per argument
mat3(vec3, vec3, vec3); // one column per argument
mat4(vec4, vec4, vec4, vec4); // one column per argument
mat3x2(vec2, vec2, vec2); // one column per argument
mat2(float, float, // first column
 float, float); // second column
mat3(float, float, float, // first column
 float, float, float, // second column
 float, float, float); // third column
mat4(float, float, float, float, // first column
 float, float, float, float, // second column
 float, float, float, float, // third column
 float, float, float, float); // fourth column
mat2x3(vec2, float, // first column
 vec2, float); // second column

A wide range of other possibilities exist, to construct a matrix from vectors and scalars, as long as
enough components are present to initialize the matrix. To construct a matrix from a matrix:

106

mat3x3(mat4x4); // takes the upper-left 3x3 of the mat4x4
mat2x3(mat4x2); // takes the upper-left 2x2 of the mat4x4, last row is 0,0
mat4x4(mat3x3); // puts the mat3x3 in the upper-left, sets the lower right
 // component to 1, and the rest to 0

5.4.3. Structure Constructors

Once a structure is defined, and its type is given a name, a constructor is available with the same
name to construct instances of that structure. For example:

struct light {
 float intensity;
 vec3 position;
};

light lightVar = light(3.0, vec3(1.0, 2.0, 3.0));

The arguments to the constructor will be used to set the structure’s members, in order, using one
argument per member. Each argument must be the same type as the member it sets.

Structure constructors can be used as initializers or in expressions.

5.4.4. Array Constructors

Array types can also be used as constructor names, which can then be used in expressions or
initializers. For example,

const float c[3] = float[3](5.0, 7.2, 1.1);
const float d[3] = float[](5.0, 7.2, 1.1);

float g;
...
float a[5] = float[5](g, 1, g, 2.3, g);
float b[3];

b = float[3](g, g + 1.0, g + 2.0);

There must be exactly the same number of arguments as the size of the array being constructed. If
no size is present in the constructor, then the array is explicitly sized to the number of arguments
provided. The arguments are assigned in order, starting at element 0, to the elements of the
constructed array. Each argument must be the same type as the element type of the array.

Arrays of arrays are similarly constructed, and the size for any dimension is optional

vec4 b[2] = ...;
vec4[3][2](b, b, b); // constructor

107

vec4[][2](b, b, b); // constructor, valid, size deduced
vec4[3][](b, b, b); // constructor, valid, size deduced
vec4[][](b, b, b); // constructor, valid, both sizes deduced

5.4.5. Texture-Combined Sampler Constructors

Texture-combined sampler constructors are only available when targeting Vulkan.

Texture-combined sampler types, like sampler2D, can be declared with an initializer that is a
constructor of the same type, and consuming a texture and a sampler or samplerShadow. For
example:

 layout(...) uniform sampler s; // handle to filtering information
 layout(...) uniform texture2D t; // handle to a texture
 layout(...) in vec2 tCoord;
 ...
 texture(sampler2D(t, s), tCoord);

The result of a texture-combined sampler constructor cannot be assigned to a variable:

 ... sampler2D sConstruct = sampler2D(t, s); // ERROR

Texture-combined sampler constructors can only be consumed by a function parameter.

Texture-combined sampler constructors of arrays are illegal:

 layout(...) uniform texture2D tArray[6];
 ...
 ... sampler2D[](tArray, s) ... // ERROR

Formally:

• every texture-combined sampler type can be used as a constructor

• the type of the constructor must match the type of the variable being declared

• the constructor’s first argument must be a texture type

• the constructor’s second argument must be a scalar of type sampler or samplerShadow

• the dimensionality (1D, 2D, 3D, Cube, Rect, Buffer, MS, and Array) of the texture type must
match that of the constructed type (that is, the suffixes of the type of the first argument and the
type of the constructor will be spelled the same way)

• there is no control flow construct (e.g., ?:) that consumes any sampler type

Note: Shadow mismatches are allowed between constructors and the second argument. Texture-
combined non-shadow samplers can be constructed from samplerShadow and texture-combined
shadow samplers can be constructed from sampler.

108

5.5. Vector Components
The names of the components of a vector are denoted by a single letter. As a notational
convenience, several letters are associated with each component based on common usage of
position, color or texture coordinate vectors. The individual components can be selected by
following the variable name with period (.) and then the component name.

The component names supported are:

{ x, y, z, w } Useful when accessing vectors that represent points or normals

{ r, g, b, a } Useful when accessing vectors that represent colors

{ s, t, p, q } Useful when accessing vectors that represent texture coordinates

The component names x, r, and s are, for example, synonyms for the same (first) component in a
vector.

Note that the third component of the texture coordinate set has been renamed p so as to avoid the
confusion with r (for red) in a color.

Accessing components beyond those declared for the type is an error so, for example:

vec2 pos;
pos.x // is legal
pos.z // is illegal

The component selection syntax allows multiple components to be selected by appending their
names (from the same name set) after the period (.).

vec4 v4;
v4.rgba; // is a vec4 and the same as just using v4,
v4.rgb; // is a vec3,
v4.b; // is a float,
v4.xy; // is a vec2,
v4.xgba; // is illegal - the component names do not come from the same set

No more than 4 components can be selected.

vec4 v4;
v4.xyzwxy; // is illegal since it has 6 components
(v4.xyzwxy).xy; // is illegal since the intermediate value has 6
components

The order of the components can be different to swizzle them, or replicated:

vec4 pos = vec4(1.0, 2.0, 3.0, 4.0);

109

vec4 swiz = pos.wzyx; // swiz = (4.0, 3.0, 2.0, 1.0)
vec4 dup = pos.xxyy; // dup = (1.0, 1.0, 2.0, 2.0)

This notation is more concise than the constructor syntax. To form an r-value, it can be applied to
any expression that results in a vector r-value.

The component group notation can occur on the left hand side of an expression.

vec4 pos = vec4(1.0, 2.0, 3.0, 4.0);
pos.xw = vec2(5.0, 6.0); // pos = (5.0, 2.0, 3.0, 6.0)
pos.wx = vec2(7.0, 8.0); // pos = (8.0, 2.0, 3.0, 7.0)
pos.xx = vec2(3.0, 4.0); // illegal - 'x' used twice
pos.xy = vec3(1.0, 2.0, 3.0); // illegal - mismatch between vec2 and vec3

To form an l-value, swizzling must further be applied to an l-value and contain no duplicate
components. It results in an l-value of scalar or vector type, depending on number of components
specified.

Array subscripting syntax can also be applied to vectors (but not to scalars) to provide numeric
indexing. So in

vec4 pos;

pos[2] refers to the third element of pos and is equivalent to pos.z. This allows variable indexing
into a vector, as well as a generic way of accessing components. Any integer expression can be used
as the subscript. The first component is at index zero. Reading from or writing to a vector using a
constant integral expression with a value that is negative or greater than or equal to the size of the
vector results in an error. When indexing with non-constant expressions, behavior is undefined if
the index is negative, or greater than or equal to the size of the vector.

Note that scalars are not considered to be single-component vectors and therefore the use of
component selection operators on scalars is illegal.

5.6. Matrix Components
The components of a matrix can be accessed using array subscripting syntax. Applying a single
subscript to a matrix treats the matrix as an array of column vectors, and selects a single column,
whose type is a vector of the same size as the (column size of the) matrix. The leftmost column is
column 0. A second subscript would then operate on the resulting vector, as defined earlier for
vectors. Hence, two subscripts select a column and then a row.

mat4 m;
m[1] = vec4(2.0); // sets the second column to all 2.0
m[0][0] = 1.0; // sets the upper left element to 1.0
m[2][3] = 2.0; // sets the 4th element of the third column to 2.0

110

Behavior is undefined when accessing a component outside the bounds of a matrix with a non-
constant expression. It is an error to access a matrix with a constant expression that is outside the
bounds of the matrix.

5.7. Structure and Array Operations
The members of a structure and the length() method of an array are selected using the period (.).

In total, only the following operators are allowed to operate on arrays and structures as whole
entities:

field selector .

equality == !=

assignment =

Ternary operator ?:

Sequence operator ,

indexing (arrays only) []

The equality operators and assignment operator are only allowed if the two operands are same size
and type. The operands cannot contain any opaque types. Structure types must be of the same
declared structure. Both array operands must be compile-time sized. When using the equality
operators, two structures are equal if and only if all the members are component-wise equal, and
two arrays are equal if and only if all the elements are element-wise equal.

Array elements are accessed using the array subscript operator ([]). An example of accessing an
array element is

diffuseColor += lightIntensity[3] * NdotL;

Array indices start at zero. Array elements are accessed using an expression whose type is int or
uint.

Behavior is undefined if a shader subscripts an array with an index less than 0 or greater than or
equal to the size the array was declared with.

Arrays can also be accessed with the method operator (.) and the length method to query the size of
the array:

lightIntensity.length() // return the size of the array

5.8. Assignments
Assignments of values to variable names are done with the assignment operator (=):

111

lvalue-expression = rvalue-expression

The lvalue-expression evaluates to an l-value. The assignment operator stores the value of rvalue-
expression into the l-value and returns an r-value with the type and precision of lvalue-expression.
The lvalue-expression and rvalue-expression must have the same type. Any type-conversions must
be specified explicitly via constructors. It is an error if the l-value is not writable. Variables that are
built-in types, entire structures or arrays, structure members, l-values with the field selector (.)
applied to select components or swizzles without repeated fields, l-values within parentheses, and l-
values dereferenced with the array subscript operator ([]) are all l-values. Other binary or unary
expressions, function names, swizzles with repeated fields, and constants cannot be l-values. The
ternary operator (?:) is also not allowed as an l-value. Using an incorrect expression as an l-value
results in an error.

Expressions on the left of an assignment are evaluated before expressions on the right of the
assignment.

The other assignment operators are

• add into (+=)

• subtract from (-=)

• multiply into (*=)

• divide into (/=)

• modulus into (%=)

• left shift by (<<=)

• right shift by (>>=)

• and into (&=)

• inclusive-or into (|=)

• exclusive-or into (^=)

where the general expression

lvalue op= expression

is equivalent to

lvalue = lvalue op expression

where lvalue is the value returned by lvalue-expression, op is as described below, and the lvalue-
expression and expression must satisfy the semantic requirements of both op and equals (=).

Reading a variable before writing (or initializing) it is legal, however the value is undefined.

112

5.9. Expressions
Expressions in the shading language are built from the following:

• Constants of type bool, all integral types, all floating-point types, all vector types, and all matrix
types.

• Constructors of all types.

• Variable names of all types.

• Arrays with the length method applied.

• Subscripted arrays.

• Function calls that return values. In some cases, function calls returning void are also allowed
in expressions as specified below.

• Component field selectors and array subscript results.

• Parenthesized expressions. Any expression, including expressions with void type can be
parenthesized. Parentheses can be used to group operations. Operations within parentheses are
done before operations across parentheses.

• The arithmetic binary operators add (+), subtract (-), multiply (*), and divide (/) operate on
integer and floating-point scalars, vectors, and matrices. If the operands are integral types, they
must both be signed or both be unsigned. All arithmetic binary operators result in the same
fundamental type (signed integer, unsigned integer, or floating-point) as the operands they
operate on. The following cases are valid

◦ The two operands are scalars. In this case the operation is applied, resulting in a scalar.

◦ One operand is a scalar, and the other is a vector or matrix. In this case, the scalar operation
is applied independently to each component of the vector or matrix, resulting in the same
size vector or matrix.

◦ The two operands are vectors of the same size. In this case, the operation is done
component-wise resulting in the same size vector.

◦ The operator is add (+), subtract (-), or divide (/), and the operands are matrices with the
same number of rows and the same number of columns. In this case, the operation is done
component-wise resulting in the same size matrix.

◦ The operator is multiply (*), where both operands are matrices or one operand is a vector
and the other a matrix. A right vector operand is treated as a column vector and a left vector
operand as a row vector. In all these cases, it is required that the number of columns of the
left operand is equal to the number of rows of the right operand. Then, the multiply (*)
operation does a linear algebraic multiply, yielding an object that has the same number of
rows as the left operand and the same number of columns as the right operand. “Vector and
Matrix Operations” explains in more detail how vectors and matrices are operated on.

All other cases result in an error.

Use the built-in functions dot, cross, matrixCompMult, and outerProduct, to get,
respectively, vector dot product, vector cross product, matrix component-wise
multiplication, and the matrix product of a column vector times a row vector.

113

• The operator modulus (%) operates on signed or unsigned integers or integer vectors. The
operand types must both be signed or both be unsigned. The operands cannot be vectors of
differing size; this is an error. If one operand is a scalar and the other vector, then the scalar is
applied component-wise to the vector, resulting in the same type as the vector. If both are
vectors of the same size, the result is computed component-wise. The resulting value is
undefined for any component computed with a second operand that is zero, while results for
other components with non-zero second operands remain defined. If both operands are non-
negative, then the remainder is non-negative. Results are undefined if one or both operands are
negative. The operator modulus (%) is not defined for any other data types (non-integer types).

• The arithmetic unary operators plus (*), negate (*-*), post- and pre-increment and decrement
(*--* and *+) operate on integer or floating-point values (including vectors and matrices). All
unary operators work component-wise on their operands. These result with the same type they
operated on. For post- and pre-increment and decrement, the expression must be a writable l-
value. Pre-increment and pre-decrement add or subtract 1 or 1.0 to the contents of the
expression they operate on, and the value of the pre-increment or pre-decrement expression is
the resulting value of that modification. Post-increment and post-decrement expressions add or
subtract 1 or 1.0 to the contents of the expression they operate on, but the resulting expression
has the expression’s value before the post-increment or post-decrement was executed.

• The relational operators greater than (>), less than (<), greater than or equal (>=), and less than
or equal (<=) operate only on scalar integer and scalar floating-point expressions. The result is
scalar Boolean. The types of the operands must match. To do component-wise relational
comparisons on vectors, use the built-in functions lessThan, lessThanEqual, greaterThan, and
greaterThanEqual.

• The equality operators equal (==), and not equal (!=) operate on all types except opaque types.
They result in a scalar Boolean. The types of the operands must match. For vectors, matrices,
structures, and arrays, all components, members, or elements of one operand must equal the
corresponding components, members, or elements in the other operand for the operands to be
considered equal. To get a vector of component-wise equality results for vectors, use the built-in
functions equal and notEqual.

• The logical binary operators and (&&), or (||), and exclusive or (^^) operate only on two
Boolean expressions and result in a Boolean expression. And (&&) will only evaluate the right
hand operand if the left hand operand evaluated to true. Or (||) will only evaluate the right
hand operand if the left hand operand evaluated to false. Exclusive or (^^) will always evaluate
both operands.

• The logical unary operator not (!). It operates only on a Boolean expression and results in a
Boolean expression. To operate on a vector, use the built-in function not.

• The sequence (,) operator that operates on expressions by returning the type and value of the
right-most expression in a comma separated list of expressions. All expressions are evaluated,
in order, from left to right. The operands to the sequence operator may have void type. Opaque
types cannot be used with the sequence (,) operator.

• The ternary selection operator (?:). It operates on three expressions (exp1 ? exp2 : exp3). This
operator evaluates the first expression, which must result in a scalar Boolean. If the result is
true, it selects to evaluate the second expression, otherwise it selects to evaluate the third
expression. Only one of the second and third expressions is evaluated. The second and third
expressions cannot be opaque types, or there will be an error. Otherwise, the second and third

114

expressions can be any type, including void, as long their types match. This resulting matching
type is the type of the entire expression.

• The one’s complement operator (~). The operand must be of type signed or unsigned integer or
integer vector, and the result is the one’s complement of its operand; each bit of each
component is complemented, including any sign bits.

• The shift operators (<<) and (>>). For both operators, the operands must be signed or unsigned
integers or integer vectors. One operand can be signed while the other is unsigned. In all cases,
the resulting type will be the same type as the left operand. If the first operand is a scalar, the
second operand has to be a scalar as well. If the first operand is a vector, the second operand
must be a scalar or a vector with the same size as the first operand, and the result is computed
component-wise. The result is undefined if the right operand is negative, or greater than or
equal to the number of bits in the left expression’s base type. The value of E1 << E2 is E1
(interpreted as a bit pattern) left-shifted by E2 bits. The value of E1 >> E2 is E1 right-shifted by
E2 bit positions. If E1 is a signed integer, the right-shift will extend the sign bit. If E1 is an
unsigned integer, the right-shift will zero-extend.

• The bitwise operators and (&), exclusive-or (^), and inclusive-or (|). The operands must be of
type signed or unsigned integers or integer vectors. The operands cannot be vectors of differing
size; this is an error. If one operand is a scalar and the other a vector, the scalar is applied
component-wise to the vector, resulting in the same type as the vector. The fundamental types
of the operands (signed or unsigned) must match, and will be the resulting fundamental type.
For and (&), the result is the bitwise-and function of the operands. For exclusive-or (^), the
result is the bitwise exclusive-or function of the operands. For inclusive-or (|), the result is the
bitwise inclusive-or function of the operands.

For a complete specification of the syntax of expressions, see “Shading Language Grammar”.

5.10. Vector and Matrix Operations
With a few exceptions, operations are component-wise. Usually, when an operator operates on a
vector or matrix, it is operating independently on each component of the vector or matrix, in a
component-wise fashion. For example,

vec3 v, u;
float f;
v = u + f;

will be equivalent to

v.x = u.x + f;
v.y = u.y + f;
v.z = u.z + f;

And

vec3 v, u, w;

115

w = v + u;

will be equivalent to

w.x = v.x + u.x;
w.y = v.y + u.y;
w.z = v.z + u.z;

and likewise for most operators and all integer and floating-point vector and matrix types. The
exceptions are matrix multiplied by vector, vector multiplied by matrix, and matrix multiplied by
matrix. These do not operate component-wise, but rather perform the correct linear algebraic
multiply.

vec3 v, u;
mat3 m;
u = v * m;

is equivalent to

u.x = dot(v, m[0]); // m[0] is the left column of m
u.y = dot(v, m[1]); // dot(a,b) is the inner (dot) product of a and b
u.z = dot(v, m[2]);

And

u = m * v;

is equivalent to

u.x = m[0].x * v.x + m[1].x * v.y + m[2].x * v.z;
u.y = m[0].y * v.x + m[1].y * v.y + m[2].y * v.z;
u.z = m[0].z * v.x + m[1].z * v.y + m[2].z * v.z;

And

mat3 m, n, r;
r = m * n;

is equivalent to

r[0].x = m[0].x * n[0].x + m[1].x * n[0].y + m[2].x * n[0].z;
r[1].x = m[0].x * n[1].x + m[1].x * n[1].y + m[2].x * n[1].z;

116

r[2].x = m[0].x * n[2].x + m[1].x * n[2].y + m[2].x * n[2].z;
r[0].y = m[0].y * n[0].x + m[1].y * n[0].y + m[2].y * n[0].z;
r[1].y = m[0].y * n[1].x + m[1].y * n[1].y + m[2].y * n[1].z;
r[2].y = m[0].y * n[2].x + m[1].y * n[2].y + m[2].y * n[2].z;
r[0].z = m[0].z * n[0].x + m[1].z * n[0].y + m[2].z * n[0].z;
r[1].z = m[0].z * n[1].x + m[1].z * n[1].y + m[2].z * n[1].z;
r[2].z = m[0].z * n[2].x + m[1].z * n[2].y + m[2].z * n[2].z;

and similarly for other sizes of vectors and matrices.

5.11. Specialization-Constant Operations
Specialization-constant operations are only available when targeting SPIR-V.

Only some operations discussed in this section may be applied to a specialization constant and still
yield a result that is a specialization constant. The operations that do so are listed below. When a
specialization constant is operated on with one of these operators and with another constant or
specialization constant, the result is implicitly a specialization constant.

• int(), uint(), and bool() constructors for type conversions from any of the following types to any
of the following types:

◦ int

◦ uint

◦ bool

• vector versions of the above conversion constructors

• allowed implicit conversions of the above

• swizzles (e.g. foo.yx)

• the following when applied to integer or unsigned integer types:

◦ unary negative (-)

◦ binary operations (+, -, *, /, %)

◦ shift (<<, >>)

◦ bitwise operations (&, |, ^)

• the following when applied to integer or unsigned integer scalar types:

◦ comparison (==, !=, >, >=, <, ⇐)

• The following when applied to the Boolean scalar type:

◦ not (!)

◦ logical operations (&&, ||, ^^)

◦ comparison (==, !=)

• the ternary operator (?:)

117

5.12. Evaluation of Expressions
In general expressions must be evaluated in the order specified by the precedence of operations
and may only be regrouped if the result is the same or where the result is undefined. No other
transforms may be applied that affect the result of an operation. GLSL ES relaxes these
requirements for scalar operations in the following ways:

• Addition and multiplication are assumed to be associative.

• Multiplication is assumed to be distributive over addition. Therefore expressions may be
expanded and re-factored.

• Floating-point division may be replaced by reciprocal and multiplication.

• Multiplication may be replaced by repeated addition.

• Within the constraints of invariance (where applicable), the precision used may vary.

These rules also apply to the built-in functions.

118

Chapter 6. Statements and Structure
The fundamental building blocks of the OpenGL ES Shading Language are:

• statements and declarations

• function definitions

• selection (if-else and switch-case-default)

• iteration (for, while, and do-while)

• jumps (discard, return, break, and continue)

The overall structure of a shader is as follows

translation-unit :

global-declaration
translation-unit global-declaration

global-declaration :

function-definition
declaration

That is, a shader is a sequence of declarations and function bodies. Function bodies are defined as

function-definition :

function-prototype { statement-list }

statement-list :

statement
statement-list statement

statement :

compound-statement
simple-statement

Curly braces are used to group sequences of statements into compound statements.

compound-statement :

{ statement-list }

simple-statement :

declaration-statement
expression-statement
selection-statement
iteration-statement
jump-statement

Simple declaration, expression, and jump statements end in a semi-colon.

119

This above is slightly simplified, and the complete grammar specified in “Shading Language
Grammar” should be used as the definitive specification.

Declarations and expressions have already been discussed.

