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Abstract : We consider a multivariate Gaussian observation model where the covariance matrix is

diagonal and the diagonal entries are all equal to one except for a finite number which are bigger. We address

the question of asymptotic behaviour of the eigenvalues of the sample covariance matrix when the sample

size and the dimension of the observations both grow to infinity in such a way that their ratio converges to a

positive constant. We establish almost sure limits of the largest few sample eigenvalues. We also show that

when a population eigenvalue is above a certain threshold and of multiplicity one, the corresponding sample

eigenvalue has a Gaussian limiting distribution. We also demonstrate a phase transition phenomenon of the

sample eigenvectors in the same setting.
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1 Introduction

Study of eigenvalues of sample covariance matrices has a long history. When the dimension N is

fixed, the distributional aspects for both Gaussian and non-Gaussian observations have been dealt

with at length by various authors. Anderson (1963), Muirhead (1982) and Tyler (1983) are among

standard references. In fixed dimension scenario much of the study of the eigenstructure of sample

covariance matrix utilizes the fact that it is a good approximation of the population covariance

matrix when sample size is large. However this is no longer the case when N
n → γ ∈ (0,∞) as

n → ∞, where n is the sample size. Under these circustances it is known (see Bai (1999) for a

review) that, if the true covariance is the identity matrix, then the Empirical Spectral Distribution

(ESD) converges almost surely to the Marchenko-Pastur distribution, henceforth denoted by Fγ .

When γ ≤ 1, the support Fγ is the set [(1 − √γ)2, (1 +
√
γ)2] and when γ > 1 an isolated point

zero is added to the support. It is known (Bai and Yin, 1993) that when the population covariance

is identity, the largest and the smallest eigenvalues, when γ ≤ 1, converge almost surely to the

respective boundaries of the support of Fγ . Johnstone (2001) and Soshnikov (2002) have derived

asymptotic distribution for largest, second largest etc sample eigenvalues under the same setting.

However, in recent years researchers in various fields have been using different versions of non-

identity covariance matrices of growing dimension. Among these, a particularly interesting model

is when all except a few of the eigenvalues equal one and the few that are not are well-separated
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from the rest. This has been referred to as a “spiked population model” by Johnstone (2001). It

has also been observed that for certain types of data e.g. in speech recognition (Buja et al., 1995),

wireless communication (Telatar, 1999), statistical learning (Hoyle and Rattray, 2003, 2004), a few

of the sample eigenvalues have limiting behaviour that is different from the behaviour under identity

covariance scenario. This paper attempts to contribute towards understanding these phenomena.

The literature on the asymptotics of sample eigenvalues for the non-identity covariance scenario

is relatively recent. Silverstein and Choi (1995) derived almost sure limit of the ESD under fairly

general conditions. Bai and Silverstein (2004) derived the asymptotic distribution of certain linear

spectral statistics. However, a systematic study of the individual eigenvalues has been conducted

only recently by Péché (2003), Baik, Ben Arous and Péché (2004) (henceforth Baik et al., 2004).

These authors deal with the situation when the observations are complex Gaussian and the co-

variance matrix is a finite rank perturbation of identity. When this paper was being written the

author came to know about the work by Baik and Silverstein (2004), which studies the almost sure

limits of sample eigenvalues, when the observations are either real or complex, and under fairly

weak distributional assumptions. They give almost sure limits of the M largest and M smallest

(non-zero) sample eigenvalues where M is the number of non-unit population eigenvalues.

A crucial aspect of the work of last three sets of authors is the discovery of a phase transition

phenomenon. Simply put, if the non-unit eigenvalues are close to one, then their sample versions

will behave in roughly the same way as if the true covariance were identity. However, when the true

eigenvalues are larger than 1 +
√
γ, the sample eigenvalues have a different asymptotic property.

The results of Baik et al. (2004) show a n2/3 scaling for the asymptotic distribution when a non-

unit population eigenvalue lies below the threshold 1 +
√
γ, and a n1/2 scaling for those above that

threshold.