6.1. Function Definitions
As indicated by the grammar above, a valid shader is a sequence of global declarations and
function definitions. A function is declared as the following example shows:

// prototype
returnType functionName (type0 arg0, type1 arg1, ..., typen argn);

and a function is defined like

// definition
returnType functionName (type0 arg0, type1 arg1, ..., typen argn)
{
 // do some computation
 return returnValue;
}

where returnType must be present and cannot be void, or:

void functionName (type0 arg0, type1 arg1, ..., typen argn)
{
 // do some computation
 return; // optional
}

Each of the typeN must include a type and can optionally include a parameter qualifier and/or
const.

A function is called by using its name followed by a list of arguments in parentheses.

Arrays are allowed as arguments and as the return type. In both cases, the array must be compile-
time sized. An array is passed or returned by using just its name, without brackets, and the size of
the array must match the size specified in the function’s declaration.

Structures are also allowed as argument types. The return type can also be a structure.

See “Shading Language Grammar” for the definitive reference on the syntax to declare and define
functions.

All functions must be either declared with a prototype or defined with a body before they are
called. For example:

120

float myfunc (float f, // f is an input parameter
 out float g); // g is an output parameter

Functions that return no value must be declared as void. A void function can only use return
without a return argument, even if the return argument has void type. Return statements only
accept values:

void func1() { }
void func2() { return func1(); } // illegal return statement

Only a precision qualifier is allowed on the return type of a function. Formal parameters can have
parameter, precision, and memory qualifiers, but no other qualifiers.

Functions that accept no input arguments need not use void in the argument list because
prototypes (or definitions) are required and therefore there is no ambiguity when an empty
argument list “()” is declared. The idiom “(void)” as a parameter list is provided for convenience.

Function names can be overloaded. The same function name can be used for multiple functions, as
long as the parameter types differ. If a function name is declared twice with the same parameter
types, then the return types and all qualifiers must also match, and it is the same function being
declared. When function calls are resolved, an exact type match for all the arguments is required.

For example,

vec4 f(in vec4 x, out vec4 y);
vec4 f(in vec4 x, out uvec4 y); // allowed, different argument type
int f(in vec4 x, out vec4 y); // error, only return type differs
vec4 f(in vec4 x, in vec4 y); // error, only qualifier differs
vec4 f(const in vec4 x, out vec4 y); // error, only qualifier differs

Calling the first two functions above with the following argument types yields

f(vec4, vec4) // exact match of vec4 f(in vec4 x, out vec4 y)
f(vec4, uvec4) // exact match of vec4 f(in vec4 x, out uvec4 y)
f(ivec4, vec4) // error, no exact match.
f(ivec4, uvec4) // error, no exact match.

User-defined functions can have multiple declarations, but only one definition.

A shader cannot redefine or overload built-in functions.

The function main is used as the entry point to a shader executable. All shaders must define a
function named main. This function takes no arguments, returns no value, and must be declared as
type void:

121

void main()
{
 ...
}

The function main can contain uses of return. See “Jumps” for more details.

It is a compile-time or link-time error to declare or define a function main with any other
parameters or return type.

6.1.1. Function Calling Conventions

Functions are called by value-return. This means input arguments are copied into the function at
call time, and output arguments are copied back to the caller before function exit. Because the
function works with local copies of parameters, there are no issues regarding aliasing of variables
within a function. To control what parameters are copied in and/or out through a function
definition or declaration:

• The keyword in is used as a qualifier to denote a parameter is to be copied in, but not copied
out.

• The keyword out is used as a qualifier to denote a parameter is to be copied out, but not copied
in. This should be used whenever possible to avoid unnecessarily copying parameters in.

• The keyword inout is used as a qualifier to denote the parameter is to be both copied in and
copied out. It means the same thing as specifying both in and out.

• A function parameter declared with no such qualifier means the same thing as specifying in.

All arguments are evaluated at call time, exactly once, in order, from left to right. Evaluation of an
in parameter results in a value that is copied to the formal parameter. Evaluation of an out
parameter results in an l-value that is used to copy out a value when the function returns.
Evaluation of an inout parameter results in both a value and an l-value; the value is copied to the
formal parameter at call time and the l-value is used to copy out a value when the function returns.

The order in which output parameters are copied back to the caller is undefined.

In a function, writing to an input-only parameter is allowed. Only the function’s copy is modified.
This can be prevented by declaring a parameter with the const qualifier.

When calling a function, expressions that do not evaluate to l-values cannot be passed to
parameters declared as out or inout, or an error results.

The syntax for function prototypes can be informally expressed as:

function-prototype :

return-type function-name (parameter-qualifiers type-specifier name array-specifier , …)

return-type :

type-specifier

122

precision-qualifier type-specifier

parameter-qualifiers :

empty
parameter-qualifiers parameter-qualifier

parameter-qualifier :

const
in
out
inout
precise
memory-qualifier
precision-qualifier

name :

empty
identifier

array-specifier :

empty
[integral-constant-expression]

The const qualifier cannot be used with out or inout, or an error results. The above is used both
for function declarations (i.e., prototypes) and for function definitions. Hence, function definitions
can have unnamed arguments.

Static, and hence dynamic, recursion is not allowed. Static recursion is present if the static function-
call graph of a program contains cycles. Dynamic recursion occurs if at any time control flow has
entered but not exited a single function more than once.

6.2. Selection
Conditional control flow in the shading language is done by either if, if-else, or switch statements:

selection-statement :

if (bool-expression) statement
if (bool-expression) statement else statement
switch (init-expression) { switch-statement-listopt }

Where switch-statement-list is a nested scope containing a list of zero or more switch-statement and
other statements defined by the language, where switch-statement adds some forms of labels. That
is

switch-statement-list :

switch-statement
switch-statement-list switch-statement

123

switch-statement :

case constant-expression :
default : statement

Note the above grammar’s purpose is to aid discussion in this section; the normative grammar is in
“Shading Language Grammar”.

If an if-expression evaluates to true, then the first statement is executed. If it evaluates to false and
there is an else part then the second statement is executed.

Any expression whose type evaluates to a Boolean can be used as the conditional expression bool-
expression. Vector types are not accepted as the expression to if.

Conditionals can be nested.

The type of init-expression in a switch statement must be a scalar integer. The type of init-
expression must match the type of the case labels within each switch statement. Either signed
integers or unsigned integers are allowed but there is no implicit type conversion between the two.
If a case label has a constant-expression of equal value to init-expression, execution will continue
after that label. Otherwise, if there is a default label, execution will continue after that label.
Otherwise, execution skips the rest of the switch statement. It is an error to have more than one
default or a replicated constant-expression. A break statement not nested in a loop or other switch
statement (either not nested or nested only in if or if-else statements) will also skip the rest of the
switch statement. Fall through labels are allowed, but it is an error to have no statement between a
label and the end of the switch statement. No statements are allowed in a switch statement before
the first case statement.

The case and default labels can only appear within a switch statement. No case or default labels
can be nested inside other statements or compound statements within their corresponding switch.

6.3. Iteration
For, while, and do loops are allowed as follows:

for (init-expression; condition-expression; loop-expression)
 sub-statement
while (condition-expression)
 sub-statement
do
 statement
while (condition-expression)

See “Shading Language Grammar” for the definitive specification of loops.

The for loop first evaluates the init-expression, then the condition-expression. If the condition-
expression evaluates to true, then the body of the loop is executed. After the body is executed, a for
loop will then evaluate the loop-expression, and then loop back to evaluate the condition-expression,
repeating until the condition-expression evaluates to false. The loop is then exited, skipping its body

124

and skipping its loop-expression. Variables modified by the loop-expression maintain their value
after the loop is exited, provided they are still in scope. Variables declared in init-expression or
condition-expression are only in scope until the end of the sub-statement of the for loop.

The while loop first evaluates the condition-expression. If true, then the body is executed. This is
then repeated, until the condition-expression evaluates to false, exiting the loop and skipping its
body. Variables declared in the condition-expression are only in scope until the end of the sub-
statement of the while loop.

For both for and while loops, the sub-statement does not introduce a new scope for variable
names, so the following has a redeclaration error:

for (int i = 0; i < 10; i++) +
{
 int i; // redeclaration error +
}

The do-while loop first executes the body, then executes the condition-expression. This is repeated
until condition-expression evaluates to false, and then the loop is exited.

Expressions for condition-expression must evaluate to a Boolean.

Both the condition-expression and the init-expression can declare and initialize a variable, except in
the do-while loop, which cannot declare a variable in its condition-expression. The variable’s scope
lasts only until the end of the sub-statement that forms the body of the loop.

Loops can be nested.

Non-terminating loops are allowed. The consequences of very long or non-terminating loops are
platform dependent.

6.4. Jumps
These are the jumps:

jump_statement :

continue ;
break ;
return ;
return expression ;
discard ; // in the fragment shader language only

There is no “goto” or other non-structured flow of control.

The continue jump is used only in loops. It skips the remainder of the body of the inner-most loop
of which it is inside. For while and do-while loops, this jump is to the next evaluation of the loop
condition-expression from which the loop continues as previously defined. For for loops, the jump is
to the loop-expression, followed by the condition-expression.

125

The break jump can also be used only in loops and switch statements. It is simply an immediate
exit of the inner-most loop or switch statements containing the break. No further execution of
condition-expression, loop-expression, or switch-statement is done.

The discard keyword is only allowed within fragment shaders. It can be used within a fragment
shader to abandon the operation on the current fragment. This keyword causes the fragment to be
discarded and no updates to any buffers will occur. Any prior writes to other buffers such as shader
storage buffers are unaffected. Control flow exits the shader, and subsequent implicit or explicit
derivatives are undefined when this control flow is non-uniform (meaning different fragments
within the primitive take different control paths). It would typically be used within a conditional
statement, for example:

if (intensity < 0.0)
 discard;

A fragment shader may test a fragment’s alpha value and discard the fragment based on that test.
However, it should be noted that coverage testing occurs after the fragment shader runs, and the
coverage test can change the alpha value.

The return jump causes immediate exit of the current function. If it has expression then that is the
return value for the function.

The function main can use return. This simply causes main to exit in the same way as when the end
of the function had been reached. It does not imply a use of discard in a fragment shader. Using
return in main before defining outputs will have the same behavior as reaching the end of main
before defining outputs.

126

Chapter 7. Built-In Variables

7.1. Built-In Language Variables
Some operations occur outside shader functionality and need to provide values to or receive values
from shader executables. Shaders communicate with fixed-function pipeline stages, and optionally
with other shader executables, through the use of built-in input and output variables.

7.1.1. Vertex Shader Special Variables

The built-in vertex shader variables are intrinsically declared as follows:

in highp int gl_VertexID; // only present when not targeting Vulkan
in highp int gl_InstanceID; // only present when not targeting Vulkan
in highp int gl_VertexIndex; // only present when targeting Vulkan
in highp int gl_InstanceIndex; // only present when targeting Vulkan

out gl_PerVertex {
 out highp vec4 gl_Position;
 out highp float gl_PointSize;
};

The variable gl_Position is intended for writing the homogeneous vertex position. It can be written
at any time during shader execution. This value will be used by primitive assembly, clipping,
culling, and other fixed functionality operations, if present, that operate on primitives after vertex
processing has occurred. Its value is undefined after the vertex processing stage if the vertex
shader executable does not write gl_Position.

The variable gl_PointSize is intended for a shader to write the size of the point to be rasterized. It is
measured in pixels. If gl_PointSize is not written to, its value is undefined in subsequent pipe stages.

The variable gl_VertexID is a vertex shader input variable that holds an integer index for the vertex,
as defined under “Shader Inputs” in section 11.1.3.9 “Shader Inputs” of the OpenGL ES
Specification. It is only present when not targeting Vulkan. Even when present, the value of
gl_VertexID is not always defined.

The variable gl_InstanceID is a vertex shader input variable that holds the instance number of the
current primitive in an instanced draw call (see “Shader Inputs” in section 11.1.3.9 “Shader Inputs”
of the OpenGL ES Specification). It is only present when not targeting Vulkan. If the current
primitive does not come from an instanced draw call, the value of gl_InstanceID is zero.

The variable gl_VertexIndex is a vertex language input variable that holds an integer index for the
vertex, relative to a base. It is only present when targeting Vulkan. Even when present, the value of
gl_VertexIndex is not always defined.

The variable gl_InstanceIndex is a vertex language input variable that holds the instance number of
the current primitive in an instanced draw call, relative to a base. It is only present when targeting

127

Vulkan. If the current primitive does not come from an instanced draw call, the value of
gl_InstanceIndex is zero.

7.1.2. Tessellation Control Shader Special Variables

In the tessellation control shader, built-in variables are intrinsically declared as:

in gl_PerVertex {
 highp vec4 gl_Position;
} gl_in[gl_MaxPatchVertices];

in highp int gl_PatchVerticesIn;
in highp int gl_PrimitiveID;
in highp int gl_InvocationID;

out gl_PerVertex {
 highp vec4 gl_Position;
} gl_out[];

patch out highp float gl_TessLevelOuter[4];
patch out highp float gl_TessLevelInner[2];
patch out highp vec4 gl_BoundingBox[2];

Tessellation Control Input Variables

gl_Position contains the output written in the previous shader stage to gl_Position.

gl_PatchVerticesIn contains the number of vertices in the input patch being processed by the
shader. A single shader can read patches of differing sizes, so the value of gl_PatchVerticesIn may
differ between patches.

gl_PrimitiveID contains the number of primitives processed by the shader since the current set of
rendering primitives was started.

gl_InvocationID contains the number of the output patch vertex assigned to the tessellation control
shader invocation. It is assigned integer values in the range [0, N-1], where N is the number of
output patch vertices per primitive.

Tessellation Control Output Variables

gl_Position is used in the same fashion as the corresponding output variable in the vertex shader.

The values written to gl_TessLevelOuter and gl_TessLevelInner are assigned to the corresponding
outer and inner tessellation levels of the output patch. They are used by the tessellation primitive
generator to control primitive tessellation and may be read by tessellation evaluation shaders.

The values written to gl_BoundingBox specify the minimum and maximum clip-space extents of a
bounding box containing all primitives generated from the patch by the primitive generator,
geometry shader, and clipping. Fragments may or may not be generated for portions of these

128

primitives that extend outside the window-coordinate projection of this bounding box.

7.1.3. Tessellation Evaluation Shader Special Variables

In the tessellation evaluation shader, built-in variables are intrinsically declared as:

in gl_PerVertex {
 highp vec4 gl_Position;
} gl_in[gl_MaxPatchVertices];

in highp int gl_PatchVerticesIn;
in highp int gl_PrimitiveID;
in highp vec3 gl_TessCoord;
patch in highp float gl_TessLevelOuter[4];
patch in highp float gl_TessLevelInner[2];

out gl_PerVertex {
 highp vec4 gl_Position;
};

Tessellation Evaluation Input Variables

gl_Position contains the output written in the previous shader stage to gl_Position.

gl_PatchVerticesIn and gl_PrimitiveID are defined in the same fashion as the corresponding input
variables in the tessellation control shader.

gl_TessCoord specifies a three-component (u,v,w) vector identifying the position of the vertex being
processed by the shader relative to the primitive being tessellated. Its values will obey the
properties

gl_TessCoord.x == 1.0 - (1.0 - gl_TessCoord.x) // two operations performed
gl_TessCoord.y == 1.0 - (1.0 - gl_TessCoord.y) // two operations performed
gl_TessCoord.z == 1.0 - (1.0 - gl_TessCoord.z) // two operations performed

to aid in replicating subdivision computations.

gl_TessLevelOuter and gl_TessLevelInner are filled with the corresponding outputs written by the
active tessellation control shader.

Tessellation Evaluation Output Variables

gl_Position is used in the same fashion as the corresponding output variable in the vertex shader.

7.1.4. Geometry Shader Special Variables

In the geometry shader, built-in variables are intrinsically declared as:

129

in gl_PerVertex {
 highp vec4 gl_Position;
} gl_in[];

in highp int gl_PrimitiveIDIn;
in highp int gl_InvocationID;

out gl_PerVertex {
 highp vec4 gl_Position;
};

out highp int gl_PrimitiveID;
out highp int gl_Layer;

Geometry Shader Input Variables

gl_Position contains the output written in the previous shader stage to gl_Position.

gl_PrimitiveIDIn contains the number of primitives processed by the shader since the current set of
rendering primitives was started.

gl_InvocationID contains the invocation number assigned to the geometry shader invocation. It is
assigned integer values in the range [0, N-1], where N is the number of geometry shader
invocations per primitive.

Geometry Shader Output Variables

gl_Position is used in the same fashion as the corresponding output variable in the vertex shader.

gl_PrimitiveID is filled with a single integer that serves as a primitive identifier to the fragment
shader. This is then available to fragment shaders, which will select the written primitive ID from
the provoking vertex of the primitive being shaded. If a fragment shader using gl_PrimitiveID is
active and a geometry shader is also active, the geometry shader must write to gl_PrimitiveID or the
fragment shader input gl_PrimitiveID is undefined. See section 11.3.4.4 “Geometry Shader Outputs”
of the OpenGL ES Specification for more information.

gl_Layer is used to select a specific layer (or face and layer of a cube map) of a multi-layer
framebuffer attachment. The actual layer used will come from one of the vertices in the primitive
being shaded. Which vertex the layer comes from is determined as discussed in section 11.3.4.4 of
the OpenGL ES Specification but may be undefined, so it is best to write the same layer value for all
vertices of a primitive. If a shader statically assigns a value to gl_Layer, layered rendering mode is
enabled. See section 11.3.4.4 “Geometry Shader Outputs” and section 9.8 “Layered Framebuffers” of
the OpenGL ES Specification for more information. If a shader statically assigns a value to gl_Layer,
and there is an execution path through the shader that does not set gl_Layer, then the value of
gl_Layer is undefined for executions of the shader that take that path.

The output variable gl_Layer takes on a special value when used with an array of cube map
textures. Instead of only referring to the layer, it is used to select a cube map face and a layer.
Setting gl_Layer to the value layer*6+face will render to face face of the cube defined in layer layer.

130

The face values are defined in table 8.25 of the OpenGL ES Specification, but repeated below for
clarity.

Face Value Resulting Target

0 TEXTURE_CUBE_MAP_POSITIVE_X

1 TEXTURE_CUBE_MAP_NEGATIVE_X

2 TEXTURE_CUBE_MAP_POSITIVE_Y

3 TEXTURE_CUBE_MAP_NEGATIVE_Y

4 TEXTURE_CUBE_MAP_POSITIVE_Z

5 TEXTURE_CUBE_MAP_NEGATIVE_Z

For example, to render to the positive y cube map face located in the 5th layer of the cube map
array, gl_Layer should be set to 5 * 6 + 2.

7.1.5. Fragment Shader Special Variables

The built-in special variables that are accessible from a fragment shader are intrinsically declared
as follows:

in highp vec4 gl_FragCoord;
in bool gl_FrontFacing;
out highp float gl_FragDepth;
in mediump vec2 gl_PointCoord;
in bool gl_HelperInvocation;
in highp int gl_PrimitiveID;
in highp int gl_Layer;
in lowp int gl_SampleID;
in mediump vec2 gl_SamplePosition;
in highp int gl_SampleMaskIn[(gl_MaxSamples+31)/32];
out highp int gl_SampleMask[(gl_MaxSamples+31)/32];

The output of the fragment shader executable is processed by the fixed function operations at the
back end of the API pipeline.

The fixed functionality computed depth for a fragment may be obtained by reading gl_FragCoord.z,
described below.

Writing to gl_FragDepth will establish the depth value for the fragment being processed. If depth
buffering is enabled, and no shader writes gl_FragDepth, then the fixed function value for depth
will be used as the fragment’s depth value. If a shader statically assigns a value to gl_FragDepth,
and there is an execution path through the shader that does not set gl_FragDepth, then the value of
the fragment’s depth may be undefined for executions of the shader that take that path. That is, if
the set of linked fragment shaders statically contain a write to gl_FragDepth, then it is responsible
for always writing it.

If a shader executes the discard keyword, the fragment is discarded, and the values of any user-

131

defined fragment outputs, gl_FragDepth, and gl_SampleMask become irrelevant.

The variable gl_FragCoord is available as an input variable from within fragment shaders and it
holds the window relative coordinates (x, y, z, 1/w) values for the fragment. If multi-sampling, this
value can be for any location within the pixel, or one of the fragment samples. The use of centroid
does not further restrict this value to be inside the current primitive. This value is the result of the
fixed functionality that interpolates primitives after vertex processing to generate fragments. The z
component is the depth value that would be used for the fragment’s depth if no shader contained
any writes to gl_FragDepth. This is useful for invariance if a shader conditionally computes
gl_FragDepth but otherwise wants the fixed functionality fragment depth.

Fragment shaders have access to the input built-in variable gl_FrontFacing, whose value is true if
the fragment belongs to a front-facing primitive. One use of this is to emulate two-sided lighting by
selecting one of two colors calculated by a vertex or geometry shader.

The values in gl_PointCoord are two-dimensional coordinates indicating where within a point
primitive the current fragment is located, when point sprites are enabled. They range from 0.0 to
1.0 across the point. If the current primitive is not a point, or if point sprites are not enabled, then
the values read from gl_PointCoord are undefined.

For both the input array gl_SampleMaskIn[] and the output array gl_SampleMask[], bit B of mask M
(gl_SampleMaskIn[M] or gl_SampleMask[M]) corresponds to sample 32*M+B. These arrays have
ceil(s/32) elements, where s is the maximum number of color samples supported by the
implementation.

The input variable gl_SampleMaskIn indicates the set of samples covered by the primitive
generating the fragment during multisample rasterization. It has a sample bit set if and only if the
sample is considered covered for this fragment shader invocation.

The output array gl_SampleMask[] sets the sample mask for the fragment being processed. Coverage
for the current fragment will become the logical AND of the coverage mask and the output
gl_SampleMask. This array must be sized in the fragment shader either implicitly or explicitly, to be
no larger than the implementation-dependent maximum sample-mask (as an array of 32bit
elements), determined by the maximum number of samples.. If the fragment shader statically
assigns a value to gl_SampleMask, the sample mask will be undefined for any array elements of any
fragment shader invocations that fail to assign a value. If a shader does not statically assign a value
to gl_SampleMask, the sample mask has no effect on the processing of a fragment.

The input variable gl_SampleID is filled with the sample number of the sample currently being
processed. This variable is in the range 0 to gl_NumSamples-1, where gl_NumSamples is the total
number of samples in the framebuffer, or 1 if rendering to a non-multisample framebuffer. Any
static use of this variable in a fragment shader causes the entire shader to be evaluated per-sample.

The input variable gl_SamplePosition contains the position of the current sample within the
multisample draw buffer. The x and y components of gl_SamplePosition contain the sub-pixel
coordinate of the current sample and will have values in the range 0.0 to 1.0. Any static use of this
variable in a fragment shader causes the entire shader to be evaluated per sample.

The value gl_HelperInvocation is true if the fragment shader invocation is considered a helper
invocation and is false otherwise. A helper invocation is a fragment shader invocation that is

132

created solely for the purposes of evaluating derivatives for use in non-helper fragment shader
invocations. Such derivatives are computed implicitly in the built-in function texture() (see
“Texture Functions”), and explicitly in the derivative functions in “Derivative Functions”, for
example dFdx() and dFdy().

Fragment shader helper invocations execute the same shader code as non-helper invocations, but
will not have side effects that modify the framebuffer or other shader-accessible memory. In
particular:

• Fragments corresponding to helper invocations are discarded when shader execution is
complete, without updating the framebuffer.

• Stores to image and buffer variables performed by helper invocations have no effect on the
underlying image or buffer memory.

• Atomic operations to image, buffer, or atomic counter variables performed by helper
invocations have no effect on the underlying image or buffer memory. The values returned by
such atomic operations are undefined.

Helper invocations may be generated for pixels not covered by a primitive being rendered. While
fragment shader inputs qualified with centroid are normally required to be sampled in the
intersection of the pixel and the primitive, the requirement is ignored for such pixels since there is
no intersection between the pixel and primitive.

Helper invocations may also be generated for fragments that are covered by a primitive being
rendered when the fragment is killed by early fragment tests (using the early_fragment_tests
qualifier) or where the implementation is able to determine that executing the fragment shader
would have no effect other than assisting in computing derivatives for other fragment shader
invocations.

The set of helper invocations generated when processing any set of primitives is implementation-
dependent.

The input variable gl_PrimitiveID is filled with the value written to the gl_PrimitiveID geometry
shader output, if a geometry shader is present. Otherwise, it is filled with the number of primitives
processed by the shader since the current set of rendering primitives was started.

The input variable gl_Layer is filled with the value written to the gl_Layer geometry shader output,
if a geometry shader is present. If the geometry stage does not dynamically assign a value to
gl_Layer, the value of gl_Layer in the fragment stage will be undefined. If the geometry stage makes
no static assignment to gl_Layer, the input value in the fragment stage will be zero. Otherwise, the
fragment stage will read the same value written by the geometry stage, even if that value is out of
range. If a fragment shader contains a static access to gl_Layer, it will count against the
implementation defined limit for the maximum number of inputs to the fragment stage.

7.1.6. Compute Shader Special Variables

In the compute shader, built-in variables are declared as follows:

// workgroup dimensions

133

in uvec3 gl_NumWorkGroups;
const uvec3 gl_WorkGroupSize;

// workgroup and invocation IDs
in uvec3 gl_WorkGroupID;
in uvec3 gl_LocalInvocationID;

// derived variables
in uvec3 gl_GlobalInvocationID;
in uint gl_LocalInvocationIndex;

The built-in variable gl_NumWorkGroups is a compute-shader input variable containing the
number of workgroups in each dimension of the dispatch that will execute the compute shader. Its
content is equal to the values specified in the num_groups_x, num_groups_y, and num_groups_z
parameters passed to the DispatchCompute API entry point.

The built-in constant gl_WorkGroupSize is a compute-shader constant containing the workgroup
size of the shader. The size of the workgroup in the X, Y, and Z dimensions is stored in the x, y, and z
components. The constant values in gl_WorkGroupSize will match those specified in the required
local_size_x, local_size_y, and local_size_z layout qualifiers for the current shader. This is a
constant so that it can be used to size arrays of memory that can be shared within the workgroup. It
is a compile-time error to use gl_WorkGroupSize in a shader that does not declare a fixed
workgroup size, or before that shader has declared a fixed workgroup size, using local_size_x,
local_size_y, and local_size_z. Use of variables whose values are derived from gl_WorkGroupSize,
however, is not constrained to follow a declaration of the fixed workgroup size.

The built-in variable gl_WorkGroupID is a compute-shader input variable containing the three-
dimensional index of the workgroup that the current invocation is executing in. The possible values
range across the parameters passed into DispatchCompute, i.e., from (0, 0, 0) to
(gl_NumWorkGroups.x - 1, gl_NumWorkGroups.y - 1, gl_NumWorkGroups.z -1).

The built-in variable gl_LocalInvocationID is a compute-shader input variable containing the three-
dimensional index of the current work item within the workgroup. The possible values for this
variable range across the workgroup size, i.e., (0,0,0) to (gl_WorkGroupSize.x - 1,
gl_WorkGroupSize.y - 1, gl_WorkGroupSize.z - 1). Use of gl_LocalInvocationID is allowed before
declarations of local_size_x, local_size_y, and local_size_z.

The built-in variable gl_GlobalInvocationID is a compute shader input variable containing the
global index of the current work item. This value uniquely identifies this invocation from all other
invocations across all workgroups initiated by the current DispatchCompute call. This is computed
as:

gl_GlobalInvocationID =
 gl_WorkGroupID * gl_WorkGroupSize + gl_LocalInvocationID;

The built-in variable gl_LocalInvocationIndex is a compute shader input variable that contains the
one-dimensional representation of the gl_LocalInvocationID. This is computed as:

134

gl_LocalInvocationIndex =
 gl_LocalInvocationID.z * gl_WorkGroupSize.x * gl_WorkGroupSize.y +
 gl_LocalInvocationID.y * gl_WorkGroupSize.x +
 gl_LocalInvocationID.x;

Use of gl_LocalInvocationIndex is allowed before declarations of local_size_x, local_size_y, and
local_size_z.

7.2. Built-In Constants
The following built-in constants are declared in all shaders. The actual values used are
implementation-dependent, but must be at least the value shown.

//
// Implementation-dependent constants. The example values below
// are the minimum values allowed for these maximums.
//

const mediump int gl_MaxVertexAttribs = 16;
const mediump int gl_MaxVertexUniformVectors = 256;
const mediump int gl_MaxVertexOutputVectors = 16;
const mediump int gl_MaxVertexTextureImageUnits = 16;
const mediump int gl_MaxVertexImageUniforms = 0;
const mediump int gl_MaxVertexAtomicCounters = 0;
const mediump int gl_MaxVertexAtomicCounterBuffers = 0;

const mediump int gl_MaxTessControlInputComponents = 64;
const mediump int gl_MaxTessControlOutputComponents = 64;
const mediump int gl_MaxTessControlTextureImageUnits = 16;
const mediump int gl_MaxTessControlUniformComponents = 1024;
const mediump int gl_MaxTessControlTotalOutputComponents = 2048;
const mediump int gl_MaxTessControlImageUniforms = 0;
const mediump int gl_MaxTessControlAtomicCounters = 0;
const mediump int gl_MaxTessControlAtomicCounterBuffers = 0;

const mediump int gl_MaxTessPatchComponents = 120;
const mediump int gl_MaxPatchVertices = 32;
const mediump int gl_MaxTessGenLevel = 64;

const mediump int gl_MaxTessEvaluationInputComponents = 64;
const mediump int gl_MaxTessEvaluationOutputComponents = 64;
const mediump int gl_MaxTessEvaluationTextureImageUnits = 16;
const mediump int gl_MaxTessEvaluationUniformComponents = 1024;
const mediump int gl_MaxTessEvaluationImageUniforms = 0;
const mediump int gl_MaxTessEvaluationAtomicCounters = 0;
const mediump int gl_MaxTessEvaluationAtomicCounterBuffers = 0;

135

const mediump int gl_MaxGeometryInputComponents = 64;
const mediump int gl_MaxGeometryOutputComponents = 64;
const mediump int gl_MaxGeometryImageUniforms = 0;
const mediump int gl_MaxGeometryTextureImageUnits = 16;
const mediump int gl_MaxGeometryOutputVertices = 256;
const mediump int gl_MaxGeometryTotalOutputComponents = 1024;
const mediump int gl_MaxGeometryUniformComponents = 1024;
const mediump int gl_MaxGeometryAtomicCounters = 0;
const mediump int gl_MaxGeometryAtomicCounterBuffers = 0;

const mediump int gl_MaxFragmentInputVectors = 15;
const mediump int gl_MaxFragmentImageUniforms = 4;
const mediump int gl_MaxFragmentUniformVectors = 256;
const mediump int gl_MaxFragmentAtomicCounters = 8;
const mediump int gl_MaxFragmentAtomicCounterBuffers = 1;

const mediump int gl_MaxDrawBuffers = 4;
const mediump int gl_MaxTextureImageUnits = 16;
const mediump int gl_MinProgramTexelOffset = -8;
const mediump int gl_MaxProgramTexelOffset = 7;
const mediump int gl_MaxImageUnits = 4;
const mediump int gl_MaxSamples = 4;

const mediump int gl_MaxComputeImageUniforms = 4;
const highp ivec3 gl_MaxComputeWorkGroupCount = ivec3(65535, 65535, 65535);
const highp ivec3 gl_MaxComputeWorkGroupSize = ivec3(128, 128, 64);
const mediump int gl_MaxComputeUniformComponents = 1024;
const mediump int gl_MaxComputeTextureImageUnits = 16;
const mediump int gl_MaxComputeAtomicCounters = 8;
const mediump int gl_MaxComputeAtomicCounterBuffers = 1;

const mediump int gl_MaxCombinedTextureImageUnits = 96;
const mediump int gl_MaxCombinedImageUniforms = 4;
const mediump int gl_MaxCombinedShaderOutputResources = 4;
const mediump int gl_MaxCombinedAtomicCounters = 8;
const mediump int gl_MaxCombinedAtomicCounterBuffers = 1;
const mediump int gl_MaxAtomicCounterBindings = 1;
const mediump int gl_MaxAtomicCounterBufferSize = 32;

const highp int gl_MaxInputAttachments = 1; // only present when targeting Vulkan

7.3. Built-In Uniform State
Built-in uniform state is not available when generating SPIR-V. Otherwise, as an aid to accessing
OpenGL ES processing state, the following uniform variables are built into the OpenGL ES Shading
Language.

//
// Depth range in window coordinates,

136

// section 12.5.1 "Controlling the Viewport" in the
// OpenGL ES Specification.
//
struct gl_DepthRangeParameters {
 highp float near; // n
 highp float far; // f
 highp float diff; // f - n
};
uniform gl_DepthRangeParameters gl_DepthRange;
uniform lowp int gl_NumSamples;

These variables are only guaranteed to be available in the fragment stage. In other stages, their
presence and function is implementation-defined.

7.4. Redeclaring Built-In Blocks
The gl_PerVertex block can be redeclared in a shader to explicitly indicate what subset of the fixed
pipeline interface will be used. This is necessary to establish the interface between multiple
programs.

If the gl_PerVertex block is not redefined in a given program, the intrinsically declared definition of
that block is used for the program interface.

For example:

out gl_PerVertex {
 highp vec4 gl_Position; // will use gl_Position
 highp vec4 t; // error, only gl_PerVertex members allowed
}; // no other members of gl_PerVertex will be used

This establishes the output interface the shader will use with the subsequent pipeline stage. It must
be a subset of the built-in members of gl_PerVertex. Such a redeclaration can also add the invariant
qualifier and interpolation qualifiers.

Other layout qualifiers, like location, cannot be added to such a redeclaration, unless specifically
stated.

If a built-in interface block is redeclared, it must appear in the shader before any use of any
member included in the built-in declaration, or a compile-time error will result. It is also a compile-
time error to redeclare the block more than once or to redeclare a built-in block and then use a
member from that built-in block that was not included in the redeclaration. Also, if a built-in
interface block is redeclared, no member of the built-in declaration can be redeclared outside the
block redeclaration. If multiple shaders using members of a built-in block belonging to the same
interface are linked together in the same program, they must all redeclare the built-in block in the
same way, as described in “Interface Blocks” for interface block matching, or a link-time error will
result. It will also be a link-time error if some shaders in a program redeclare a specific built-in
interface block while another shader in that program does not redeclare that interface block yet
still uses a member of that interface block. If a built-in block interface is formed across shaders in

137

different programs, the shaders must all redeclare the built-in block in the same way (as described
for a single program), or the values passed along the interface are undefined.

138

Chapter 8. Built-In Functions
The OpenGL ES Shading Language defines an assortment of built-in convenience functions for
scalar and vector operations. Many of these built-in functions can be used in more than one type of
shader, but some are intended to provide a direct mapping to hardware and so are available only
for a specific type of shader.

The built-in functions basically fall into three categories:

• They expose some necessary hardware functionality in a convenient way such as accessing a
texture map. There is no way in the language for these functions to be emulated by a shader.

• They represent a trivial operation (clamp, mix, etc.) that is very simple for the user to write, but
they are very common and may have direct hardware support. It is a very hard problem for the
compiler to map expressions to complex assembler instructions.

• They represent an operation graphics hardware is likely to accelerate at some point. The
trigonometry functions fall into this category.

Many of the functions are similar to the same named ones in common C libraries, but they support
vector input as well as the more traditional scalar input.

Applications should be encouraged to use the built-in functions rather than do the equivalent
computations in their own shader code since the built-in functions are assumed to be optimal (e.g.
perhaps supported directly in hardware).

When the built-in functions are specified below, where the input arguments (and corresponding
output) can be float, vec2, vec3, or vec4, genFType is used as the argument. Where the input
arguments (and corresponding output) can be int, ivec2, ivec3, or ivec4, genIType is used as the
argument. Where the input arguments (and corresponding output) can be uint, uvec2, uvec3, or
uvec4, genUType is used as the argument. Where the input arguments (or corresponding output)
can be bool, bvec2, bvec3, or bvec4, genBType is used as the argument. For any specific use of a
function, the actual types substituted for genFType, genIType, genUType, or genBType have to have
the same number of components for all arguments and for the return type. Similarly, mat is used
for any matrix basic type.

Built-in functions have an effective precision qualification. This qualification cannot be set
explicitly and may be different from the precision qualification of the result.

The precision qualification of the operation of a built-in function is based on the precision
qualification of its formal parameters and actual parameters (input arguments): When a formal
parameter specifies a precision qualifier, that is used, otherwise, the precision qualification of the
actual (calling) argument is used. The highest precision of these will be the precision of the
operation of the built-in function. Generally, this is applied across all arguments to a built-in
function, with the exceptions being:

• bitfieldExtract and bitfieldInsert ignore the offset and bits arguments.

• interpolateAt functions only look at the interpolant argument.

The precision qualification of the result of a built-in function is determined in one of the following

139

ways:

For the texture sampling and image load functions, the precision of the return type matches the
precision of the image or texture-combined sampler type:

uniform lowp sampler2D texSampler;
highp vec2 coord;
...
lowp vec4 col = texture (texSampler, coord); // texture() returns lowp

Otherwise:

• For prototypes that do not specify a resulting precision qualifier, the precision will be the same
as the precision of the operation (as defined earlier).

• For prototypes that do specify a resulting precision qualifier, the specified precision qualifier is
the precision qualification of the result.

Where the built-in functions in the following sections specify an equation, the entire equation will
be evaluated at the operation’s precision. This may lead to underflow or overflow in the result,
even when the correct result could be represented in the operation precision.

8.1. Angle and Trigonometry Functions
Function parameters specified as angle are assumed to be in units of radians. In no case will any of
these functions result in a divide by zero error. If the divisor of a ratio is 0, then results will be
undefined.

These all operate component-wise. The description is per component.

Syntax Description

genFType radians(genFType degrees) Converts degrees to radians, i.e., (π / 180) ·
degrees.

genFType degrees(genFType radians) Converts radians to degrees, i.e., (180 / π) ·
radians.

genFType sin(genFType angle) The standard trigonometric sine function.

genFType cos(genFType angle) The standard trigonometric cosine function.

genFType tan(genFType angle) The standard trigonometric tangent.

genFType asin(genFType x) Arc sine. Returns an angle whose sine is x. The
range of values returned by this function is [-π /
2, π / 2]. Results are undefined if |x| > 1.

genFType acos(genFType x) Arc cosine. Returns an angle whose cosine is x.
The range of values returned by this function is
[0,π]. Results are undefined if |x| > 1.

140

Syntax Description

genFType atan(genFType y, genFType x) Arc tangent. Returns an angle whose tangent is y
/ x. The signs of x and y are used to determine
what quadrant the angle is in. The range of
values returned by this function is [-π, π. Results
are undefined if x and y are both 0.

genFType atan(genFType y_over_x) Arc tangent. Returns an angle whose tangent is
y_over_x. The range of values returned by this
function is [-π / 2, π / 2].

genFType sinh(genFType x) Returns the hyperbolic sine function (ex - e-x) / 2.

genFType cosh(genFType x) Returns the hyperbolic cosine function (ex + e-x) /
2.

genFType tanh(genFType x) Returns the hyperbolic tangent function sinh(x) /
cosh(x).

genFType asinh(genFType x) Arc hyperbolic sine; returns the inverse of sinh.

genFType acosh(genFType x) Arc hyperbolic cosine; returns the non-negative
inverse of cosh. Results are undefined if x < 1.

genFType atanh(genFType x) Arc hyperbolic tangent; returns the inverse of
tanh. Results are undefined if x ≥ 1.

8.2. Exponential Functions
These all operate component-wise. The description is per component.

Syntax Description

genFType pow(genFType x, genFType y) Returns x raised to the y power, i.e., xy. Results
are undefined if x < 0. Results are undefined if x
= 0 and y ≤ 0.

genFType exp(genFType x) Returns the natural exponentiation of x, i.e., ex.

genFType log(genFType x) Returns the natural logarithm of x, i.e., returns
the value y which satisfies the equation x = ey.
Results are undefined if x ≤ 0.

genFType exp2(genFType x) Returns 2 raised to the x power, i.e., 2x.

genFType log2(genFType x) Returns the base 2 logarithm of x, i.e., returns
the value y which satisfies the equation x = 2y.
Results are undefined if x ≤ 0.

genFType sqrt(genFType x)
genDType sqrt(genDType x)

Returns sqrt(x). Results are undefined if x < 0.

genFType inversesqrt(genFType x)
genDType inversesqrt(genDType x)

Returns 1 / sqrt(x). Results are undefined if x ≤ 0.

141

8.3. Common Functions
These all operate component-wise. The description is per component.

Syntax Description

genFType abs(genFType x)
genIType abs(genIType x)

Returns x if x ≥ 0; otherwise it returns -x.

genFType sign(genFType x)
genIType sign(genIType x)

Returns 1.0 if x > 0, 0.0 if x = 0, or -1.0 if x < 0.

genFType floor(genFType x) Returns a value equal to the nearest integer that
is less than or equal to x.

genFType trunc(genFType x) Returns a value equal to the nearest integer to x
whose absolute value is not larger than the
absolute value of x.

genFType round(genFType x) Returns a value equal to the nearest integer to x.
The fraction 0.5 will round in a direction chosen
by the implementation, presumably the
direction that is fastest. This includes the
possibility that round(x) returns the same value
as roundEven(x) for all values of x.

genFType roundEven(genFType x) Returns a value equal to the nearest integer to x.
A fractional part of 0.5 will round toward the
nearest even integer. (Both 3.5 and 4.5 for x will
return 4.0.)

genFType ceil(genFType x) Returns a value equal to the nearest integer that
is greater than or equal to x.

genFType fract(genFType x) Returns x - floor(x).

genFType mod(genFType x, float y)
genFType mod(genFType x, genFType y)

Modulus. Returns x - y · floor(x / y).

Note that implementations may use a cheap
approximation to the remainder, and the error
can be large due to the discontinuity in floor.
This can produce mathematically unexpected
results in some cases, such as mod(x,x)
computing x rather than 0, and can also cause
the result to have a different sign than the
infinitely precise result.

142

Syntax Description

genFType modf(genFType x, out genFType i) Returns the fractional part of x and sets i to the
integer part (as a whole number floating-point
value). Both the return value and the output
parameter will have the same sign as x. If x has
the value +/- Inf, the return value should be NaN
and must be either NaN or 0.0. For highp non-
constant expressions, the value returned must
be consistent.

genFType min(genFType x, genFType y)
genFType min(genFType x, float y)
genIType min(genIType x, genIType y)
genIType min(genIType x, int y)
genUType min(genUType x, genUType y)
genUType min(genUType x, uint y)

Returns y if y < x; otherwise it returns x.

genFType max(genFType x, genFType y)
genFType max(genFType x, float y)
genIType max(genIType x, genIType y)
genIType max(genIType x, int y)
genUType max(genUType x, genUType y)
genUType max(genUType x, uint y)

Returns y if x < y; otherwise it returns x.

genFType clamp(genFType x, genFType minVal,
genFType maxVal)
genFType clamp(genFType x, float minVal, float
maxVal)
genIType clamp(genIType x, genIType minVal,
genIType maxVal)
genIType clamp(genIType x, int minVal, int
maxVal)
genUType clamp(genUType x, genUType minVal,
genUType maxVal)
genUType clamp(genUType x, uint minVal, uint
maxVal)

Returns min(max(x, minVal), maxVal). Results
are undefined if minVal > maxVal.

genFType mix(genFType x, genFType y,
genFType a)
genFType mix(genFType x, genFType y, float a)

Returns the linear blend of x and y, i.e., x · (1 - a)
+ y · a.