In this paper we focus our attention on the case where we have independently and identically

distributed real-valued observations X1, . . . , Xn from an N -variate normal distribution with mean

zero and covariance matrix Σ = diag(`1, `2, . . . , `M , 1, . . . , 1) where `1 ≥ `2 ≥ . . . ≥ `M > 1. We

treat the N × n matrix X = (X1 : . . . : Xn) as a double array indexed by both n and N = N(n)

on the same probability space, such that N/n → γ, where γ is a positive constant. Throughout

we shall assume that 0 < γ < 1 although much of the analysis can be extended to the case γ ≥ 1

with a little extra work. Our aim is to study asymptotic behaviour of the large eigenvalues of the

sample covariance matrix S = 1
nXXT as n→∞. In this context we get the same almost sure limits

for the M largest eigenvalues as those obtained by Baik and Silverstein (2004). However, while

they derive these limits by studying the Stieltjes transform of the distribution which serves as the

almost sure limit of the ESD, we rely on a matrix analysis approach and use properties of Gaussian

distribution, including various concentration inequalities, as well as several known results about the

limiting behaviour of the ESD for the null (or identity covariance) model. The advantage of this

approach is that it gives a different perspective to the limits, in particular their identification as
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certain linear functionals of the limiting Marchenko-Pastur law when the true eigenvalue is above

1 +
√
γ. This analysis also allows us to derive distributional limits of the sample eigenvalues ̂̀ν

when `ν > 1 +
√
γ. We do this only for the case when `ν has multiplicity one. A comprehensive

study of all possible scenarios is beyond the scope of this paper. Another aspect of our approach is

that it throws light on the behaviour of the eigenvectors associated with the M largest eigenvalues.

We show that the sample eigenvectors also undergo a phase transition. We would like to emphasize

that, even though our method is not suitable for analyzing the distributional limits for the case

`ν ≤ 1 +
√
γ, it does afford a more probabilistic interpretation of the results in the other scenario,

and may be applied to study similar problems in other contexts.

The results derived in this paper contain two important messages about the inferential aspect

of dealing with large dimensional multivariate data. First, and most notably, the phase transition

phenomenon described in this paper means that some commonly used tests for the hypothesis Σ = I,

like the largest root test (Roy, 1953), may not be able to detect comparatively small departures

from idenitity covariance when the ratio N/n is significantly larger than zero. At the same time,

our distributional convergence result (Theorem 3 ) can be used to approximate the power of the

largest root test against alternatives where the departure from the null model of identity covariance

is through perturbations by positive semidefinite matrices of finite rank. We discuss this further in

Section 2.2. At a more practical level, these results show that exploratory data analytic techniques

like “scree plot” to determine number of significant eigenvalues may be of rather limited use when

dealing with certain types of near-isotropic high dimensional data. In such circumstances, even the

somewhat more sophisticated technique of comparing the sample eigenvalues with the quantiles

of the limiting Marchenko-Pastur law, as advocated by Wachter (1976), may not be particularly

successful because of the phase transition. The second important consequence of our results is that

it gives some insight as to why it might not be such a good idea to use Principal Component Analysis

(PCA) for dimension reduction in a high dimensional setting, at least not in its standard form. This

has already been observed by Johnstone and Lu (2004) who show that when N/n→ γ ∈ (0,∞), the

sample principal components are inconsistent estimates of the population principal components.

Theorem 4 says exactly how bad this inconsistency is. Moreover, our method of proof clearly

demonstrates how this inconsistency originates.

The rest of the paper is organized as follows. In Section 2 we describe the main results and

point to their salient features. In Section 3 we define the key quantities and expressions that will

help us derive the results. Section 4 is devoted to proving the almost sure limits of eigenvalues.