143

Syntax Description

genFType mix(genFType x, genFType y,
genBType a)
genIType mix(genIType x, genIType y, genBType
a)
genUType mix(genUType x, genUType y,
genBType a)
genBType mix(genBType x, genBType y,
genBType a)

Selects which vector each returned component
comes from. For a component of a that is false,
the corresponding component of x is returned.
For a component of a that is true, the
corresponding component of y is returned.
Components of x and y that are not selected are
allowed to be invalid floating-point values and
will have no effect on the results. Thus, this
provides different functionality than, for
example,
genFType mix(genFType x, genFType y,
genFType(a))
where a is a Boolean vector.

genFType step(genFType edge, genFType x)
genFType step(float edge, genFType x)

Returns 0.0 if x < edge; otherwise it returns 1.0.

genFType smoothstep(genFType edge0,
genFType edge1, genFType x)
genFType smoothstep(float edge0, float edge1,
genFType x)

Returns 0.0 if x ≤ edge0 and 1.0 if x ≥ edge1, and
performs smooth Hermite interpolation
between 0 and 1 when edge0 < x < edge1. This is
useful in cases where you would want a
threshold function with a smooth transition.
This is equivalent to:

genFType t;
t = clamp ((x - edge0) / (edge1 -
edge0), 0, 1);
return t * t * (3 - 2 * t);

(And similarly for doubles.) Results are
undefined if edge0 ≥ edge1.

genBType isnan(genFType x) Returns true if x holds a NaN. Returns false
otherwise. Always returns false if NaNs are not
implemented.

genBType isinf(genFType x) Returns true if x holds a positive infinity or
negative infinity. Returns false otherwise.

genIType floatBitsToInt(highp genFType value)
genUType floatBitsToUint(highp genFType
value)

Returns a signed or unsigned integer value
representing the encoding of a floating-point
value. The float value’s bit-level representation
is preserved.

144

Syntax Description

genFType intBitsToFloat(highp genIType value)
genFType uintBitsToFloat(highp genUType
value)

Returns a floating-point value corresponding to
a signed or unsigned integer encoding of a
floating-point value. If an Inf or NaN is passed
in, it will not signal, and the resulting floating-
point value is unspecified. If a subnormal
number is passed in, the result might be flushed
to 0. Otherwise, the bit-level representation is
preserved.

genFType fma(genFType a, genFType b,
genFType c)

Computes and returns a * b + c. In uses where
the return value is eventually consumed by a
variable declared as precise:

• fma() is considered a single operation,
whereas the expression a * b + c consumed
by a variable declared precise is considered
two operations.

• The precision of fma() can differ from the
precision of the expression a * b + c.

• fma() will be computed with the same
precision as any other fma() consumed by a
precise variable, giving invariant results for
the same input values of a, b, and c.

Otherwise, in the absence of precise
consumption, there are no special constraints on
the number of operations or difference in
precision between fma() and the expression a *
b + c.

145

Syntax Description

genFType frexp(highp genFType x, out highp
genIType exp)

Splits x into a floating-point significand in the
range [0.5,1.0], and an integral exponent of two,
such that

x = significant · 2exponent

The significand is returned by the function and
the exponent is returned in the parameter exp.
For a floating-point value of zero, the significand
and exponent are both zero.

If an implementation supports signed zero, an
input value of minus zero should return a
significand of minus zero. For a floating-point
value that is an infinity or is not a number, the
results are undefined.

If the input x is a vector, this operation is
performed in a component-wise manner; the
value returned by the function and the value
written to exp are vectors with the same number
of components as x.

genFType ldexp(highp genFType x, highp
genIType exp)

Builds a floating-point number from x and the
corresponding integral exponent of two in exp,
returning:

significand · 2exponent

If this product is too large to be represented in
the floating-point type, the result is undefined.

If exp is greater than +128, the value returned is
undefined. If exp is less than -126, the value
returned may be flushed to zero. Additionally,
splitting the value into a significand and
exponent using frexp() and then reconstructing
a floating-point value using ldexp() should yield
the original input for zero and all finite non-
subnormal values.
If the input x is a vector, this operation is
performed in a component-wise manner; the
value passed in exp and returned by the
function are vectors with the same number of
components as x.

146

8.4. Floating-Point Pack and Unpack Functions
These functions do not operate component-wise, rather, as described in each case.

Syntax Description

highp uint packUnorm2x16(vec2 v)
highp uint packSnorm2x16(vec2 v)
highp uint packUnorm4x8(vec4 v)
highp uint packSnorm4x8(vec4 v)

First, converts each component of the
normalized floating-point value v into 16-bit
(2x16) or 8-bit (4x8) integer values. Then, the
results are packed into the returned 32-bit
unsigned integer.

The conversion for component c of v to fixed
point is done as follows:

packUnorm2x16: round(clamp(c, 0, +1) *
65535.0)
packSnorm2x16: round(clamp(c, -1, +1) *
32767.0)
packUnorm4x8: round(clamp(c, 0, +1) * 255.0)
packSnorm4x8: round(clamp(c, -1, +1) * 127.0)

The first component of the vector will be written
to the least significant bits of the output; the last
component will be written to the most
significant bits.

highp vec2 unpackUnorm2x16(highp uint p)
highp vec2 unpackSnorm2x16(highp uint p)
mediump vec4 unpackUnorm4x8(highp uint p)
mediump vec4 unpackSnorm4x8(highp uint p)

First, unpacks a single 32-bit unsigned integer p
into a pair of 16-bit unsigned integers, a pair of
16-bit signed integers, four 8-bit unsigned
integers, or four 8-bit signed integers,
respectively. Then, each component is converted
to a normalized floating-point value to generate
the returned two- or four-component vector.

The conversion for unpacked fixed-point value f
to floating-point is done as follows:

unpackUnorm2x16: f / 65535.0
unpackSnorm2x16: clamp(f / 32767.0, -1, +1)
unpackUnorm4x8: f / 255.0
unpackSnorm4x8: clamp(f / 127.0, -1, +1)

The first component of the returned vector will
be extracted from the least significant bits of the
input; the last component will be extracted from
the most significant bits.

147

Syntax Description

highp uint packHalf2x16(mediump vec2 v) Returns an unsigned integer obtained by
converting the components of a two-component
floating-point vector to the 16-bit floating-point
representation of the API, and then packing
these two 16-bit integers into a 32-bit unsigned
integer.

The first vector component specifies the 16 least-
significant bits of the result; the second
component specifies the 16 most-significant bits.

mediump vec2 unpackHalf2x16(highp uint v) Returns a two-component floating-point vector
with components obtained by unpacking a 32-bit
unsigned integer into a pair of 16-bit values,
interpreting those values as 16-bit floating-point
numbers according to the API, and converting
them to 32-bit floating-point values.

The first component of the vector is obtained
from the 16 least-significant bits of v; the second
component is obtained from the 16 most-
significant bits of v.

8.5. Geometric Functions
These operate on vectors as vectors, not component-wise.

Syntax Description

float length(genFType x) Returns the length of vector x, i.e., sqrt(x0
2 + x1

2

+ …).

float distance(genFType p0, genFType p1) Returns the distance between p0 and p1, i.e.,
length(p0 - p1)

float dot(genFType x, genFType y) Returns the dot product of x and y, i.e., x0 · y0 + x1

· y1 + …

vec3 cross(vec3 x, vec3 y) Returns the cross product of x and y, i.e., (x1 · y2 -
y1 · x2, x2 · y0 - y2 · x0, x0 · y1 - y0 · x1).

genFType normalize(genFType x) Returns a vector in the same direction as x but
with a length of 1, i.e. x / length(x).

genFType faceforward(genFType N, genFType I,
genFType Nref)

If dot(Nref, I) < 0 return N, otherwise return -N.

148

Syntax Description

genFType reflect(genFType I, genFType N) For the incident vector I and surface orientation
N, returns the reflection direction: I - 2 · dot(N, I)
· N. N must already be normalized in order to
achieve the desired result.

genFType refract(genFType I, genFType N, float
eta)

For the incident vector I and surface normal N,
and the ratio of indices of refraction eta, return
the refraction vector. The result is computed by
the refraction equation shown below.

The input parameters for the incident
vector _I_ and the surface
normal _N_ must already be normalized to
get the desired results.

8.5.1. Refraction Equation

8.6. Matrix Functions
For each of the following built-in matrix functions, there is both a single-precision floating-point
version, where all arguments and return values are single precision, and a double-precision
floating-point version, where all arguments and return values are double precision. Only the single-
precision floating-point version is shown.

Syntax Description

mat matrixCompMult(mat x, mat y) Multiply matrix x by matrix y component-wise,
i.e., result[i][j] is the scalar product of x[i][j] and
y[i][j].

Note: to get linear algebraic matrix
multiplication, use the multiply operator (*).

149

Syntax Description

mat2 outerProduct(vec2 c, vec2 r)
mat3 outerProduct(vec3 c, vec3 r)
mat4 outerProduct(vec4 c, vec4 r)
mat2x3 outerProduct(vec3 c, vec2 r)
mat3x2 outerProduct(vec2 c, vec3 r)
mat2x4 outerProduct(vec4 c, vec2 r)
mat4x2 outerProduct(vec2 c, vec4 r)
mat3x4 outerProduct(vec4 c, vec3 r)
mat4x3 outerProduct(vec3 c, vec4 r)

Treats the first parameter c as a column vector
(matrix with one column) and the second
parameter r as a row vector (matrix with one
row) and does a linear algebraic matrix multiply
c * r, yielding a matrix whose number of rows is
the number of components in c and whose
number of columns is the number of
components in r.

mat2 transpose(mat2 m)
mat3 transpose(mat3 m)
mat4 transpose(mat4 m)
mat2x3 transpose(mat3x2 m)
mat3x2 transpose(mat2x3 m)
mat2x4 transpose(mat4x2 m)
mat4x2 transpose(mat2x4 m)
mat3x4 transpose(mat4x3 m)
mat4x3 transpose(mat3x4 m)

Returns a matrix that is the transpose of m. The
input matrix m is not modified.

float determinant(mat2 m)
float determinant(mat3 m)
float determinant(mat4 m)

Returns the determinant of m.

mat2 inverse(mat2 m)
mat3 inverse(mat3 m)
mat4 inverse(mat4 m)

Returns a matrix that is the inverse of m. The
input matrix m is not modified. The values in the
returned matrix are undefined if m is singular
or poorly-conditioned (nearly singular).

8.7. Vector Relational Functions
Relational and equality operators (<, <=, >, >=, ==, !=) are defined to operate on scalars and produce
scalar Boolean results. For vector results, use the following built-in functions. Below, the following
placeholders are used for the listed specific types:

Placeholder Specific Types Allowed

bvec bvec2, bvec3, bvec4

ivec ivec2, ivec3, ivec4

uvec uvec2, uvec3, uvec4

vec vec2, vec3, vec4

In all cases, the sizes of all the input and return vectors for any particular call must match.

150

Syntax Description

bvec lessThan(vec x, vec y)
bvec lessThan(ivec x, ivec y)
bvec lessThan(uvec x, uvec y)

Returns the component-wise compare of x < y.

bvec lessThanEqual(vec x, vec y)
bvec lessThanEqual(ivec x, ivec y)
bvec lessThanEqual(uvec x, uvec y)

Returns the component-wise compare of x ≤ y.

bvec greaterThan(vec x, vec y)
bvec greaterThan(ivec x, ivec y)
bvec greaterThan(uvec x, uvec y)

Returns the component-wise compare of x > y.

bvec greaterThanEqual(vec x, vec y)
bvec greaterThanEqual(ivec x, ivec y)
bvec greaterThanEqual(uvec x, uvec y)

Returns the component-wise compare of x ≥ y.

bvec equal(vec x, vec y)
bvec equal(ivec x, ivec y)
bvec equal(uvec x, uvec y)
bvec equal(bvec x, bvec y)

Returns the component-wise compare of x == y.

bvec notEqual(vec x, vec y)
bvec notEqual(ivec x, ivec y)
bvec notEqual(uvec x, uvec y)
bvec notEqual(bvec x, bvec y)

Returns the component-wise compare of x ≠ y.

bool any(bvec x) Returns true if any component of x is true.

bool all(bvec x) Returns true only if all components of x are
true.

bvec not(bvec x) Returns the component-wise logical complement
of x.

8.8. Integer Functions
These all operate component-wise. The description is per component. The notation [a, b] means the
set of bits from bit-number a through bit-number b, inclusive. The lowest-order bit is bit 0. “Bit
number” will always refer to counting up from the lowest-order bit as bit 0.

Syntax Description

genUType uaddCarry(highp genUType x, highp
genUType y, out lowp genUType carry)

Adds 32-bit unsigned integers x and y, returning
the sum modulo 232. The value carry is set to
zero if the sum was less than 232, or one
otherwise.

genUType usubBorrow(highp genUType x,
highp genUType y, out lowp genUType borrow)

Subtracts the 32-bit unsigned integer y from x,
returning the difference if non-negative, or 232

plus the difference otherwise. The value borrow
is set to zero if x ≥ y, or one otherwise.

151

Syntax Description

void umulExtended(highp genUType x, highp
genUType y, out highp genUType msb, out highp
genUType lsb)
void imulExtended(highp genIType x, highp
genIType y, out highp genIType msb, out highp
genIType lsb)

Multiplies 32-bit unsigned or signed integers x
and y, producing a 64-bit result. The 32 least-
significant bits are returned in lsb. The 32 most-
significant bits are returned in msb.

genIType bitfieldExtract(genIType value, int
offset, int bits)
genUType bitfieldExtract(genUType value, int
offset, int bits)

Extracts bits [offset, offset + bits - 1] from value,
returning them in the least significant bits of the
result.

For unsigned data types, the most significant bits
of the result will be set to zero. For signed data
types, the most significant bits will be set to the
value of bit offset + bits - 1.

If bits is zero, the result will be zero. The result
will be undefined if offset or bits is negative, or if
the sum of offset and bits is greater than the
number of bits used to store the operand. Note
that for vector versions of bitfieldExtract(), a
single pair of offset and bits values is shared for
all components.

genIType bitfieldInsert(genIType base,
genIType insert, int offset, int bits)
genUType bitfieldInsert(genUType base,
genUType insert, int offset, int bits)

Inserts the bits least significant bits of insert into
base.

The result will have bits [offset, offset + bits - 1]
taken from bits [0, bits - 1] of insert, and all other
bits taken directly from the corresponding bits
of base. If bits is zero, the result will simply be
base. The result will be undefined if offset or bits
is negative, or if the sum of offset and bits is
greater than the number of bits used to store the
operand.
Note that for vector versions of bitfieldInsert(),
a single pair of offset and bits values is shared
for all components.

genIType bitfieldReverse(highp genIType
value)
genUType bitfieldReverse(highp genUType
value)

Reverses the bits of value. The bit numbered n of
the result will be taken from bit (bits - 1) - n of
value, where bits is the total number of bits used
to represent value.

lowp genIType bitCount(genIType value)
lowp genIType bitCount(genUType value)

Returns the number of one bits in the binary
representation of value.

152

Syntax Description

lowp genIType findLSB(genIType value)
lowp genIType findLSB(genUType value)

Returns the bit number of the least significant
one bit in the binary representation of value. If
value is zero, -1 will be returned.

lowp genIType findMSB(highp genIType value)
lowp genIType findMSB(highp genUType value)

Returns the bit number of the most significant
bit in the binary representation of value.

For positive integers, the result will be the bit
number of the most significant one bit. For
negative integers, the result will be the bit
number of the most significant zero bit. For a
value of zero or negative one, -1 will be
returned.

8.9. Texture Functions
Texture lookup functions are available in all shading stages. However, level-of-detail is implicitly
computed only for fragment shaders. Other shaders operate as though the base level-of-detail were
computed as zero. The functions in the table below provide access to textures through texture-
combined samplers, as set up through the API. Texture properties such as size, pixel format,
number of dimensions, filtering method, number of mipmap levels, depth comparison, and so on
are also defined by API calls. Such properties are taken into account as the texture is accessed via
the built-in functions defined below.

Texture data can be stored by the GL as single-precision floating-point, unsigned normalized
integer, unsigned integer or signed integer data. This is determined by the type of the internal
format of the texture.

Texture lookup functions are provided that can return their result as floating-point, unsigned
integer or signed integer, depending on the sampler type passed to the lookup function. Care must
be taken to use the right sampler type for texture access. The following table lists the supported
combinations of sampler types and texture internal formats. Blank entries are unsupported. Doing
a texture lookup will return undefined values for unsupported combinations.

For depth/stencil textures, the internal texture format is determined by the component being
accessed as set through the API. When the depth/stencil texture mode is set to DEPTH_COMPONENT,
the internal format of the depth component should be used. When the depth/stencil texture mode is
set to STENCIL_INDEX, the internal format of the stencil component should be used.

Internal Texture
Format

Floating-Point
Sampler Types

Signed Integer
Sampler Types

Unsigned Integer
Sampler Types

Floating-point Supported

Normalized Integer Supported

Signed Integer Supported

Unsigned Integer Supported

153

If an integer sampler type is used, the result of a texture lookup is an ivec4. If an unsigned integer
sampler type is used, the result of a texture lookup is a uvec4. If a floating-point sampler type is
used, the result of a texture lookup is a vec4.

In the prototypes below, the g in the return type gvec4 is used as a placeholder for either nothing, i,
or u making a return type of vec4, ivec4, or uvec4. In these cases, the sampler argument type also
starts with g, indicating the same substitution done on the return type; it is either a floating-point,
signed integer, or unsigned integer sampler, matching the basic type of the return type, as
described above.

For shadow forms (the sampler parameter is a shadow-type), a depth comparison lookup on the
depth texture bound to sampler is done as described in section 8.20 “Texture Comparison Modes” of
the OpenGL ES Specification. See the table below for which component specifies Dref. The texture
bound to sampler must be a depth texture, or results are undefined. If a non-shadow texture call is
made to a sampler that represents a depth texture with depth comparisons turned on, then results
are undefined. If a shadow texture call is made to a sampler that represents a depth texture with
depth comparisons turned off, then results are undefined. If a shadow texture call is made to a
sampler that does not represent a depth texture, then results are undefined.

In all functions below, the bias parameter is optional for fragment shaders. The bias parameter is
not accepted in any other shader stage. For a fragment shader, if bias is present, it is added to the
implicit level-of-detail prior to performing the texture access operation. No bias or lod parameters
for multisample textures, or texture buffers are supported because mipmaps are not allowed for
these types of textures.

The implicit level-of-detail is selected as follows: For a texture that is not mipmapped, the texture is
used directly. If it is mipmapped and running in a fragment shader, the level-of-detail computed by
the implementation is used to do the texture lookup. If it is mipmapped and running in a non-
fragment shader, then the base texture is used.

Some texture functions (non-“Lod” and non-“Grad” versions) may require implicit derivatives.
Implicit derivatives are undefined within non-uniform control flow and for non-fragment shader
texture fetches.

For Cube forms, the direction of P is used to select which face to do a 2-dimensional texture lookup
in, as described in section 8.13 “Cube Map Texture Selection” of the OpenGL ES Specification.

For Array forms, the array layer used will be

where d is the depth of the texture array and layer comes from the component indicated in the
tables below.

8.9.1. Texture Query Functions

The textureSize functions query the dimensions of a specific texture level for a texture-combined
sampler.

154

Syntax Description

highp ivec2 textureSize(gsampler2D sampler,
int lod)
highp ivec3 textureSize(gsampler3D sampler,
int lod)
highp ivec2 textureSize(gsamplerCube sampler,
int lod)
highp ivec2 textureSize(sampler2DShadow
sampler, int lod)
highp ivec2 textureSize(samplerCubeShadow
sampler, int lod) highp ivec3
textureSize(gsamplerCubeArray sampler, int
lod)
highp ivec3
textureSize(samplerCubeArrayShadow sampler,
int lod)
highp ivec3 textureSize(gsampler2DArray
sampler, int lod)
highp ivec3
textureSize(sampler2DArrayShadow sampler,
int lod)
highp int textureSize(gsamplerBuffer sampler)
highp ivec2 textureSize(gsampler2DMS
sampler)
highp ivec3 textureSize(gsampler2DMSArray
sampler)

Returns the dimensions of level lod (if present)
for the texture bound to sampler, as described in
section 11.1.3.4 “Texture Queries” of the OpenGL
ES Specification.
The components in the return value are filled in,
in order, with the width, height, and depth of the
texture.

For the array forms, the last component of the
return value is the number of layers in the
texture array, or the number of cubes in the
texture cube map array.

8.9.2. Texel Lookup Functions

155

Syntax Description

gvec4 texture(gsampler2D sampler, vec2 P [,
float bias])
gvec4 texture(gsampler3D sampler, vec3 P [,
float bias])
gvec4 texture(gsamplerCube sampler, vec3 P[,
float bias])
float texture(sampler2DShadow sampler, vec3 P
[, float bias])
float texture(samplerCubeShadow sampler,
vec4 P [, float bias])
gvec4 texture(gsampler2DArray sampler, vec3 P
[, float bias])
gvec4 texture(gsamplerCubeArray sampler,
vec4 P [, float bias])
float texture(sampler2DArrayShadow sampler,
vec4 P)
float texture(samplerCubeArrayShadow
sampler, vec4 P, float compare)

Use the texture coordinate P to do a texture
lookup in the texture currently bound to
sampler.

For shadow forms: When compare is present, it
is used as Dref and the array layer comes from
the last component of P. When compare is not
present, the last component of P is used as Dref

and the array layer comes from the second to
last component of P.

For non-shadow forms: the array layer comes
from the last component of P.

gvec4 textureProj(gsampler2D sampler, vec3 P
[, float bias])
gvec4 textureProj(gsampler2D sampler, vec4 P
[, float bias])
gvec4 textureProj(gsampler3D sampler, vec4 P
[, float bias])
float textureProj(sampler2DShadow sampler,
vec4 P [, float bias])

Do a texture lookup with projection. The texture
coordinates consumed from P, not including the
last component of P, are divided by the last
component of P to form projected coordinates P'.
The resulting third component of P in the
shadow forms is used as Dref. The third
component of P is ignored when sampler has
type gsampler2D and P has type vec4. After
these values are computed, texture lookup
proceeds as in texture.

gvec4 textureLod(gsampler2D sampler, vec2 P,
float lod)
gvec4 textureLod(gsampler3D sampler, vec3 P,
float lod)
gvec4 textureLod(gsamplerCube sampler, vec3
P, float lod)
float textureLod(sampler2DShadow sampler,
vec3 P, float lod)
gvec4 textureLod(gsampler2DArray sampler,
vec3 P, float lod)
gvec4 textureLod(gsamplerCubeArray sampler,
vec4 P, float lod)

Do a texture lookup as in texture but with
explicit level-of-detail; lod specifies λbase] and
sets the partial derivatives as follows:
(See section 8.14 “Texture Minification” and
equations 8.4-8.6 of the OpenGL ES
Specification.)

∂u / ∂x = ∂v / ∂x = ∂w / ∂x = 0
∂u / ∂y = ∂v / ∂y = ∂w / ∂y = 0

156

Syntax Description

gvec4 textureOffset(gsampler2D sampler, vec2
P, ivec2 offset [, float bias])
gvec4 textureOffset(gsampler3D sampler, vec3
P, ivec3 offset [, float bias])
float textureOffset(sampler2DShadow sampler,
vec3 P, ivec2 offset [, float bias])
gvec4 textureOffset(gsampler2DArray sampler,
vec3 P, ivec2 offset [, float bias])

Do a texture lookup as in texture but with offset
added to the (u,v,w) texel coordinates before
looking up each texel. The offset value must be a
constant expression. A limited range of offset
values are supported; the minimum and
maximum offset values are implementation-
dependent and given by
gl_MinProgramTexelOffset and
gl_MaxProgramTexelOffset, respectively.

Note that offset does not apply to the layer
coordinate for texture arrays. This is explained
in detail in section 8.14.2 “Coordinate Wrapping
and Texel Selection” of the OpenGL ES
Specification, where offset is (δu, δv, δw).
Note that texel offsets are also not supported for
cube maps.

gvec4 texelFetch(gsampler2D sampler, ivec2 P,
int lod)
gvec4 texelFetch(gsampler3D sampler, ivec3 P,
int lod) gvec4 texelFetch(gsampler2DArray
sampler, ivec3 P, int lod)
gvec4 texelFetch(gsamplerBuffer sampler, int P)
gvec4 texelFetch(gsampler2DMS sampler, ivec2
P, int sample)
gvec4 texelFetch(gsampler2DMSArray sampler,
ivec3 P, int sample)

Use integer texture coordinate P to lookup a
single texel from sampler. The array layer comes
from the last component of P for the array
forms. The level-of-detail lod (if present) is as
described in sections 11.1.3.2 “Texel Fetches”
and 8.14.1 “Scale Factor and Level of Detail” of
the OpenGL ES Specification.

gvec4 texelFetchOffset(gsampler2D sampler,
ivec2 P, int lod, ivec2 offset)
gvec4 texelFetchOffset(gsampler3D sampler,
ivec3 P, int lod, ivec3 offset)
gvec4 texelFetchOffset(gsampler2DArray
sampler, ivec3 P, int lod, ivec2 offset)

Fetch a single texel as in texelFetch, offset by
offset as described in textureOffset.

gvec4 textureProjOffset(gsampler2D sampler,
vec3 P, ivec2 offset [, float bias])
gvec4 textureProjOffset(gsampler2D sampler,
vec4 P, ivec2 offset [, float bias])
gvec4 textureProjOffset(gsampler3D sampler,
vec4 P, ivec3 offset [, float bias])
float textureProjOffset(sampler2DShadow
sampler, vec4 P, ivec2 offset [, float bias])

Do a projective texture lookup as described in
textureProj, offset by offset as described in
textureOffset.

157

Syntax Description

gvec4 textureLodOffset(gsampler2D sampler,
vec2 P, float lod, ivec2 offset)
gvec4 textureLodOffset(gsampler3D sampler,
vec3 P, float lod, ivec3 offset)
float textureLodOffset(sampler2DShadow
sampler, vec3 P, float lod, ivec2 offset)
gvec4 textureLodOffset(gsampler2DArray
sampler, vec3 P, float lod, ivec2 offset)

Do an offset texture lookup with explicit level-of-
detail. See textureLod and textureOffset.

gvec4 textureProjLod(gsampler2D sampler,
vec3 P, float lod)
gvec4 textureProjLod(gsampler2D sampler,
vec4 P, float lod)
gvec4 textureProjLod(gsampler3D sampler,
vec4 P, float lod)
float textureProjLod(sampler2DShadow
sampler, vec4 P, float lod)

Do a projective texture lookup with explicit
level-of-detail. See textureProj and textureLod.

gvec4 textureProjLodOffset(gsampler2D
sampler, vec3 P, float lod, ivec2 offset)
gvec4 textureProjLodOffset(gsampler2D
sampler, vec4 P, float lod, ivec2 offset)
gvec4 textureProjLodOffset(gsampler3D
sampler, vec4 P, float lod, ivec3 offset)
float textureProjLodOffset(sampler2DShadow
sampler, vec4 P, float lod, ivec2 offset)

Do an offset projective texture lookup with
explicit level-of-detail. See textureProj,
textureLod, and textureOffset.

gvec4 textureGrad(gsampler2D sampler, vec2 P,
vec2 dPdx, vec2 dPdy)
gvec4 textureGrad(gsampler3D sampler, vec3 P,
vec3 dPdx, vec3 dPdy)
gvec4 textureGrad(gsamplerCube sampler, vec3
P, vec3 dPdx, vec3 dPdy)
float textureGrad(sampler2DShadow sampler,
vec3 P, vec2 dPdx, vec2 dPdy)
float textureGrad(samplerCubeShadow
sampler, vec4 P, vec3 dPdx, vec3 dPdy)
float textureGrad(sampler2DArrayShadow
sampler, vec4 P, vec2 dPdx, vec2 dPdy)
gvec4 textureGrad(gsamplerCubeArray
sampler, vec4 P, vec3 dPdx, vec3 dPdy)

Do a texture lookup as in texture but with
explicit gradients as shown below. The partial
derivatives of P are with respect to window x
and window y. For the cube version, the partial
derivatives of P are assumed to be in the
coordinate system used before texture
coordinates are projected onto the appropriate
cube face.

158

Syntax Description

gvec4 textureGradOffset(gsampler2D sampler,
vec2 P, vec2 dPdx, vec2 dPdy, ivec2 offset)
gvec4 textureGradOffset(gsampler3D sampler,
vec3 P, vec3 dPdx, vec3 dPdy, ivec3 offset)
float textureGradOffset(sampler2DShadow
sampler, vec3 P, vec2 dPdx, vec2 dPdy, ivec2
offset)
gvec4 textureGradOffset(gsampler2DArray
sampler, vec3 P, vec2 dPdx, vec2 dPdy, ivec2
offset)
float
textureGradOffset(sampler2DArrayShadow
sampler, vec4 P, vec2 dPdx, vec2 dPdy, ivec2
offset)

Do a texture lookup with both explicit gradient
and offset, as described in textureGrad and
textureOffset.

gvec4 textureProjGrad(gsampler2D sampler,
vec3 P, vec2 dPdx, vec2 dPdy)
gvec4 textureProjGrad(gsampler2D sampler,
vec4 P, vec2 dPdx, vec2 dPdy)
gvec4 textureProjGrad(gsampler3D sampler,
vec4 P, vec3 dPdx, vec3 dPdy)
float textureProjGrad(sampler2DShadow
sampler, vec4 P, vec2 dPdx, vec2 dPdy)

Do a texture lookup both projectively, as
described in textureProj, and with explicit
gradient as described in textureGrad. The
partial derivatives dPdx and dPdy are assumed
to be already projected.

gvec4 textureProjGradOffset(gsampler2D
sampler, vec3 P, vec2 dPdx, vec2 dPdy, ivec2
offset)
gvec4 textureProjGradOffset(gsampler2D
sampler, vec4 P, vec2 dPdx, vec2 dPdy, ivec2
offset)
gvec4 textureProjGradOffset(gsampler3D
sampler, vec4 P, vec3 dPdx, vec3 dPdy, ivec3
offset)
float textureProjGradOffset(sampler2DShadow
sampler, vec4 P, vec2 dPdx, vec2 dPdy, ivec2
offset)

Do a texture lookup projectively and with
explicit gradient as described in
textureProjGrad, as well as with offset, as
described in textureOffset.

8.9.3. Explicit Gradients

In the textureGrad functions described above, explicit gradients control texture lookups as
follows:

159

8.9.4. Texture Gather Functions

The texture gather functions take components of a single floating-point vector operand as a texture
coordinate, determine a set of four texels to sample from the base level-of-detail of the specified
texture image, and return one component from each texel in a four-component result vector.

When performing a texture gather operation, the minification and magnification filters are
ignored, and the rules for LINEAR filtering in the OpenGL ES Specification are applied to the base
level of the texture image to identify the four texels i0 j1, i1 j1, i1 j0, and i0 j0. The texels are then
converted to texture base colors (Rs, Gs, Bs, As) according to table 15.1, followed by application of the
texture swizzle as described in section 15.2.1 “Texture Access” of the OpenGL ES Specification. A
four-component vector is assembled by taking the selected component from each of the post-
swizzled texture source colors in the order (i0 j1, i1 j1, i1 j0, i0 j0).

The selected component is identified by the optional comp argument, where the values zero, one,
two, and three identify the Rs, Gs, Bs, or As component, respectively. If comp is omitted, it is treated
as identifying the Rs component.

Incomplete textures (see section 8.16 “Texture Completeness” of the OpenGL ES Specification)
return a texture source color of (0,0,0,1) for all four source texels.

For texture gather functions using a texture-combined shadow sampler type, each of the four texel
lookups perform a depth comparison against the depth reference value passed in (refZ), and
returns the result of that comparison in the appropriate component of the result vector.

As with other texture lookup functions, the results of a texture gather are undefined for shadow
samplers if the texture referenced is not a depth texture or has depth comparisons disabled; or for
non-shadow samplers if the texture referenced is a depth texture with depth comparisons enabled.

The textureGatherOffset built-in functions from the OpenGL ES Shading Language return a vector
derived from sampling four texels in the image array of level levelbase. For each of the four texel
offsets specified by the offsets argument, the rules for the LINEAR minification filter are applied to

160

identify a 2 × 2 texel footprint, from which the single texel Ti0j0 is selected. A four-component vector
is then assembled by taking a single component from each of the four Ti0j0 texels in the same
manner as for the textureGather function.

Syntax Description

gvec4 textureGather(gsampler2D sampler, vec2
P [, int comp])
gvec4 textureGather(gsampler2DArray
sampler, vec3 P [, int comp])
gvec4 textureGather(gsamplerCube sampler,
vec3 P [, int comp])
gvec4 textureGather(gsamplerCubeArray
sampler, vec4 P[, int comp])
vec4 textureGather(sampler2DShadow
sampler, vec2 P, float refZ)
vec4 textureGather(sampler2DArrayShadow
sampler, vec3 P, float refZ)
vec4 textureGather(samplerCubeShadow
sampler, vec3 P, float refZ)
vec4 textureGather(samplerCubeArrayShadow
sampler, vec4 P, float refZ)

Returns the value

vec4(Sample_i0_j1(P, base).comp,
 Sample_i1_j1(P, base).comp,
 Sample_i1_j0(P, base).comp,
 Sample_i0_j0(P, base).comp)

If specified, the value of comp must be a
constant integer expression with a value of 0, 1,
2, or 3, identifying the x, y, z, or w post-swizzled
component of the four-component vector
lookup result for each texel, respectively. If
comp is not specified, it is treated as 0, selecting
the x component of each texel to generate the
result.

gvec4 textureGatherOffset(gsampler2D
sampler, vec2 P, ivec2 offset, [int comp])
gvec4 textureGatherOffset(gsampler2DArray
sampler, vec3 P, ivec2 offset [int comp])
vec4 textureGatherOffset(sampler2DShadow
sampler, vec2 P, float refZ, ivec2 offset)
vec4
textureGatherOffset(sampler2DArrayShadow
sampler, vec3 P, float refZ, ivec2 offset)

Perform a texture gather operation as in
textureGather by offset as described in
textureOffset except that the offset can be
variable (non constant) and the implementation-
dependent minimum and maximum offset
values are given by
MIN_PROGRAM_TEXTURE_GATHER_OFFSET and
MAX_PROGRAM_TEXTURE_GATHER_OFFSET,
respectively.

gvec4 textureGatherOffsets(gsampler2D
sampler, vec2 P, ivec2 offsets[4] [, int comp])
gvec4 textureGatherOffsets(gsampler2DArray
sampler, vec3 P, ivec2 offsets[4] [, int comp])
vec4 textureGatherOffsets(sampler2DShadow
sampler, vec2 P, float refZ, ivec2 offsets[4])
vec4
textureGatherOffsets(sampler2DArrayShadow
sampler, vec3 P, float refZ, ivec2 offsets[4])

Operate identically to textureGatherOffset
except that offsets is used to determine the
location of the four texels to sample. Each of the
four texels is obtained by applying the
corresponding offset in offsets as a (u, v)
coordinate offset to P, identifying the four-texel
LINEAR footprint, and then selecting the texel i0

j0 of that footprint. The specified values in offsets
must be constant integral expressions.

8.10. Atomic Counter Functions
The atomic-counter operations in this section operate atomically with respect to each other. They
are atomic for any single counter, meaning any of these operations on a specific counter in one
shader instantiation will be indivisible by any of these operations on the same counter from
another shader instantiation. There is no guarantee that these operations are atomic with respect to

161

other forms of access to the counter or that they are serialized when applied to separate counters.
Such cases would require additional use of fences, barriers, or other forms of synchronization, if
atomicity or serialization is desired.

The underlying counter is a 32-bit unsigned integer. The result of operations will wrap to [0, 232-1].

Syntax Description

uint atomicCounterIncrement(atomic_uint c) Atomically

1. increments the counter for c, and

2. returns its value prior to the increment
operation.

These two steps are done atomically with
respect to the atomic counter functions in this
table.

uint atomicCounterDecrement(atomic_uint c) Atomically

1. decrements the counter for c, and

2. returns the value resulting from the
decrement operation.

These two steps are done atomically with
respect to the atomic counter functions in this
table.

uint atomicCounter(atomic_uint c) Returns the counter value for c.

8.11. Atomic Memory Functions
Atomic memory functions perform atomic operations on an individual signed or unsigned integer
stored in buffer object or shared variable storage. All of the atomic memory operations read a value
from memory, compute a new value using one of the operations described below, write the new
value to memory, and return the original value read, converted to the precision declared in the
shader. Note that the operations are performed at the in-memory precision of the storage, which
may differ from the precision declared in the shader.

The contents of the memory being updated by the atomic operation are guaranteed not to be
modified by any other assignment or atomic memory function in any shader invocation between
the time the original value is read and the time the new value is written.

Atomic memory functions are supported only for a limited set of variables. A shader will fail to
compile if the value passed to the mem argument of an atomic memory function does not
correspond to a buffer or shared variable. It is acceptable to pass an element of an array or a single
component of a vector to the mem argument of an atomic memory function, as long as the
underlying array or vector is a buffer or shared variable.

All the built-in functions in this section accept arguments with combinations of restrict, coherent,

162

and volatile memory qualification, despite not having them listed in the prototypes. The atomic
operation will operate as required by the calling argument’s memory qualification, not by the built-
in function’s formal parameter memory qualification.

Syntax Description

uint atomicAdd(inout uint mem, uint data)
int atomicAdd(inout int mem, int data)

Computes a new value by adding the value of
data to the contents mem.

uint atomicMin(inout uint mem, uint data)
int atomicMin(inout int mem, int data)

Computes a new value by taking the minimum
of the value of data and the contents of mem.

uint atomicMax(inout uint mem, uint data)
int atomicMax(inout int mem, int data)

Computes a new value by taking the maximum
of the value of data and the contents of mem.

uint atomicAnd(inout uint mem, uint data)
int atomicAnd(inout int mem, int data)

Computes a new value by performing a bit-wise
AND of the value of data and the contents of
mem.

uint atomicOr(inout uint mem, uint data)
int atomicOr(inout int mem, int data)

Computes a new value by performing a bit-wise
OR of the value of data and the contents of mem.

uint atomicXor(inout uint mem, uint data)
int atomicXor(inout int mem, int data)

Computes a new value by performing a bit-wise
EXCLUSIVE OR of the value of data and the
contents of mem.

uint atomicExchange(inout uint mem, uint
data)
int atomicExchange(inout int mem, int data)

Computes a new value by simply copying the
value of data.

uint atomicCompSwap(inout uint mem, uint
compare, uint data)
int atomicCompSwap(inout int mem, int
compare, int data)

Compares the value of compare and the contents
of mem. If the values are equal, the new value is
given by data; otherwise, it is taken from the
original contents of mem.

8.12. Image Functions
Variables using one of the image basic types may be used by the built-in shader image memory
functions defined in this section to read and write individual texels of a texture. Each image
variable references an image unit, which has a texture image attached.

When image memory functions below access memory, an individual texel in the image is identified
using an (i), (i, j), or (i, j, k) coordinate corresponding to the values of P. The coordinates are used to
select an individual texel in the manner described in section 8.22 “Texture Image Loads and Stores”
of the OpenGL ES Specification.

Loads and stores support float, integer, and unsigned integer types. The data types below starting
gimage serve as placeholders meaning types starting either “image”, “iimage”, or “uimage” in the
same way as "gvec" or "gsampler" in earlier sections.

The IMAGE_PARAMS in the prototypes below is a placeholder representing 18 separate functions,
each for a different type of image variable. The IMAGE_PARAMS placeholder is replaced by one of
the following parameter lists:

163

gimage2D image, ivec2 P

gimage3D image, ivec3 P

gimageCube image, ivec3 P

gimageBuffer image, int P

gimage2DArray image, ivec3 P

gimageCubeArray image, ivec3 P

where each of the lines represents one of three different image variable types, and image, P specify
the individual texel to operate on. The method for identifying the individual texel operated on from
image, P, and the method for reading and writing the texel are specified in section 8.22 “Texture
Image Loads and Stores” of the OpenGL ES Specification.

The atomic functions perform operations on individual texels or samples of an image variable.
Atomic memory operations read a value from the selected texel, compute a new value using one of
the operations described below, write the new value to the selected texel, and return the original
value read. The contents of the texel being updated by the atomic operation are guaranteed not to
be modified by any other image store or atomic function between the time the original value is
read and the time the new value is written.

Atomic memory operations are supported on only a subset of all image variable types; image must
be either:

• a signed integer image variable (type starts “iimage”) and a format qualifier of r32i, used with a
data argument of type int, or

• an unsigned integer image variable (type starts “uimage”) and a format qualifier of r32ui, used
with a data argument of type uint, or

• a float image variable (type starts “image”) and a format qualifier of r32f, used with a data
argument of type float (imageAtomicExchange only).

All the built-in functions in this section accept arguments with combinations of restrict, coherent,
and volatile memory qualification, despite not having them listed in the prototypes. The image
operation will operate as required by the calling argument’s memory qualification, not by the built-
in function’s formal parameter memory qualification.

164

Syntax Description

highp ivec2 imageSize(readonly writeonly
gimage2D image)
highp ivec3 imageSize(readonly writeonly
gimage3D image)
highp ivec2 imageSize(readonly writeonly
gimageCube image)
highp ivec3 imageSize(readonly writeonly
gimageCubeArray image)
highp ivec3 imageSize(readonly writeonly
gimage2DArray image)
highp int imageSize(readonly writeonly
gimageBuffer image)

Returns the dimensions of the image or images
bound to image. For arrayed images, the last
component of the return value will hold the size
of the array. Cube images only return the
dimensions of one face, and the number of
cubes in the cube map array, if arrayed.
Note: The qualification readonly writeonly
accepts a variable qualified with readonly,
writeonly, both, or neither. It means the formal
argument will be used for neither reading nor
writing to the underlying memory.

gvec4 imageLoad(readonly IMAGE_PARAMS) Loads the texel at the coordinate P from the
image unit image (in IMAGE_PARAMS). When
image and P identify a valid texel, the bits used
to represent the selected texel in memory are
converted to a vec4, ivec4, or uvec4 in the
manner described in section 8.23 “Texture
Image Loads and Stores” of the OpenGL ES
Specification and returned.

void imageStore(writeonly IMAGE_PARAMS,
gvec4 data)

Stores data into the texel at the coordinate P
from the image specified by image. When image
and P identify a valid texel, the bits used to
represent data are converted to the format of
the image unit in the manner described in
section 8.23 “Texture Image Loads and Stores” of
the OpenGL ES Specification and stored to the
specified texel.

highp uint imageAtomicAdd(IMAGE_PARAMS,
uint data)
highp int imageAtomicAdd(IMAGE_PARAMS,
int data)

Computes a new value by adding the value of
data to the contents of the selected texel.

highp uint imageAtomicMin(IMAGE_PARAMS,
uint data)
highp int imageAtomicMin(IMAGE_PARAMS,
int data)

Computes a new value by taking the minimum
of the value of data and the contents of the
selected texel.

highp uint imageAtomicMax(IMAGE_PARAMS,
uint data)
highp int imageAtomicMax(IMAGE_PARAMS,
int data)

Computes a new value by taking the maximum
of the value data and the contents of the selected
texel.

165

Syntax Description

highp uint imageAtomicAnd(IMAGE_PARAMS,
uint data)
highp int imageAtomicAnd(IMAGE_PARAMS,
int data)

Computes a new value by performing a bit-wise
AND of the value of data and the contents of the
selected texel.

highp uint imageAtomicOr(IMAGE_PARAMS,
uint data)
highp int imageAtomicOr(IMAGE_PARAMS, int
data)

Computes a new value by performing a bit-wise
OR of the value of data and the contents of the
selected texel.

highp uint imageAtomicXor(IMAGE_PARAMS,
uint data)
highp int imageAtomicXor(IMAGE_PARAMS, int
data)

Computes a new value by performing a bit-wise
EXCLUSIVE OR of the value of data and the
contents of the selected texel.

highp uint imageAtomicExchange
(IMAGE_PARAMS, uint data)
highp int imageAtomicExchange
(IMAGE_PARAMS, int data)
highp float imageAtomicExchange
(IMAGE_PARAMS, float data)

Computes a new value by simply copying the
value of data.

highp uint imageAtomicCompSwap
(IMAGE_PARAMS, uint compare, uint data)
highp int imageAtomicCompSwap
(IMAGE_PARAMS, int compare, int data)

Compares the value of compare and the contents
of the selected texel. If the values are equal, the
new value is given by data; otherwise, it is taken
from the original value loaded from the texel.

8.13. Geometry Shader Functions
These functions are only available in geometry shaders. They are described in more depth
following the table.

Syntax Description

void EmitVertex() Emits the current values of output variables to
the current output primitive. On return from
this call, the values of output variables are
undefined.

void EndPrimitive() Completes the current output primitive and
starts a new one. No vertex is emitted.