In Section 5 we derive the asymptotic distribution result (Theorem 3 ). Section 6 describes the

matrix perturbation analysis approach which is a key ingredient in the proof of Theorem 3 and

Theorem 4. Proofs of some of the auxilliary results are given in the two appendices (Appendix A

and Appendix B).
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2 Main results

In this section we describe the four main results of this paper. The first two pertain to the

almost sure limits of sample eigenvalues, the third describes their asymptotic distribution under

certain restrictions, while the fourth describes a result about the asymptotic behaviour of sample

eigenvectors. We use ̂̀ν to denote the ν-th largest eigenvalue of S.

2.1 Almost sure limit of M largest eigenvalues

We have the following results about the almost sure limits of M largest sample eigenvalues. These

were independently derived by Baik and Silverstein (2004) for non-Gaussian observations.

Theorem 1 : Suppose `ν ≤ 1 +
√
γ, then with N

n → γ ∈ (0, 1) as n→∞ we have

̂̀
ν → (1 +

√
γ)2, almost surely as n→∞. (1)

Theorem 2 : Suppose `ν > 1 +
√
γ, then with N

n → γ ∈ (0, 1) as n→∞ we have

̂̀
ν → `ν

(
1 +

γ

`ν − 1

)
, almost surely as n→∞. (2)

Let us discuss a little about the limits appearing in (1) and (2). We shall denote the limit in (2) by

ρν := `ν

(
1 + γ

`ν−1

)
. It turns out, via Lemma B.1, that ρν appears as a solution to the following

equation

ρ = `(1 + γ

∫
x

ρ− x
dFγ(x)) (3)

with ` = `ν . Since Fγ is supported on [(1 − √γ)2, (1 +
√
γ)2] for γ ≤ 1 (with a single isolated

point added to the support for γ > 1), the function on the RHS is monotonically decreasing in

ρ ∈ ((1 +
√
γ)2,∞) and the LHS is obviously increasing in ρ. So a solution to (3) exists only if

`ν ≥ 1 + cγ , for some cγ > 0. That cγ =
√
γ is a part of Lemma B.1. Note that when `ν = 1 +

√
γ,

ρν = (1 +
√
γ)2, the almost sure limit of the j-th largest eigenvalue (for j fixed) in the identity

covariance case.

2.2 Asymptotic normality of sample eigenvalues

When a non-unit eigenvalue of Σ is simple, i.e. of multiplicity one, and above the critical value

1 +
√
γ, we show that the corresponding sample eigenvalue is asymptotically normally distributed.

While a generalization of this result for the multiplicity greater than one case seems interesting,

we do not pursue it here. We note that for the complex Gaussian case a result in the analogous

situation has been derived by Baik et al. (2004, Theorem 1.1(b)), where they showed that when the

largest eigenvalue is greater than 1 +
√
γ and of multiplicity k, the largest sample eigenvalue, after
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similar centering and scaling, converges in distribution to the distribution of the largest eigenvalue

of a k× k GUE (Gaussian Unitary Ensemble). They also derived the limiting distributions for the

case when a (non-unit) population eigenvalue is smaller than 1 +
√
γ. Distributional aspect of a

sample eigenvalue for the real case in the latter situation is beyond the scope of this paper.

Theorem 3 : Suppose `ν > 1 +
√
γ and of multiplicity 1. Then as n,N → ∞ so that N

n − γ =

o(n−1/2),

√
n(̂̀ν − ρν) =⇒ N(0, σ2(`ν)), (4)

where for ` > 1 +
√
γ, and with ρ(`) = `(1 + γ

`−1),

σ2(`) =
2`ρ(`)

1 + `γ
∫

x
(ρ(`)−x)2dFγ(x)

=
2`ρ(`)

1 + `γ
(`−1)2−γ

= 2`2(1− γ

(`− 1)2
) (5)

In the fixed N case, when the ν-th eigenvalue has multiplicity 1, the ν-th sample eigenvalue is

asymptoctically N(`ν , 1
n2`2ν). This is a special case of a more general result by Anderson (1963).