The function EmitVertex() specifies that a vertex is completed. A vertex is added to the current
output primitive using the current values of all built-in and user-defined output variables. The
values of all output variables are undefined after a call to EmitVertex(). If a geometry shader
invocation has emitted more vertices than permitted by the output layout qualifier max_vertices,
the results of calling EmitVertex() are undefined.

The function EndPrimitive() specifies that the current output primitive is completed and a new
output primitive (of the same type) will be started by any subsequent EmitVertex(). This function

166

does not emit a vertex. If the output layout is declared to be points, calling EndPrimitive() is
optional.

A geometry shader starts with an output primitive containing no vertices. When a geometry shader
terminates, the current output primitive is automatically completed. It is not necessary to call
EndPrimitive() if the geometry shader writes only a single primitive.

8.14. Fragment Processing Functions
Fragment processing functions are only available in fragment shaders.

8.14.1. Derivative Functions

Derivatives may be computationally expensive and/or numerically unstable. Therefore, an
implementation may approximate the true derivatives by using a fast but not entirely accurate
derivative computation. Derivatives are undefined within non-uniform control flow.

The expected behavior of a derivative is specified using forward/backward differencing.

Forward differencing:

Backward differencing:

With single-sample rasterization, in equations 1b and 2b. For multisample rasterization,
 in equations 1b and 2b.

 is approximated similarly, with y replacing x.

An implementation may use the above or other methods to perform the calculation, subject to the
following conditions:

1. The method may use piecewise linear approximations. Such linear approximations imply that
higher order derivatives, dFdx(dFdx(x)) and above, are undefined.

2. The method may assume that the function evaluated is continuous. Therefore derivatives
within the body of a non-uniform conditional are undefined.

3. The method may differ per fragment, subject to the constraint that the method may vary by
window coordinates, not screen coordinates. The invariance requirement described in section
13.2 “Invariance” of the OpenGL ES Specification, is relaxed for derivative calculations, because
the method may be a function of fragment location.

Other properties that are desirable, but not required, are:

167

1. Functions should be evaluated within the interior of a primitive (interpolated, not
extrapolated).

2. Functions for dFdx should be evaluated while holding y constant. Functions for dFdy should be
evaluated while holding x constant. However, mixed higher order derivatives, like dFdx(dFdy(
y)) and dFdy(dFdx(x)) are undefined.

3. Derivatives of constant arguments should be 0.

In some implementations, varying degrees of derivative accuracy may be obtained by providing GL
hints (see section 19.1 “Hints” of the OpenGL ES Specification), allowing a user to make an image
quality versus speed trade off.

Syntax Description

genFType dFdx(genFType p) Returns the derivative in x using local
differencing for the input argument p.

genFType dFdy(genFType p) Returns the derivative in y using local
differencing for the input argument p.

These two functions are commonly used to
estimate the filter width used to anti-alias
procedural textures. We are assuming that the
expression is being evaluated in parallel on a
SIMD array so that at any given point in time the
value of the function is known at the grid points
represented by the SIMD array. Local
differencing between SIMD array elements can
therefore be used to derive dFdx, dFdy, etc.

genFType fwidth(genFType p) Returns the sum of the absolute derivative in x
and y using local differencing for the input
argument p, i.e., abs(dFdx(p)) + abs(dFdy(p));

8.14.2. Interpolation Functions

Built-in interpolation functions are available to compute an interpolated value of a fragment
shader input variable at a shader-specified (x, y) location. A separate (x, y) location may be used for
each invocation of the built-in function, and those locations may differ from the default (x, y)
location used to produce the default value of the input.

For all of the interpolation functions, interpolant must be an l-value from an in declaration; this can
include a variable, an anonymous block member, an array element, or some combination of these.
Component selection operators (e.g. .xy), and field selection operators may not be used when
specifying interpolant. Arrayed inputs can be indexed with general (nonuniform) integer
expressions.

If interpolant is declared with the flat qualifier, the interpolated value will have the same value
everywhere for a single primitive, so the location used for interpolation has no effect and the
functions just return that same value. If interpolant is declared with the centroid qualifier, the

168

value returned by interpolateAtSample() and interpolateAtOffset() will be evaluated at the
specified location, ignoring the location normally used with the centroid qualifier.

Syntax Description

float interpolateAtCentroid(float interpolant)
vec2 interpolateAtCentroid(vec2 interpolant)
vec3 interpolateAtCentroid(vec3 interpolant)
vec4 interpolateAtCentroid(vec4 interpolant)

Returns the value of the input interpolant
sampled at a location inside both the pixel and
the primitive being processed. The value
obtained would be the same value assigned to
the input variable if declared with the centroid
qualifier.

float interpolateAtSample(float interpolant, int
sample)
vec2 interpolateAtSample(vec2 interpolant, int
sample)
vec3 interpolateAtSample(vec3 interpolant, int
sample)
vec4 interpolateAtSample(vec4 interpolant, int
sample)

Returns the value of the input interpolant
variable at the location of sample number
sample. If multisample buffers are not available,
the input variable will be evaluated at the center
of the pixel. If sample sample does not exist, the
position used to interpolate the input variable is
undefined.

float interpolateAtOffset(float interpolant, vec2
offset)
vec2 interpolateAtOffset(vec2 interpolant, vec2
offset)
vec3 interpolateAtOffset(vec3 interpolant, vec2
offset)
vec4 interpolateAtOffset(vec4 interpolant, vec2
offset)

Returns the value of the input interpolant
variable sampled at an offset from the center of
the pixel specified by offset. The two floating-
point components of offset, give the offset in
pixels in the x and y directions, respectively.
An offset of (0, 0) identifies the center of the
pixel. The range and granularity of offsets
supported by this function is implementation-
dependent.

8.15. Shader Invocation Control Functions
The shader invocation control function is only available in tessellation control and compute
shaders. It is used to control the relative execution order of multiple shader invocations used to
process a patch (in the case of tessellation control shaders) or a workgroup (in the case of compute
shaders), which are otherwise executed with an undefined relative order.

Syntax Description

void barrier() For any given static instance of barrier(), all
tessellation control shader invocations for a
single input patch must enter it before any will
be allowed to continue beyond it, or all compute
shader invocations for a single workgroup must
enter it before any will continue beyond it.

The function barrier() provides a partially defined order of execution between shader invocations.
The ensures that, for some types of memory accesses, values written by one invocation prior to a
given static instance of barrier() can be safely read by other invocations after their call to the same

169

static instance barrier(). Because invocations may execute in an undefined order between these
barrier calls, the values of a per-vertex or per-patch output variable for tessellation control shaders,
or the values of shared variables for compute shaders will be undefined in a number of cases
enumerated in “Output Variables” (for tessellation control shaders) and “Shared Variables” (for
compute shaders).

For tessellation control shaders, the barrier() function may only be placed inside the function
main() of the shader and may not be called within any control flow. Barriers are also disallowed
after a return statement in the function main(). Any such misplaced barriers result in a compile-
time error.

A barrier() affects control flow but only synchronizes memory accesses to shared variables and
tessellation control output variables. For other memory accesses, it does not ensure that values
written by one invocation prior to a given static instance of barrier() can be safely read by other
invocations after their call to the same static instance of barrier(). To achieve this requires the use
of both barrier() and a memory barrier.

For compute shaders, the barrier() function may be placed within control flow, but that control
flow must be uniform control flow. That is, all the controlling expressions that lead to execution of
the barrier must be dynamically uniform expressions. This ensures that if any shader invocation
enters a conditional statement, then all invocations will enter it. While compilers are encouraged to
give warnings if they can detect this might not happen, compilers cannot completely determine
this. Hence, it is the author’s responsibility to ensure barrier() only exists inside uniform control
flow. Otherwise, some shader invocations will stall indefinitely, waiting for a barrier that is never
reached by other invocations.

8.16. Shader Memory Control Functions
Within a single shader invocation, the visibility and order of writes made by that invocation are
well-defined. However, the relative order of reads and writes to a single shared memory address
from multiple separate shader invocations is largely undefined. Additionally, the order of accesses
to multiple memory addresses performed by a single shader invocation, as observed by other
shader invocations, is also undefined.

The following built-in functions can be used to control the ordering of reads and writes:

Syntax Description

void memoryBarrier() Control the ordering of memory transactions
issued by a single shader invocation.

void memoryBarrierAtomicCounter() Control the ordering of accesses to atomic-
counter variables issued by a single shader
invocation.

void memoryBarrierBuffer() Control the ordering of memory transactions to
buffer variables issued within a single shader
invocation.

170

Syntax Description

void memoryBarrierShared() Control the ordering of memory transactions to
shared variables issued within a single shader
invocation, as viewed by other invocations in
the same workgroup.
Only available in compute shaders.

void memoryBarrierImage() Control the ordering of memory transactions to
images issued within a single shader invocation.

void groupMemoryBarrier() Control the ordering of all memory transactions
issued within a single shader invocation, as
viewed by other invocations in the same
workgroup.
Only available in compute shaders.

The memory barrier built-in functions can be used to order reads and writes to variables stored in
memory accessible to other shader invocations. When called, these functions will wait for the
completion of all reads and writes previously performed by the caller that access selected variable
types, and then return with no other effect. The built-in functions
memoryBarrierAtomicCounter(), memoryBarrierBuffer(), memoryBarrierImage(), and
memoryBarrierShared() wait for the completion of accesses to atomic counter, buffer, image, and
shared variables, respectively. The built-in functions memoryBarrier() and
groupMemoryBarrier() wait for the completion of accesses to all of the above variable types. The
functions memoryBarrierShared() and groupMemoryBarrier() are available only in compute
shaders; the other functions are available in all shader types.

When these functions return, the effects of any memory stores performed using coherent variables
prior to the call will be visible to any future1 coherent access to the same memory performed by
any other shader invocation. In particular, the values written this way in one shader stage are
guaranteed to be visible to coherent memory accesses performed by shader invocations in
subsequent stages when those invocations were triggered by the execution of the original shader
invocation (e.g. fragment shader invocations for a primitive resulting from a particular geometry
shader invocation).

1

An access is only a future access if a happens-before relation can be established between the store
and the load.

Additionally, memory barrier functions order stores performed by the calling invocation, as
observed by other shader invocations. Without memory barriers, if one shader invocation
performs two stores to coherent variables, a second shader invocation might see the values written
by the second store prior to seeing those written by the first. However, if the first shader invocation
calls a memory barrier function between the two stores, selected other shader invocations will
never see the results of the second store before seeing those of the first. When using the functions
groupMemoryBarrier() or memoryBarrierShared(), this ordering guarantee applies only to other
shader invocations in the same compute shader workgroup; all other memory barrier functions
provide the guarantee to all other shader invocations. No memory barrier is required to guarantee
the order of memory stores as observed by the invocation performing the stores; an invocation

171

reading from a variable that it previously wrote will always see the most recently written value
unless another shader invocation also wrote to the same memory.

8.17. Subpass-Input Functions
Subpass-input functions are only available when targeting a Vulkan fragment stage.

Subpass inputs are read through the built-in functions below. The g is again a placeholder for either
nothing, i, or u, indicating either a floating-point, signed integer, or unsigned integer, and these
must match between argument type and return type.

Syntax Description

gvec4 subpassLoad(gsubpassInput subpass)
gvec4 subpassLoad(gsubpassInputMS subpass,
int sample)

Read from a subpass input, from the implicit
location (x, y, layer) of the current fragment
coordinate.

172

Chapter 9. Shader Interface Matching
As described in chapter 7 of the OpenGL ES Specification, shaders may be linked together to form a
program object before being bound to the pipeline or may be linked and bound individually as
separable program objects.

Note

These were previously known as separate shader objects (SSOs) but the
mechanism has been extended to support future versions of the specification that
have more than two shader stages. It allows a subset of the shaders to be linked
together.

Within a program object or a separable program object, qualifiers for matching variables must
themselves match according to the rules specified in this section. There are also matching rules for
qualifiers of matching variables between separable program objects but only for variables across
an input/output boundary between shader stages. For other shader interface variables such as
uniforms, each program object or separable program object has its own name space and so the
same name can refer to multiple independent variables. Consequently, there are no matching rules
for qualifiers in these cases.

9.1. Input Output Matching by Name in Linked
Programs
When linking shaders, the type of declared vertex outputs and fragment inputs with the same name
must match, otherwise the link command will fail. Only those fragment inputs statically used (i.e.
read) in the fragment shader must be declared as outputs in the vertex shader; declaring
superfluous vertex shader outputs is permissible.

The following table summarizes the rules for matching shader outputs to shader inputs in
consecutive stages when shaders are linked together.

Treatment of Mismatched Input
Variables

Consuming Shader (input variables)

No
Declaratio
n

Declared but no
Static Use

Declared and Static Use

Generating Shader
(output variables)

No Declaration Allowed Allowed error

Declares; no
static Use

Allowed Allowed Allowed (values are
undefined)

Declares and
static Use

Allowed Allowed Allowed (values are
potentially undefined)

See “Static Use” for the definition of static use.

The precision of a vertex output does not need to match the precision of the corresponding
fragment input. The minimum precision at which vertex outputs are interpolated is the minimum

173

of the vertex output precision and the fragment input precision, with the exception that for highp,
implementations do not have to support full IEEE 754 precision.

The precision of values exported to a transform feedback buffer is the precision of the outputs of
the vertex shader. However, they are converted to highp format before being written.

9.2. Matching of Qualifiers
The following tables summarize the requirements for matching of qualifiers. It applies whenever
there are two or more matching variables in a shader interface.

Notes:

1. Yes means the qualifiers must match.

2. No means the qualifiers do not need to match.

3. Consistent means qualifiers may be missing from a subset of declarations but they cannot
conflict

4. If there are conflicting qualifiers, only the last of these is significant.

5. Matching is based only on the resulting qualification, not on the presence or otherwise of
qualifiers.

6. The rules apply to all declared variables, irrespective of whether they are statically used, with
the exception of inputs and outputs when shaders are linked (see “Input Output Matching by
Name in Linked Programs”).

7. Errors are generated for any conflicts.

9.2.1. Linked Shaders

Qualifier
Class

Qualifier in/out Default
Uniforms

uniform Block buffer Block

Storage1 in
out
uniform

N/A N/A N/A N/A

Auxiliary centroid
sample

No N/A N/A N/A

patch Yes N/A N/A N/A

Layout location Yes2 Consistent N/A N/A

Block layout3,4 N/A N/A Yes Yes

binding N/A Consistent Yes Yes

offset N/A Yes N/A N/A

format N/A Yes N/A N/A

Interpolation smooth
flat

Yes N/A N/A N/A

174

Qualifier
Class

Qualifier in/out Default
Uniforms

uniform Block buffer Block

Precision lowp
mediump
highp

No Yes No No

Variance invariant
precise

No N/A N/A N/A

Memory all N/A Yes Yes Yes

1

Storage qualifiers determine when variables match rather than being required to match for
matching variables. Note also that each shader interface has a separate name space so for
example, it is possible to use the same name for a vertex output and fragment uniform.

2

If present, the location qualifier determines the matching of inputs and outputs. See section
7.4.1 “Shader interface Matching” of the OpenGL ES Specification for details.]

3

The row_major and column_major layout qualifiers do not need to match when applied to non-
matrix types.

4

In cases where a layout qualifier overrides a previous layout qualifier or a default, only the
resulting qualification must match.

9.2.2. Separable Programs

Qualifier Class Qualifier in/out

Storage in
out
uniform

N/A

Auxiliary centroid
sample

No

patch Yes

Layout location Yes

Block layout N/A

binding N/A

offset N/A

format N/A

Interpolation smooth
flat

Yes

175

Qualifier Class Qualifier in/out

Precision lowp
mediump
highp

Yes

Variance invariant
precise

No

Memory all N/A

176

Chapter 10. Shading Language Grammar
The grammar is fed from the output of lexical analysis. The tokens returned from lexical analysis
are

CONST BOOL FLOAT INT UINT

BVEC2 BVEC3 BVEC4 IVEC2 IVEC3 IVEC4 UVEC2 UVEC3 UVEC4 VEC2 VEC3 VEC4

MAT2 MAT3 MAT4 MAT2X2 MAT2X3 MAT2X4 MAT3X2 MAT3X3 MAT3X4 MAT4X2 MAT4X3 MAT4X4

CENTROID IN OUT INOUT UNIFORM PATCH SAMPLE BUFFER SHARED COHERENT VOLATILE
RESTRICT READONLY WRITEONLY FLAT SMOOTH LAYOUT

ATOMIC_UINT

SAMPLER2D SAMPLER3D SAMPLERCUBE SAMPLER2DSHADOW SAMPLERCUBESHADOW
SAMPLER2DARRAY SAMPLER2DARRAYSHADOW ISAMPLER2D ISAMPLER3D ISAMPLERCUBE
ISAMPLER2DARRAY USAMPLER2D USAMPLER3D USAMPLERCUBE USAMPLER2DARRAY

SAMPLERBUFFER ISAMPLERBUFFER USAMPLERBUFFER SAMPLERCUBEARRAY
SAMPLERCUBEARRAYSHADOW ISAMPLERCUBEARRAY USAMPLERCUBEARRAY SAMPLER2DMS
ISAMPLER2DMS USAMPLER2DMS SAMPLER2DMSARRAY ISAMPLER2DMSARRAY
USAMPLER2DMSARRAY IMAGE2D IIMAGE2D UIMAGE2D IMAGE3D IIMAGE3D UIMAGE3D
IMAGECUBE IIMAGECUBE UIMAGECUBE IMAGEBUFFER IIMAGEBUFFER UIMAGEBUFFER
IMAGE2DARRAY IIMAGE2DARRAY UIMAGE2DARRAY IMAGECUBEARRAY IIMAGECUBEARRAY
UIMAGECUBEARRAY

STRUCT VOID

WHILE BREAK CONTINUE DO ELSE FOR IF DISCARD RETURN SWITCH CASE DEFAULT

IDENTIFIER TYPE_NAME FLOATCONSTANT INTCONSTANT UINTCONSTANT BOOLCONSTANT
FIELD_SELECTION

LEFT_OP RIGHT_OP INC_OP DEC_OP LE_OP GE_OP EQ_OP NE_OP AND_OP OR_OP XOR_OP
MUL_ASSIGN DIV_ASSIGN ADD_ASSIGN MOD_ASSIGN LEFT_ASSIGN RIGHT_ASSIGN AND_ASSIGN
XOR_ASSIGN OR_ASSIGN SUB_ASSIGN LEFT_PAREN RIGHT_PAREN LEFT_BRACKET
RIGHT_BRACKET LEFT_BRACE RIGHT_BRACE DOT COMMA COLON EQUAL SEMICOLON BANG
DASH TILDE PLUS STAR SLASH PERCENT LEFT_ANGLE RIGHT_ANGLE VERTICAL_BAR CARET
AMPERSAND QUESTION

INVARIANT PRECISE HIGH_PRECISION MEDIUM_PRECISION LOW_PRECISION PRECISION

The following describes the grammar for the OpenGL ES Shading Language in terms of the above
tokens. The starting rule is translation_unit.

variable_identifier :

IDENTIFIER

177

primary_expression :

variable_identifier
INTCONSTANT
UINTCONSTANT
FLOATCONSTANT
BOOLCONSTANT
LEFT_PAREN expression RIGHT_PAREN

postfix_expression :

primary_expression
postfix_expression LEFT_BRACKET integer_expression RIGHT_BRACKET
function_call
postfix_expression DOT FIELD_SELECTION
postfix_expression INC_OP
postfix_expression DEC_OP

FIELD_SELECTION includes members in structures, component selection for
vectors and the 'length' identifier for the length() method

integer_expression :

expression

function_call :

function_call_or_method

function_call_or_method :

function_call_generic

function_call_generic :

function_call_header_with_parameters RIGHT_PAREN
function_call_header_no_parameters RIGHT_PAREN

function_call_header_no_parameters :

function_call_header VOID
function_call_header

function_call_header_with_parameters :

function_call_header assignment_expression
function_call_header_with_parameters COMMA assignment_expression

function_call_header :

function_identifier LEFT_PAREN

Grammar Note: Constructors look like functions, but lexical analysis recognized
most of them as keywords. They are now recognized through type_specifier.

 Methods (.length) and identifiers are recognized through postfix_expression.

178

function_identifier :

type_specifier
postfix_expression

unary_expression :

postfix_expression
INC_OP unary_expression
DEC_OP unary_expression
unary_operator unary_expression

 Grammar Note: No traditional style type casts.

unary_operator :

PLUS
DASH
BANG
TILDE

 Grammar Note: No '*' or '&' unary ops. Pointers are not supported.

multiplicative_expression :

unary_expression
multiplicative_expression STAR unary_expression
multiplicative_expression SLASH unary_expression
multiplicative_expression PERCENT unary_expression

additive_expression :

multiplicative_expression
additive_expression PLUS multiplicative_expression
additive_expression DASH multiplicative_expression

shift_expression :

additive_expression
shift_expression LEFT_OP additive_expression
shift_expression RIGHT_OP additive_expression

relational_expression :

shift_expression
relational_expression LEFT_ANGLE shift_expression
relational_expression RIGHT_ANGLE shift_expression
relational_expression LE_OP shift_expression
relational_expression GE_OP shift_expression

equality_expression :

relational_expression
equality_expression EQ_OP relational_expression
equality_expression NE_OP relational_expression

179

and_expression :

equality_expression
and_expression AMPERSAND equality_expression

exclusive_or_expression :

and_expression
exclusive_or_expression CARET and_expression

inclusive_or_expression :

exclusive_or_expression
inclusive_or_expression VERTICAL_BAR exclusive_or_expression

logical_and_expression :

inclusive_or_expression
logical_and_expression AND_OP inclusive_or_expression

logical_xor_expression :

logical_and_expression
logical_xor_expression XOR_OP logical_and_expression

logical_or_expression :

logical_xor_expression
logical_or_expression OR_OP logical_xor_expression

conditional_expression :

logical_or_expression
logical_or_expression QUESTION expression COLON assignment_expression

assignment_expression :

conditional_expression
unary_expression assignment_operator assignment_expression

assignment_operator :

EQUAL
MUL_ASSIGN
DIV_ASSIGN
MOD_ASSIGN
ADD_ASSIGN
SUB_ASSIGN
LEFT_ASSIGN
RIGHT_ASSIGN
AND_ASSIGN
XOR_ASSIGN
OR_ASSIGN

expression :

assignment_expression
expression COMMA assignment_expression

180

constant_expression :

conditional_expression

declaration :

function_prototype SEMICOLON
init_declarator_list SEMICOLON
PRECISION precision_qualifier type_specifier SEMICOLON
type_qualifier IDENTIFIER LEFT_BRACE struct_declaration_list RIGHT_BRACE SEMICOLON
type_qualifier IDENTIFIER LEFT_BRACE struct_declaration_list RIGHT_BRACE IDENTIFIER
SEMICOLON
type_qualifier IDENTIFIER LEFT_BRACE struct_declaration_list RIGHT_BRACE IDENTIFIER
array_specifier SEMICOLON
type_qualifier SEMICOLON
type_qualifier IDENTIFIER SEMICOLON
type_qualifier IDENTIFIER identifier_list SEMICOLON

identifier_list :

COMMA IDENTIFIER
identifier_list COMMA IDENTIFIER

function_prototype :

function_declarator RIGHT_PAREN

function_declarator :

function_header
function_header_with_parameters

function_header_with_parameters :

function_header parameter_declaration
function_header_with_parameters COMMA parameter_declaration

function_header :

fully_specified_type IDENTIFIER LEFT_PAREN

parameter_declarator :

type_specifier IDENTIFIER
type_specifier IDENTIFIER array_specifier

parameter_declaration :

type_qualifier parameter_declarator
parameter_declarator
type_qualifier parameter_type_specifier
parameter_type_specifier

parameter_type_specifier :

type_specifier

181

init_declarator_list :

single_declaration
init_declarator_list COMMA IDENTIFIER
init_declarator_list COMMA IDENTIFIER array_specifier
init_declarator_list COMMA IDENTIFIER array_specifier EQUAL initializer
init_declarator_list COMMA IDENTIFIER EQUAL initializer

single_declaration :

fully_specified_type
fully_specified_type IDENTIFIER
fully_specified_type IDENTIFIER array_specifier
fully_specified_type IDENTIFIER array_specifier EQUAL initializer
fully_specified_type IDENTIFIER EQUAL initializer

 Grammar Note: No 'enum', or 'typedef'.

fully_specified_type :

type_specifier
type_qualifier type_specifier

invariant_qualifier :

INVARIANT

interpolation_qualifier :

SMOOTH
FLAT

layout_qualifier :

LAYOUT LEFT_PAREN layout_qualifier_id_list RIGHT_PAREN

layout_qualifier_id_list :

layout_qualifier_id
layout_qualifier_id_list COMMA layout_qualifier_id

layout_qualifier_id :

IDENTIFIER
IDENTIFIER EQUAL INTCONSTANT
IDENTIFIER EQUAL UINTCONSTANT
SHARED

precise_qualifier :

PRECISE

type_qualifier :

single_type_qualifier
type_qualifier single_type_qualifier

182

single_type_qualifier :

storage_qualifier
layout_qualifier
precision_qualifier
interpolation_qualifier
invariant_qualifier
precise_qualifier

storage_qualifier :

CONST
IN
OUT
INOUT
CENTROID
PATCH
SAMPLE
UNIFORM
BUFFER
SHARED
COHERENT
VOLATILE
RESTRICT
READONLY
WRITEONLY

type_specifier :

type_specifier_nonarray
type_specifier_nonarray array_specifier

array_specifier :

LEFT_BRACKET RIGHT_BRACKET
LEFT_BRACKET conditional_expression RIGHT_BRACKET
array_specifier LEFT_BRACKET RIGHT_BRACKET
array_specifier LEFT_BRACKET conditional_expression RIGHT_BRACKET

type_specifier_nonarray :

VOID
FLOAT
INT
UINT
BOOL
VEC2
VEC3
VEC4
BVEC2
BVEC3
BVEC4
IVEC2

183

IVEC3
IVEC4
UVEC2
UVEC3
UVEC4
MAT2
MAT3
MAT4
MAT2X2
MAT2X3
MAT2X4
MAT3X2
MAT3X3
MAT3X4
MAT4X2
MAT4X3
MAT4X4
ATOMIC_UINT
SAMPLER2D
SAMPLER3D
SAMPLERCUBE
SAMPLER2DSHADOW
SAMPLERCUBESHADOW
SAMPLER2DARRAY
SAMPLER2DARRAYSHADOW
SAMPLERCUBEARRAY
SAMPLERCUBEARRAYSHADOW
ISAMPLER2D
ISAMPLER3D
ISAMPLERCUBE
ISAMPLER2DARRAY
ISAMPLERCUBEARRAY
USAMPLER2D
USAMPLER3D
USAMPLERCUBE
USAMPLER2DARRAY
USAMPLERCUBEARRAY
SAMPLERBUFFER
ISAMPLERBUFFER
USAMPLERBUFFER
SAMPLER2DMS
ISAMPLER2DMS
USAMPLER2DMS
SAMPLER2DMSARRAY
ISAMPLER2DMSARRAY
USAMPLER2DMSARRAY
IMAGE2D
IIMAGE2D

184

UIMAGE2D
IMAGE3D
IIMAGE3D
UIMAGE3D
IMAGECUBE
IIMAGECUBE
UIMAGECUBE
IMAGEBUFFER
IIMAGEBUFFER
UIMAGEBUFFER
IMAGE2DARRAY
IIMAGE2DARRAY
UIMAGE2DARRAY
IMAGECUBEARRAY
IIMAGECUBEARRAY
UIMAGECUBEARRAY
struct_specifier
TYPE_NAME

precision_qualifier :

HIGH_PRECISION
MEDIUM_PRECISION
LOW_PRECISION

struct_specifier :

STRUCT IDENTIFIER LEFT_BRACE struct_declaration_list RIGHT_BRACE
STRUCT LEFT_BRACE struct_declaration_list RIGHT_BRACE

struct_declaration_list :

struct_declaration
struct_declaration_list struct_declaration

struct_declaration :

type_specifier struct_declarator_list SEMICOLON
type_qualifier type_specifier struct_declarator_list SEMICOLON

struct_declarator_list :

struct_declarator
struct_declarator_list COMMA struct_declarator

struct_declarator :

IDENTIFIER
IDENTIFIER array_specifier

initializer :

assignment_expression

185

declaration_statement :

declaration

statement :

compound_statement
simple_statement

 Grammar Note: labeled statements for SWITCH only; 'goto' is not supported.

simple_statement :

declaration_statement
expression_statement
selection_statement
switch_statement
case_label
iteration_statement
jump_statement

compound_statement :

LEFT_BRACE RIGHT_BRACE
LEFT_BRACE statement_list RIGHT_BRACE

statement_no_new_scope :

compound_statement_no_new_scope
simple_statement

compound_statement_no_new_scope :

LEFT_BRACE RIGHT_BRACE
LEFT_BRACE statement_list RIGHT_BRACE

statement_list :

statement
statement_list statement

expression_statement :

SEMICOLON
expression SEMICOLON

selection_statement :

IF LEFT_PAREN expression RIGHT_PAREN selection_rest_statement

selection_rest_statement :

statement ELSE statement
statement

condition :

expression
fully_specified_type IDENTIFIER EQUAL initializer

186

switch_statement :

SWITCH LEFT_PAREN expression RIGHT_PAREN LEFT_BRACE switch_statement_list
RIGHT_BRACE

switch_statement_list :

/* nothing */
statement_list

case_label :

CASE expression COLON
DEFAULT COLON

iteration_statement :

WHILE LEFT_PAREN condition RIGHT_PAREN statement_no_new_scope
DO statement WHILE LEFT_PAREN expression RIGHT_PAREN SEMICOLON
FOR LEFT_PAREN for_init_statement for_rest_statement RIGHT_PAREN statement_no_new_scope

for_init_statement :

expression_statement
declaration_statement

conditionopt :

condition
/* empty */

for_rest_statement :

conditionopt SEMICOLON
conditionopt SEMICOLON expression

jump_statement :

CONTINUE SEMICOLON
BREAK SEMICOLON
RETURN SEMICOLON
RETURN expression SEMICOLON
DISCARD SEMICOLON // Fragment shader only.

 Grammar Note: No 'goto'. Gotos are not supported.

translation_unit :

external_declaration
translation_unit external_declaration

external_declaration :

function_definition
declaration

function_definition :

function_prototype compound_statement_no_new_scope

187

In general the above grammar describes a super set of the OpenGL ES Shading Language. Certain
constructs that are valid purely in terms of the grammar are disallowed by statements elsewhere in
this specification.

188

Chapter 11. Counting of Inputs and Outputs
This section applies to outputs from the last active vertex processing stage and inputs to the
fragment stage. GLSL ES 3.20 specifies the storage available for such variables in terms of an array
of 4-vectors. The assumption is that variables will be packed into these arrays without wasting
space. This places significant burden on implementations since optimal packing is computationally
intensive. Implementations may have more internal resources than exposed to the application and
so avoid the need to perform packing but this is also considered an expensive solution.

GLSL ES 3.20 therefore relaxes the requirements for packing by specifying a simpler algorithm that
may be used. This algorithm specifies a minimum requirement for when a set of variables must be
supported by an implementation. The implementation is allowed to support more than the
minimum and so may use a more efficient algorithm and/or may support more registers than the
virtual target machine.

Outputs from the last active vertex stage and inputs to the fragment stage are counted separately. If
statically used in the fragment shader, the built-in special variables (gl_FragCoord, gl_FrontFacing
and gl_PointCoord) are included when calculating the storage requirements of fragment inputs.

If the last active vertex-pipeline shader and fragment shader are linked together, inputs and
outputs are only counted if they are statically used within the shader. If the shaders are each
compiled into a separable program, all declared inputs and outputs are counted.

Note

GLSL ES 3.20 does not require the implementation to remove outputs which are
not statically used in the fragment shader.

For the algorithm used, failing resource allocation for a variable must result in an error.

The resource allocation of variables must succeed for all cases where the following packing
algorithm succeeds:

• The target architecture consists of a grid of registers, 16 rows by 4 columns. Each register can
contain a scalar value, i.e. a float, int or uint.

• Variables with an explicit location are allocated first. When attempting to allocate a location for
other variables, if there is a conflict, the search moves to the next available free location.

• Structures are assumed to be flattened. Each data member is treated as if it were at global
scope.

• Variables are packed into the registers one at a time so that they each occupy a contiguous sub-
rectangle. No splitting of variables is permitted.

• The orientation of variables is fixed. Vectors always occupy registers in a single row. Elements
of an array must be in different rows. E.g. vec4 will always occupy one row; float[16] will
occupy one column. Since it is not permitted to split a variable, large arrays e.g. float[32] will
always fail with this algorithm.

• Non-square matrices of type matCxR consume the same space as a square matrix of type matN
where N is the greater of C and R. Variables of type mat2 occupies 2 complete rows. These rules

189

allow implementations more flexibility in how variables are stored. + Other variables consume
only the minimum space required.

• Arrays of size N are assumed to take N times the size of the base type.

• Variables are packed in the following order:

1. mat4 and arrays of mat4.

2. mat2 and arrays of mat2 (since they occupy full rows)

3. vec4 and arrays of vec4

4. mat3 and arrays of mat3

5. vec3 and arrays of vec3

6. vec2 and arrays of vec2

7. Scalar types and arrays of scalar types

• For each of the above types, the arrays are processed in order of size, largest first. Arrays of size
1 and the base type are considered equivalent. The first type to be packed will be mat4[4],
mat4[3], mat[2] followed by mat4, mat2[4]…mat2[2], mat2, vec4[8], vec4[7],…vec4[1], vec4,
mat3[2], mat3 and so on. The last variables to be packed will be float (and float[1]).

• For 2,3 and 4 component variables packing is started using the 1st column of the 1st row.
Variables are then allocated to successive rows, aligning them to the 1st column.

• For 2 component variables, when there are no spare rows, the strategy is switched to using the
highest numbered row and the lowest numbered column where the variable will fit. (In
practice, this means they will be aligned to the x or z component.) Packing of any further 3 or 4
component variables will fail at this point.

• 1 component variables (e.g. floats and arrays of floats) have their own packing rule. They are
packed in order of size, largest first. Each variable is placed in the column that leaves the least
amount of space in the column and aligned to the lowest available rows within that column.
During this phase of packing, space will be available in up to 4 columns. The space within each
column is always contiguous in the case where no variables have explicit locations.

• For each type, variables with the 'smooth' property are packed first, followed by variables with
the 'flat' property.

• Each row can contain either values with the 'smooth' property or the 'flat' property but not
both. If this situation is encountered during allocation, the algorithm skips the component
location and continues with the next available location. These skipped locations may be used
for other values later in the allocation process.

• There is no backtracking. Once a value is assigned a location, it cannot be changed, even if such
a change is required for a successful allocation.

Example: pack the following types:

out vec4 a; // top left
out mat3 b; // align to left, lowest numbered rows
out mat2x3 c; // same size as mat3, align to left
out vec2 d[6]; // align to left, lowest numbered rows
out vec2 e[4]; // Cannot align to left so align to z column, highest

190

 // numbered rows
out vec2 f; // Align to left, lowest numbered rows.
out float g[3] // Column with minimum space
out float h[2]; // Column with minimum space (choice of 3, any
 // can be used)
out float i; // Column with minimum space

In this example, the variables happen to be listed in the order in which they are packed. Packing is
independent of the order of declaration.

x y z w

0 a a a a

1 b b b

2 b b b

3 b b b

4 c c c

5 c c c

6 c c c

7 d d g

8 d d g

9 d d g

10 d d

11 d d

12 d d e e

13 f f e e

14 h i e e

15 h e e

Some types e.g. mat4[8] will be too large to fit. These always fail with this algorithm.

191

Chapter 12. Acknowledgments
This specification is based on the work of those who contributed to past versions of the Open GL
and Open GL ES Language Specifications and the following contributors to this version:

Acorn Pooley, NVIDIA
Alberto Moreira, Qualcomm
Aleksandra Krstic, Qualcomm
Alon Or-bach, Nokia & Samsung
Andrzej Kacprowski, Intel
Arzhange Safdarzadeh, Intel
Aske Simon Christensen, ARM
Avi Shapira, Graphic Remedy
Barthold Lichtenbelt, NVIDIA
Ben Bowman, Imagination Technologies
Ben Brierton, Broadcom
Benj Lipchak, Apple
Benson Tao, Vivante
Bill Licea-Kane, Qualcomm
Brent Insko, Intel
Brian Murray, Freescale
Bruce Merry, ARM
Carlos Santa, TI
Cass Everitt, Epic Games & NVIDIA
Cemil Azizoglu, TI
Chang-Hyo Yu, Samsung
Chris Dodd, NVIDIA
Chris Knox, NVIDIA
Chris Tserng, TI
Clay Montgomery, TI
Daniel Kartch, NVIDIA
Daniel Koch, Transgaming& NVIDIA
Daoxiang Gong, Imagination Technologies
Dave Shreiner, ARM
David Garcia, AMD
David Jarmon, Vivante
Derek Cornish, Epic Games
Dominick Witczak, Mobica
Eben Upton, Broadcom
Ed Plowman, ARM
Eisaku Ohbuchi, DMP
Elan Lennard, ARM
Erik Faye-Lund, ARM
Graeme Leese, Broadcom
Graham Connor, Imagination Technologies
Graham Sellers, AMD
Greg Roth, NVIDIA

192

Guillaume Portier, Hi Corporation
Guofang Jiao, Qualcomm
Hans-Martin Will, Vincent
Hwanyong Lee, Huone
I-Gene Leong, NVIDIA
Ian Romanick, Intel
Ian South-Dickinson, NVIDIA
Ilan Aelion-Exch, Samsung
Inkyun Lee, Huone
Jacob Strm, Ericsson
James Adams, Broadcom
James Jones, Imagination Technologies
James McCombe, Imagination Technologies
Jamie Gennis, Google
Jan-Harald Fredriksen, ARM
Jani Vaisanen, Nokia
Jarkko Kemppainen, Symbio
Jeff Bolz, NVIDIA
Jeff Leger, Qualcomm
Jeff Vigil, Qualcomm
Jeremy Sandmel, Apple
Jeremy Thorne, Broadcom
Jim Hauxwell, Broadcom
Jinsung Kim, Huone
Jiyoung Yoon, Huone
John Kessenich, Google
Jon Kennedy, 3DLabs
Jon Leech, Khronos
Jonathan Putsman, Imagination Technologies
Joohoon Lee, Samsung
JoukoKylmäoja, Symbio
Jrn Nystad, ARM
Jussi Rasanen, NVIDIA
Kalle Raita, drawElements
Kari Pulli, Nokia
Keith Whitwell, VMware
Kent Miller, Netlogic Microsystems
Kimmo Nikkanen, Nokia
Konsta Karsisto, Nokia
Krzysztof Kaminski, Intel
Larry Seiler, Intel
Lars Remes, Symbio
Lee Thomason, Adobe
Lefan Zhong, Vivante
Marcus Lorentzon, Ericsson
Mark Butler, Imagination Technologies
Mark Callow, Hi Corporation
Mark Cresswell, Broadcom

193

Mark Snyder, Alt Software
Mark Young, AMD
Mathieu Robart, STM
Matt Netsch, Qualcomm
Matt Russo, Matrox
Maurice Ribble, Qualcomm
Max Kazakov, DMP
Mika Pesonen, Nokia
Mike Cai, Vivante
Mike Weiblen, Zebra Imaging & Qualcomm
Mila Smith, AMD
Nakhoon Baek, Kyungpook Univeristy
Nate Huang, NVIDIA
Neil Trevett, NVIDIA
Nelson Kidd, Intel
Nick Haemel, NVIDIA
Nick Penwarden, Epic Games
Niklas Smedberg, Epic Games
Nizar Romdan, ARM
Oliver Wohlmuth , Fujitsu
Pat Brown, NVIDIA
Paul Ruggieri, Qualcomm
Per Wennersten, Ericsson
Petri Talala, Symbio
Phil Huxley, ZiiLabs
Philip Hatcher, Freescale & Intel
Piers Daniell, NVIDIA
Pyry Haulos, drawElements
Piotr Tomaszewski, Ericsson
Piotr Uminski, Intel
Rami Mayer, Samsung
Rauli Laatikainen, RightWare
Rob Barris, NVIDIA
Rob Simpson, Qualcomm
Roj Langhi, Vivante
Rune Holm, ARM
Sami Kyostila, Nokia
Sean Ellis, ARM
Shereef Shehata, TI
Sila Kayo, Nokia
Slawomir Cygan, Intel
Slawomir Grajewski, Intel
Steve Hill, STM & Broadcom
Steven Olney, DMP
Suman Sharma, Intel
Tapani Palli, Nokia
Teemu Laakso, Symbio
Tero Karras, NVIDIA

194

Timo Suoranta, Imagination Technologies & Broadcom
Tom Cooksey, ARM
Tom McReynolds, NVIDIA
Tom Olson, TI & ARM
Tomi Aarnio, Nokia
Tommy Asano, Takumi
Wes Bang, Nokia
Yanjun Zhang, Vivante

195

Chapter 13. Normative References
1. International Standard ISO/IEC 14882:1998(E). Programming Languages - C++. Referenced for

preprocessor only

2. “OpenGLR ES, Version 3.2”, https://www.khronos.org/registry/OpenGL/index_es.php, November
3, 2016.

3. “The OpenGLR Graphics System: A Specification, Version 4.6 (Core Profile)”,
https://www.khronos.org/registry/OpenGL/index_gl.php, June 1, 2016.

4. International Standard ISO/IEC 646:1991. Information technology - ISO 7-bit coded character set
for information interchange

5. The Unicode Standard Version 6.0 - Core Specification.

6. IEEE 754-2008. IEEE Standard for Floating-Point Arithmetic

7. “SPIR-V Specification, Version 1.6, Revision 2” , https://www.khronos.org/registry/spir-v/.

8. “VulkanR 1.3.226 - A Specification”, https://www.khronos.org/registry/vulkan/, September 1,
2022.

196

https://www.khronos.org/registry/OpenGL/index_es.php
https://www.khronos.org/registry/OpenGL/index_gl.php
https://www.khronos.org/registry/spir-v/
https://www.khronos.org/registry/vulkan/

Chapter 14. Non-Normative SPIR-V Mappings
This appendix includes:

• a comparison of feature differences with SPIR-V versus without, for both Vulkan and OpenGL

• a discussion of how GLSL features logically map to SPIR-V features.

14.1. Feature Comparisons
The following features are removed for both OpenGL and Vulkan:

• subroutines

• shared and packed block layouts

• the already deprecated texturing functions (e.g., texture2D())

• the already deprecated noise functions (e.g., noise1())

• compatibility-profile features

• gl_DepthRangeParameters and gl_NumSamples

Vulkan removed the following features, which are still present for OpenGL:

• Default uniforms, for non-opaque types: The UniformConstant storage class can be used on
individual variables at global scope. (That is, uniforms don’t have to be in a block, unless they
are built-in members that are in block in GLSL version 4.5 or above.)

• GLSL atomic-counter bindings have the offset layout qualifier → SPIR-V AtomicCounter storage
class using the Offset decoration

• GLSL origin_lower_left → SPIR-V OriginLowerLeft

• special rules for locations for input doubles in the vertex shader

• gl_VertexID and gl_InstanceID (more detail follows)

The following features are added for both OpenGL and Vulkan:

• specialization constants

• offset can organize members in a different order than declaration order

• offset and align layout qualifiers for uniform/buffer blocks for versions that did not support
them

Vulkan Only: The following features are added:

• push-constant buffers

• shader combining of separate textures and samplers (SPIR-V OpTypeSampler)

• descriptor sets (DescriptorSet must be 0, if present)

• gl_VertexIndex and gl_InstanceIndex

• subpass-input targets and input attachments (input_attachment_index)

197

The following features are changed in both OpenGL and Vulkan:

• gl_FragColor will no longer indicate an implicit broadcast

Vulkan Only: The following features are changed:

• precision qualifiers (mediump and lowp) will be respected for all versions, not dropped for
desktop versions (default precision for desktop versions is highp for all types)

• arrays of uniforms and buffer blocks take only one binding number for the entire object, not
one per array element

• the default origin is origin_upper_left instead of origin_lower_left

Vulkan does not allow multi-dimensional arrays of resources like UBOs and SSBOs in its SPIR-V
environment spec. SPIR-V supports it and OpenGL already allows this for GLSL shaders. SPIR-V for
OpenGL also allows it.