Thus the fact that the dimension to sample size ratio is positive, contributes towards the bias

and a reduction in variance. However, if γ is much smaller compared to `ν , the variance σ2(`ν) is

approximately 2`2ν which is the asymptotic variance in the fixed N case. This is what we expect

intuitively, since the eigenvector associated with this sample eigenvalue, looking to maximize the

quadratic from invovling S (under orthogonality restrictions), will tend to put more mass on the

ν-th coordinate. This is demonstrated even more clearly by Theorem 4 that we state later. But

before that, we give a brief account of the importance of Theorem 1-3 from a statistical perspective.

As we already noted in Section 1, one possible application of Theorem 3 is in the calculation of

asymptotic power for the largest root test. The latter refers to the testing problem where the null

hypothesis says that the covariance matrix is identity. And the test rejects the null hypothesis at

level α ∈ (0, 1) if the largest eigenvalue of S is above a critical level cn,N,α, say. Johnstone (2001)

proposed a conservative test of this type for large (n,N) data based on the quantiles of Tracy-

Widom distribution. His proposal means that the cutoff value, for large n, can be approximated

as

cn,N,α ≈ (1 +

√
N

n
)2 +N−1/6n−1/2(1 +

√
N

n
)4/3τα, for α ∈ (0, 1)

where τα is the (1− α) quantile of Tracy-Widom law of order 1.

Now suppose we consider the alternative hypothesis that the population covariance matrix is

Σ = diag(`1, . . . , `M , 1, . . . , 1) with `1 ≥ . . . ≥ `M > 1. If `1 > 1 +
√
γ, Theorem 2 shows that

the largest root test is asymptotically consistent. For the special case when `1 is of multiplicity

one, Theorem 3 immediately gives an expression for the asymptotic power function, assuming that
N
n converges to γ fast enough, as n → ∞. But one has to view this in proper context, since our

result is derived under the assumption that `1, . . . , `M are all fixed and we do not have a rate of
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convergence for the distribution of ̂̀1 towards normality. A detailed analysis of power properties

against local alternatives is beyond the scope of this paper. However, Theorem 1 indicates that

the largest root test may fail to detect a departure from the null model of identity covariance if `1
is less than 1 +

√
γ.

It is important to point to a potential advantage of such a test as compared to some other

well-known tests for the same hypothesis. Ledoit and Wolf (2002) give a nice overview of different

tests of sphericity used in high-dimensional setting. They consider tests based on statistics U , and

W given below.

U =
1
N
trace

( S
1
N trace(S)

− I

)2
 , W =

1
N
trace[(S− I)2]− N

n

[
1
N
trace(S)

]2

+
N

n

The statistic U is used to test sphericity, i.e. Σ = cI for some c > 0 unknown. Their results

(Ledoit and Wolf, 2002, Proposition 1-7) show that if βN = 1
N trace(Σ) and θ2

N = 1
N trace(Σ− I)2

are fixed, at values β > 0 and θ, say, as N
n → γ ∈ (0,∞), then the test based on W is consistent

for testing H0 : (β − 1)2 + θ2 = 0 against HA : (β − 1)2 + θ2 > 0. Whereas the test based on U

is consistent for H0 : θ2/β2 = 0 against HA : θ2/β2 > 0. Their results can be easily extended to

the case where βN → β and θN → θ rather than being fixed quantities. Notice that even when Σ

is a finite rank perturbation of identity, β = 1 and θ = 0. Under this setting these tests cannot

distinguish between H0 and HA. We expect similar sort of asymptotic behvaiour from any test that

relies upon traces of powers of S and statistics derived from them. In contrast the test described in

the previous paragraph can separate the null from the alternative in the same scenario under the

rather mild requirement that λ1(Σ) > 1 +
√
γ. We treat this comparison as a way of emphasizing

the following point: our results show that for signal detection problems in high dimension, when the

signal is rather feeble, leaning on tests based on the extreme eigenvalues may be more meaningful

than depending on tests which are based on the bulk of the eigenvalue specturm.

2.3 Angle between true and estimated eigenvectors

Hoyle and Rattray (2004) mention about a phase transition phenomenon in the asymptotic be-

haviour of the angle between the true and estimated eigenvector associated with a non-unit eigen-

value `ν . They term this “the phenomenon of retarded learning”. They derived this result at a

physical level of rigour. Their result can be rephrased in our context to mean that if 1 < `ν ≤ 1+
√
γ

is a simple eigenvalue, then the cosine of the angle between the corresponding true and estimated

eigenvectors almost surely converges to zero, whereas one gets strictly positive limit if `ν > 1 +
√
γ.

Part (a) of Theorem 4, stated below and proved in Section 6, is a precise statement of the latter

part of their result. This also readily proves a stronger version of the result regarding inconsistency

of sample eigenvectors as stated in Johnstone and Lu (2004).
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Theorem 4 : Let ẽν denote the N × 1 vector with 1 in the ν-th coordinate and zeros elsewhere,

and pν denote the eigenvector of S associated with the eigenvalue ̂̀ν .

(a) If `ν > 1 +
√
γ and of multiplicity one,

|〈pν , ẽν〉|
a.s.→

√(
1− γ

(`ν − 1)2

)
/

(
1 +

γ

`ν − 1

)
as n→∞. (6)

(b) If `ν ≤ 1 +
√
γ,

〈pν , ẽν〉
a.s.→ 0 as n→∞. (7)

In order to prove this result we use a specific decmposition of the eigenvectors as explained in

Section 3. Proceeding along this line it is possible to study the behaviour of the sample eigenvectors

in more detail. But we shall give it a full treatment elsewhere and hence do not deal with this issue

in the current paper.

3 Representation of the eigenvalues of S

Throughout we assume that n is large enough so that N
n < 1. In order to proceed further we

introduce some notations that will help us in later stages. First we partition the matrix S as

S =

[
SAA SAB
SBA SBB

]

where the suffix A corresponds to the set of coordinates {1, . . . ,M} and B corresponds to the set

{M + 1, . . . , N}. As before we use ̂̀ν and pν to denote the ν-th largest sample eigenvalue and the

correpsonding sample eigenvector. We shall follow the convention that the ν-th element of pν is

nonnegative to avoid any ambiguity. We shall write pν as pTν = (pTA,ν , p
T
B,ν) and denote the norm

‖ pB,ν ‖ by Rν . Then almost surely 0 < Rν < 1.

With this setting in place, now we can express the first M eigenequations for S as

SAApA,ν + SABpB,ν = ̂̀
νpA,ν , ν = 1, . . . ,M, (8)

SBApA,ν + SBBpB,ν = ̂̀
νpB,ν , ν = 1, . . . ,M, (9)

pTA,νpA,ν′ + pTB,νpB,ν′ = δν,ν′ , 1 ≤ ν, ν ′ ≤M. (10)

Here δνν′ is the Kronecker symbol. Now denote the vector pA,ν/ ‖ pA,ν ‖= pA,ν/
√

1−R2
ν by bν .

Thus ‖ bν ‖= 1. Similarly define qν := pB,ν/Rν and again ‖ qν ‖= 1.

With all the relevant quantities about the problem now defined we can express the eigenequa-

tions in a more suitable form that will allow us to make useful observations about the relationship
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among the empirical eigenvalues ̂̀1, . . . , ̂̀M . First, changing sides in (9) to collect terms involving

qν , and noticing that almost surely 0 < Rν < 1, and ̂̀νI − SBB is invertible,

qν =

√
1−R2

ν

Rν
(̂̀νI − SBB)−1SBAbν (11)

Now, dividing both sides of (8) by
√

1−R2
ν and substituting the expression for qν , we get

(SAA + SAB(̂̀νI − SBB)−1SBA)bν = ̂̀
νbν , ν = 1, . . . ,M. (12)

This equation is quite remarkable since it shows that ̂̀ν is an eigenvalue of the matrix K(̂̀ν) where

K(x) = SAA + SAB(xI − SBB)−1SBA

with corresponding eigenvector bν . This particular observation will be the building block for all

our analysis. However, we shall find it more convenient to express the quantities in terms of the

spectral elements of the data matrix X.