14.2. Mapping from GLSL to SPIR-V

14.2.1. Specialization Constants

SPIR-V specialization constants, which can be set later by the client API, can be declared using
layout(constant_id=…). For example, to make a specialization constant with a default value of 12:

layout(constant_id = 17) const int arraySize = 12;

Above, 17 is the ID by which the API or other tools can later refer to this specific specialization
constant. The API or an intermediate tool can then change its value to another constant integer
before it is fully lowered to executable code. If it is never changed before final lowering, it will
retain the value of 12.

Specialization constants have const semantics, except they don’t fold. Hence, an array can be
declared with arraySize from above:

vec4 data[arraySize]; // legal, even though arraySize might change

Specialization constants can be in expressions:

vec4 data2[arraySize + 2];

This will make data2 be sized by 2 more than whatever constant value arraySize has when it is time
to lower the shader to executable code.

An expression formed with specialization constants also behaves in the shader like a specialization
constant, not a like a constant.

198

arraySize + 2 // a specialization constant (with no constant_id)

Such expressions can be used in the same places as a constant.

The constant_id can only be applied to a scalar integer, a scalar floating-point or a scalar Boolean.

Only basic operators and constructors can be applied to a specialization constant and still result in
a specialization constant:

layout(constant_id = 17) const int arraySize = 12;
sin(float(arraySize)); // result is not a specialization constant

While SPIR-V specialization constants are only for scalars, a vector can be made by operations on
scalars:

layout(constant_id = 18) const int scX = 1;
layout(constant_id = 19) const int scZ = 1;
const vec3 scVec = vec3(scX, 1, scZ); // partially specialized vector

A built-in variable can have a constant_id attached to it:

layout(constant_id = 18) gl_MaxImageUnits;

This makes it behave as a specialization constant. It is not a full redeclaration; all other
characteristics are left intact from the original built-in declaration.

The built-in vector gl_WorkGroupSize can be specialized using special layout local_size_{xyz}_id
applied to the in qualifier. For example:

layout(local_size_x_id = 18, local_size_z_id = 19) in;

This leaves gl_WorkGroupSize.y as a non-specialization constant, with gl_WorkGroupSize being a
partially specialized vector. Its x and z components can be later specialized using the ID’s 18 and 19.

14.2.2. Vulkan Only: Push Constants

Push constants reside in a uniform block declared using the new layout-qualifier-id push_constant
applied to a uniform-block declaration. The API writes a set of constants to a push-constant buffer,
and the shader reads them from a push_constant block:

layout(push_constant) uniform BlockName {
 int member1;
 float member2;
 ...

199

} InstanceName; // optional instance name
... = InstanceName.member2; // read a push constant

The memory accounting used for the push_constant uniform block is different than for other
uniform blocks: There is a separate small pool of memory it must fit within. By default, a
push_constant buffer follows the std430 packing rules.

14.2.3. Vulkan Only: Descriptor Sets

Each shader resource in a descriptor set is assigned a tuple of (set number, binding number, array
element) that defines its location within a descriptor set layout. In GLSL, the set number and
binding number are assigned via the set and binding layout qualifiers respectively, and the array
element is implicitly assigned consecutively starting with index equal to zero for the first element
of an array (and array element is zero for non-array variables):

// Assign set number = M, binding number = N, array element = 0
layout (set=M, binding=N) uniform sampler2D variableName;

// Assign set number = M, binding number = N for all array elements,
// and array element = i for the ith member of an array of size I.
layout (set=M, binding=N) uniform sampler2D variableNameArray[I];

For example, two combined texture/sampler objects can be declared in two different descriptor sets
as follows

layout(set = 0, binding = 0) uniform sampler2D ts3;
layout(set = 1, binding = 0) uniform sampler2D ts4;

See the API documentation for more detail on the operation model of descriptor sets.

14.2.4. Vulkan Only: Samplers, Images, Textures, and Buffers

Storage Images

Storage images are declared in GLSL shader source using uniform image variables of the
appropriate dimensionality as well as a format layout qualifier (if necessary):

layout (set=m, binding=n, r32f) uniform image2D myStorageImage;

Which maps to the following SPIR-V:

 ...
%1 = OpExtInstImport "GLSL.std.450"
 ...

200

 OpName %9 "myStorageImage"
 OpDecorate %9 DescriptorSet m
 OpDecorate %9 Binding n
%2 = OpTypeVoid
%3 = OpTypeFunction %2
%6 = OpTypeFloat 32
%7 = OpTypeImage %6 2D 0 0 0 2 R32f
%8 = OpTypePointer UniformConstant %7
%9 = OpVariable %8 UniformConstant
 ...

Samplers

SPIR-V samplers are declared in GLSL shader source using uniform sampler and samplerShadow
types:

layout (set=m, binding=n) uniform sampler mySampler;

Which maps to the following SPIR-V:

 ...
%1 = OpExtInstImport "GLSL.std.450"
 ...
 OpName %8 "mySampler"
 OpDecorate %8 DescriptorSet m
 OpDecorate %8 Binding n
%2 = OpTypeVoid
%3 = OpTypeFunction %2
%6 = OpTypeSampler
%7 = OpTypePointer UniformConstant %6
%8 = OpVariable %7 UniformConstant
 ...

Textures (Sampled Images)

Textures are declared in GLSL shader source using uniform texture variables of the appropriate
dimensionality:

layout (set=m, binding=n) uniform texture2D mySampledImage;

Which maps to the following SPIR-V:

 ...
%1 = OpExtInstImport "GLSL.std.450"
 ...
 OpName %9 "mySampledImage"

201

 OpDecorate %9 DescriptorSet m
 OpDecorate %9 Binding n
%2 = OpTypeVoid
%3 = OpTypeFunction %2
%6 = OpTypeFloat 32
%7 = OpTypeImage %6 2D 0 0 0 1 Unknown
%8 = OpTypePointer UniformConstant %7
%9 = OpVariable %8 UniformConstant
 ...

Combined Texture and Samplers

Combined textures and samplers are declared in GLSL shader source using uniform texture-
combined sampler variables of the appropriate dimensionality:

layout (set=m, binding=n) uniform sampler2D myCombinedImageSampler;

Which maps to the following SPIR-V:

 ...
%1 = OpExtInstImport "GLSL.std.450"
 ...
 OpName %10 "myCombinedImageSampler"
 OpDecorate %10 DescriptorSet m
 OpDecorate %10 Binding n
%2 = OpTypeVoid
%3 = OpTypeFunction %2
%6 = OpTypeFloat 32
%7 = OpTypeImage %6 2D 0 0 0 1 Unknown
%8 = OpTypeSampledImage %7
%9 = OpTypePointer UniformConstant %8
%10 = OpVariable %9 UniformConstant
 ...

Note that a combined image sampler descriptor can be referred to as just an image or sampler in
the shader as per the above sections.

Combining Separate Samplers and Textures

A sampler, declared with the keyword sampler, contains just filtering information, containing
neither a texture nor an image:

uniform sampler s; // a handle to filtering information

A texture, declared with keywords like texture2D, contains just image information, not filtering
information:

202

uniform texture2D t; // a handle to a texture (an image in SPIR-V)

Constructors can then be used to combine a sampler and a texture at the point of making a texture
lookup call:

texture(sampler2D(t, s), ...);

Note, layout() information is omitted above for clarity of this feature.

Texture Buffers (Uniform Texel Buffers)

Texture buffers are declared in GLSL shader source using uniform textureBuffer variables:

layout (set=m, binding=n) uniform textureBuffer myUniformTexelBuffer;

Which maps to the following SPIR-V:

 ...
%1 = OpExtInstImport "GLSL.std.450"
 ...
 OpName %9 "myUniformTexelBuffer"
 OpDecorate %9 DescriptorSet m
 OpDecorate %9 Binding n
%2 = OpTypeVoid
%3 = OpTypeFunction %2
%6 = OpTypeFloat 32
%7 = OpTypeImage %6 Buffer 0 0 0 1 Unknown
%8 = OpTypePointer UniformConstant %7
%9 = OpVariable %8 UniformConstant
 ...

Image Buffers (Storage Texel Buffers)

Image buffers are declared in GLSL shader source using uniform imageBuffer variables:

layout (set=m, binding=n, r32f) uniform imageBuffer myStorageTexelBuffer;

Which maps to the following SPIR-V:

 ...
%1 = OpExtInstImport "GLSL.std.450"
 ...
 OpName %9 "myStorageTexelBuffer"
 OpDecorate %9 DescriptorSet m

203

 OpDecorate %9 Binding n
%2 = OpTypeVoid
%3 = OpTypeFunction %2
%6 = OpTypeFloat 32
%7 = OpTypeImage %6 Buffer 0 0 0 2 R32f
%8 = OpTypePointer UniformConstant %7
%9 = OpVariable %8 UniformConstant
 ...

Storage Buffers

Storage buffers are declared in GLSL shader source using buffer storage qualifier and block syntax:

layout (set=m, binding=n) buffer myStorageBuffer
{
 vec4 myElement[];
};

Which maps to the following SPIR-V:

 ...
%1 = OpExtInstImport "GLSL.std.450"
 ...
 OpName %9 "myStorageBuffer"
 OpMemberName %9 0 "myElement"
 OpName %11 ""
 OpDecorate %8 ArrayStride 16
 OpMemberDecorate %9 0 Offset 0
 OpDecorate %9 BufferBlock
 OpDecorate %11 DescriptorSet m
 OpDecorate %11 Binding n
%2 = OpTypeVoid
%3 = OpTypeFunction %2
%6 = OpTypeFloat 32
%7 = OpTypeVector %6 4
%8 = OpTypeRuntimeArray %7
%9 = OpTypeStruct %8
%10 = OpTypePointer Uniform %9
%11 = OpVariable %10 Uniform
 ...

Uniform Buffers

Uniform buffers are declared in GLSL shader source using the uniform storage qualifier and block
syntax:

layout (set=m, binding=n) uniform myUniformBuffer

204

{
 vec4 myElement[32];
};

Which maps to the following SPIR-V:

 ...
%1 = OpExtInstImport "GLSL.std.450"
 ...
 OpName %11 "myUniformBuffer"
 OpMemberName %11 0 "myElement"
 OpName %13 ""
 OpDecorate %10 ArrayStride 16
 OpMemberDecorate %11 0 Offset 0
 OpDecorate %11 Block
 OpDecorate %13 DescriptorSet m
 OpDecorate %13 Binding n
%2 = OpTypeVoid
%3 = OpTypeFunction %2
%6 = OpTypeFloat 32
%7 = OpTypeVector %6 4
%8 = OpTypeInt 32 0
%9 = OpConstant %8 32
%10 = OpTypeArray %7 %9
%11 = OpTypeStruct %10
%12 = OpTypePointer Uniform %11
%13 = OpVariable %12 Uniform
 ...

Subpass Inputs

Within a rendering pass, a subpass can write results to an output target that can then be read by
the next subpass as an input subpass. The "Subpass Input" feature regards the ability to read an
output target.

Subpass inputs are read through a new set of types, available only to fragment shaders:

subpassInput
subpassInputMS
isubpassInput
isubpassInputMS
usubpassInput
usubpassInputMS

Unlike sampler and image objects, subpass inputs are implicitly addressed by the fragment’s (x, y,
layer) coordinate.

Input attachments are decorated with their input attachment index in addition to descriptor set

205

and binding numbers.

layout (input_attachment_index=i, set=m, binding=n) uniform subpassInput
myInputAttachment;

Which maps to the following SPIR-V:

 ...
%1 = OpExtInstImport "GLSL.std.450"
 ...
 OpName %9 "myInputAttachment"
 OpDecorate %9 DescriptorSet m
 OpDecorate %9 Binding n
 OpDecorate %9 InputAttachmentIndex i
%2 = OpTypeVoid
%3 = OpTypeFunction %2
%6 = OpTypeFloat 32
%7 = OpTypeImage %6 SubpassData 0 0 0 2 Unknown
%8 = OpTypePointer UniformConstant %7
%9 = OpVariable %8 UniformConstant
 ...

An input_attachment_index of i selects the ith entry in the input pass list. (See API specification for
more information.)

These objects support reading the subpass input through the following functions:

gvec4 subpassLoad(gsubpassInput subpass);
gvec4 subpassLoad(gsubpassInputMS subpass, int sample);

14.2.5. Mapping Variables

gl_FragColor

The fragment-stage built-in gl_FragColor, which implies a broadcast to all outputs, is not present in
SPIR-V. Shaders where writing to gl_FragColor is allowed can still write to it, but it only means to
write to an output:

• of the same type as gl_FragColor

• decorated with location 0

• not decorated as a built-in variable.

There is no implicit broadcast.

206

Vulkan gl_VertexIndex and gl_InstanceIndex

Adds two new built-in variables, gl_VertexIndex and gl_InstanceIndex to replace the existing built-in
variables gl_VertexID and gl_InstanceID.

In the situations where the indexing is relative to some base offset, these built-in variables are
defined, for Vulkan, to take on values as follows:

gl_VertexIndex base, base+1, base+2, ...
gl_InstanceIndex base, base+1, base+2, ...

Where it depends on the situation what the base actually is.

Storage Classes:

uniform sampler2D...; -> UniformConstant
uniform blockN { ... } ...; -> Uniform, with Block decoration
in / out variable -> Input/Output, possibly with block (below)
in / out block... -> Input/Output, with Block decoration
buffer blockN { ... } ...; -> Uniform, with BufferBlock decoration
shared -> Workgroup
<normal global> -> Private

Vulkan Only: buffer blockN { ... } ...; -> StorageBuffer, when requested
OpenGL Only: uniform variable (non-block) -> UniformConstant
OpenGL Only: ... uniform atomic_uint ... -> AtomicCounter

Input/Output

Mapping of input/output blocks or variables is the same for all versions of GLSL or ESSL. To the
extent variables or members are available in a version, its location is as follows:

These are mapped to SPIR-V individual variables, with similarly spelled built-in decorations (except
as noted):

Any stage:

in gl_VertexIndex (Vulkan only)
in gl_VertexID (OpenGL only)
in gl_InstanceIndex (Vulkan only)
in gl_InstanceID (OpenGL only)
in gl_InvocationID
in gl_PatchVerticesIn (PatchVertices)
in gl_PrimitiveIDIn (PrimitiveID)
in/out gl_PrimitiveID (in/out based only on storage qualifier)
in gl_TessCoord

207

in/out gl_Layer
in/out gl_ViewportIndex

patch in/out gl_TessLevelOuter (uses Patch decoration)
patch in/out gl_TessLevelInner (uses Patch decoration)

Compute stage only:

in gl_NumWorkGroups
in gl_WorkGroupSize
in gl_WorkGroupID
in gl_LocalInvocationID
in gl_GlobalInvocationID
in gl_LocalInvocationIndex

Fragment stage only:

in gl_FragCoord
in gl_FrontFacing
in gl_PointCoord
in gl_SampleID
in gl_SamplePosition
in gl_HelperInvocation
out gl_FragDepth
in gl_SampleMaskIn (SampleMask)
out gl_SampleMask (in/out based only on storage qualifier)

These are mapped to SPIR-V blocks, as implied by the pseudo code, with the members decorated
with similarly spelled built-in decorations:

Non-fragment stage:

in/out gl_PerVertex { // some subset of these members will be used
 gl_Position
 gl_PointSize
} // name of block is for debug only

There is at most one input and one output block per stage in SPIR-V. The subset and order of
members will match between stages sharing an interface.

14.2.6. Vulkan Only: Mapping of Precision Qualifiers

lowp -> RelaxedPrecision, on storage variable and operation
mediump -> RelaxedPrecision, on storage variable and operation

208

highp -> 32-bit, same as int or float

portability tool/mode -> OpQuantizeToF16

14.2.7. Mapping of precise:

precise -> NoContraction

14.2.8. OpenGL Mapping of atomic_uint offset layout qualifier

offset -> Offset (decoration)

14.2.9. Mapping of Images

imageLoad() -> OpImageRead
imageStore() -> OpImageWrite
texelFetch() -> OpImageFetch
subpassInput -> OpTypeImage with Dim of SubpassData (Vulkan only)
subpassLoad() -> OpImageRead (Vulkan only)

imageAtomicXXX(params, data) -> %ptr = OpImageTexelPointer params
 OpAtomicXXX %ptr, data

XXXQueryXXX(combined) -> %image = OpImage combined
 OpXXXQueryXXX %image

14.2.10. Mapping of Layouts

std140/std430 -> explicit Offset, ArrayStride, and MatrixStride
 Decoration on struct members
shared/packed -> not allowed
<default> -> not shared, but std140 or std430
xfb_offset -> Offset Decoration on the object or struct member
xfb_buffer -> XfbBuffer Decoration on the object
xfb_stride -> XfbStride Decoration on the object
any xfb_* -> the Xfb Execution Mode is set
captured XFB -> has both XfbBuffer and Offset
non-captured -> lacking XfbBuffer or Offset

209

max_vertices -> OutputVertices

14.2.11. Mapping of barriers

barrier() (compute) -> OpControlBarrier(/*Execution*/Workgroup,
 /*Memory*/Workgroup,
 /*Semantics*/AcquireRelease |
 WorkgroupMemory)

barrier() (tess control) -> OpControlBarrier(/*Execution*/Workgroup,
 /*Memory*/Invocation,
 /*Semantics*/None)

memoryBarrier() -> OpMemoryBarrier(/*Memory*/Device,
 /*Semantics*/AcquireRelease |
 UniformMemory |
 WorkgroupMemory |
 ImageMemory)

memoryBarrierBuffer() -> OpMemoryBarrier(/*Memory*/Device,
 /*Semantics*/AcquireRelease |
 UniformMemory)

memoryBarrierShared() -> OpMemoryBarrier(/*Memory*/Device,
 /*Semantics*/AcquireRelease |
 WorkgroupMemory)

memoryBarrierImage() -> OpMemoryBarrier(/*Memory*/Device,
 /*Semantics*/AcquireRelease |
 ImageMemory)

groupMemoryBarrier() -> OpMemoryBarrier(/*Memory*/Workgroup,
 /*Semantics*/AcquireRelease |
 UniformMemory |
 WorkgroupMemory |
 ImageMemory)

14.2.12. Mapping of atomics

210

all atomic builtin functions -> Semantics = None(Relaxed)

atomicExchange() -> OpAtomicExchange
imageAtomicExchange() -> OpAtomicExchange
atomicCompSwap() -> OpAtomicCompareExchange
imageAtomicCompSwap() -> OpAtomicCompareExchange
N/A -> OpAtomicCompareExchangeWeak

14.2.13. OpenGL Only: Mapping of Atomics

atomicCounterIncrement -> OpAtomicIIncrement
atomicCounterDecrement -> OpAtomicIDecrement
atomicCounter -> OpAtomicLoad

14.2.14. Mapping of other instructions

% -> OpUMod/OpSMod
mod() -> OpFMod
N/A -> OpSRem/OpFRem

pack/unpack (conversion) -> pack/unpack in GLSL extended instructions
pack/unpack (no conversion) -> OpBitcast

211

	The OpenGL ES® Shading Language, Version 3.20.8
	Table of Contents
	Chapter 1. Introduction
	1.1. Changes
	1.2. Overview
	1.3. Error Handling
	1.4. Typographical Conventions
	1.5. Compatibility

	Chapter 2. Overview of Shading
	2.1. Vertex Processor
	2.2. Tessellation Control Processor
	2.3. Tessellation Evaluation Processor
	2.4. Geometry Processor
	2.5. Fragment Processor
	2.6. Compute Processor

	Chapter 3. Basics
	3.1. Character Set
	3.2. Source Strings
	3.3. Version Declaration
	3.4. Preprocessor
	3.5. Comments
	3.6. Tokens
	3.7. Keywords
	3.8. Identifiers
	3.9. Definitions
	3.10. Logical Phases of Compilation

	Chapter 4. Variables and Types
	4.1. Basic Types
	4.2. Scoping
	4.3. Storage Qualifiers
	4.4. Layout Qualifiers
	4.5. Interpolation Qualifiers
	4.6. Parameter Qualifiers
	4.7. Precision and Precision Qualifiers
	4.8. Variance and the Invariant Qualifier
	4.9. The Precise Qualifier
	4.10. Memory Qualifiers
	4.11. Specialization-Constant Qualifier
	4.12. Order and Repetition of Qualification
	4.13. Empty Declarations

	Chapter 5. Operators and Expressions
	5.1. Operators
	5.2. Array Operations
	5.3. Function Calls
	5.4. Constructors
	5.5. Vector Components
	5.6. Matrix Components
	5.7. Structure and Array Operations
	5.8. Assignments
	5.9. Expressions
	5.10. Vector and Matrix Operations
	5.11. Specialization-Constant Operations
	5.12. Evaluation of Expressions

	Chapter 6. Statements and Structure
	6.1. Function Definitions
	6.2. Selection
	6.3. Iteration
	6.4. Jumps

	Chapter 7. Built-In Variables
	7.1. Built-In Language Variables
	7.2. Built-In Constants
	7.3. Built-In Uniform State
	7.4. Redeclaring Built-In Blocks

	Chapter 8. Built-In Functions
	8.1. Angle and Trigonometry Functions
	8.2. Exponential Functions
	8.3. Common Functions
	8.4. Floating-Point Pack and Unpack Functions
	8.5. Geometric Functions
	8.6. Matrix Functions
	8.7. Vector Relational Functions
	8.8. Integer Functions
	8.9. Texture Functions
	8.10. Atomic Counter Functions
	8.11. Atomic Memory Functions
	8.12. Image Functions
	8.13. Geometry Shader Functions
	8.14. Fragment Processing Functions
	8.15. Shader Invocation Control Functions
	8.16. Shader Memory Control Functions
	8.17. Subpass-Input Functions

	Chapter 9. Shader Interface Matching
	9.1. Input Output Matching by Name in Linked Programs
	9.2. Matching of Qualifiers

	Chapter 10. Shading Language Grammar
	Chapter 11. Counting of Inputs and Outputs
	Chapter 12. Acknowledgments
	Chapter 13. Normative References
	Chapter 14. Non-Normative SPIR-V Mappings
	14.1. Feature Comparisons
	14.2. Mapping from GLSL to SPIR-V