Let Λ denote the diagonal matrix diag(`1, . . . , `M ). Because of normality assumption, the

observation matrix X can be reexpressed as

XT = [ZTAΛ1/2 : ZTB], ZA is M × n, ZB is (N −M)× n,

and the entries of ZA and ZB are i.i.d. N(0, 1), and ZA and ZB are mutually independent. We can

also assume that ZA and ZB are defined on the same probability space.

Let the singular value decomposition of 1√
n
ZB be given as

1√
n

ZB = VM1/2HT (13)

whereM is the (N −M)× (N −M) diagonal matrix of the eigenvalues of SBB in decreasing order,

V is the (N−M)×(N−M) matrix of eigenvectors of SBB and H is the n×(N−M) matrix of right

singular vectors. We shall denote the diagonal elements of M by µ1 > . . . > µN−M , suppressing

the dependence on n.

Let the columns of V be denoted by v1, . . . , vN−M and the columns of H be denoted by

h1, . . . , hN−M . Note that {v1, . . . , vN−M} is a complete orthonormal basis for RN−M , whereas

h1, . . . , hN−M form an orthonormal basis of an (N −M) dimensional subspace (viz. the rowspace

of ZB) of Rn.

Observe that qν = V ζν =
∑N−M

j=1 ζνjvj for some unit vector ζν . Also, define by T the matrix
1√
n
HTZTA. T is an (N − M) × M matrix and let its columns be denoted by t1, . . . , tM . The

most important property about T that we shall use repeatedly is that the vectors t1, . . . , tM are

distributed as i.i.d. N(0, 1
nIN−M ) and are independent of ZB. This is because the columns of H

form an orthonormal set of vectors and the rows of ZA are i.i.d. Nn(0, I) vectors, and moreover,

ZA and ZB are independently distributed.
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Thus, we obtain the following equations by simple linear transformations of (11) and (12),

respectively.

ζν =

√
1−R2

ν

Rν
(̂̀νI −M)−1M1/2TΛ1/2bν , ν = 1, . . . ,M. (14)

(SAA + Λ1/2T TM(̂̀νI −M)−1TΛ1/2)bν = ̂̀
νbν , ν = 1, . . . ,M. (15)

Also note that K(x) can be expressed as

K(x) = SAA + Λ1/2T TM(xI −M)−1TΛ1/2 (16)

We conclude this section by rewriting equation (10) in terms of the vectors {bν : ν = 1, . . . ,M} as

bTν [I + Λ1/2T T (̂̀νI −M)−1M(̂̀ν′I −M)−1TΛ1/2]bν′ =
1

1−R2
ν

δνν′ , 1 ≤ ν, ν ′ ≤M, (17)

which is same as

bTν [I + SAB(̂̀νI − SBB)−1(̂̀ν′I − SBB)−1SBA]bν′ =
1

1−R2
ν

δνν′ , 1 ≤ ν, ν ′ ≤M. (18)

4 Almost sure limits

In this section we prove Theorem 1 and Theorem 2. Proofs of these two theorems depend heavily

on the asymptotic behaviour of the largest eigenvalue of a Wishart matrix in the null (i.e. identity

covariance) case, as well as on the limiting behaviour of the Empirical Spectral Distribution of

Wishart matrices. Throughout, the ESD of SBB is denoted by F̂n,N−M . Then we know that (cf.

Bai, 1999)

F̂n,N−M =⇒ Fγ , almost surely as n→∞

where =⇒ denotes distributional convergence.

Our proof relies upon essentially showing the following fact

tTjM(̂̀νI −M)−1tk → 0, almost surely 1 ≤ j 6= k ≤M,

tTjM(̂̀νI −M)−1tj → γ

∫
x

ρν − x
dFγ(x), almost surely.

The rest of the section is organized as follows. We shall establish first Theorem 2 and then

Theorem 1. The proofs of these two results use the same technique in that they use the interlacing

inequality for eigenvalues of symmetric matrices to derive upper and lower bounds for ̂̀ν which

may fail to hold with negligible probability.

However, it turns out that the derivation of the lower bound for ̂̀ν in the proof of Theorem 2

becomes much easier if one has a suitable preliminary lower bound on ̂̀ν . To be more specific, one
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needs to ensure that the set Cν = {̂̀ν > µ1} has very high probability when `ν > 1 +
√
γ. This is

comparatively a lot easier in the case when `ν is in fact greater than (1 +
√
γ)2. This is established

via Proposition 1 and Proposition 2. Incidentally, Proposition 2 gives a general purpose bound for

the j-th eigenvalue µj of SBB for every fixed j. However, in the general case (i.e. when simply

`ν > 1 +
√
γ), we explicitly construct a lower bound for ̂̀ν using equations (14) and (15). This

requires a lot more work and to keep the exposition simpler we have deferred this result (Proposition

B.2 ) till Appendix B.

It is comparatively easier to derive sharp upper bounds for ̂̀ν and the same technique can be

used to derive bounds for the cases when `ν > 1 +
√
γ and when 1 < `ν ≤ 1 +

√
γ. For the time

being we assume that either `ν ≤ 1 +
√
γ or `ν > (1 +

√
γ)2.

4.1 Bounds on the eigenvalues ̂̀ν
We make use of the interlacing inequality for eigenvalues of symmetric matrices, (see e.g. Section

1f of Rao, 1973). We introduce some notations for later use.

4.1.1 Notations

We denote the quantity (1 +
√
γ)2 by κγ . Throughout, unless otherwise specified, λj(C) for any

symmetric matrix C will denote the j-th largest eigenvalue of C. For any m × m matrix C , if

G ⊂ {1, . . . ,m}, then by CG we shall denote the submatrix of C deleting the rows and columns

that are in G. Also, we shall use ‖ ‖ to denote both l2 norm of vectors, as well as the 2-norm, or

the largest singular value, of matrices. ‖ ‖HS will mean the Hilbert-Schmidt norm for matrices.

For ρ > κγ , we define

ΛG(ρ) = (1 + γ

∫
x

ρ− x
dFγ(x))ΛG (19)

4.1.2 Interlacing inequalities

By the interlacing inequality we have

λ1(SG) ≥ λ|G|+1(S) and λk(S) ≥ λk(SG), for all G ⊂ {1, . . . , N}, all k (20)

Define Γν = {1, . . . , ν} and Γν = {ν + 1, . . . ,M} for 1 ≤ ν ≤ M and Γ0 = φ = ΓM . Then (20)

implies

λ1(SΓν−1) ≥ ̂̀ν ≥ λν(SΓν
) (21)
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4.1.3 Eigenvalues of submatrices

Observe that λ1(SΓν−1) and λν(SΓν
) are some eigenvalues of KΓν−1(λ1(SΓν−1)) and KΓν

(λν(SΓν
)),

respectively, where

KG(x) = SAA,G + Λ1/2
G T TGM(xI −M)−1TGΛ1/2

G , for G ⊂ {1, . . . ,M}. (22)

Here by TG we denote the submatrix of T with all columns in set G deleted. This follows by noting

that for G ⊂ {1, . . . ,M},

SG =

[
SAA,G SAB,G
SBA,G SBB

]
, with SAB,G =

1
n

Λ1/2
G ZA,GZTB, SAA,G =

1
n

Λ1/2
G ZA,GZTA,GΛ1/2

G ,

and SBA,G = STAB,G, where ZA,G denotes the submatrix of ZA with rows in the set G deleted.

4.1.4 Preliminary bounds

To begin with let us assume that `ν > (1 +
√
γ)2. This situation is simpler to deal with. In the

following SAA,ν denotes the submatrix of SAA consisting of only the first ν rows and ν columns.

We show that the eigenvalues of SAA,ν concentrate around their population counterparts, and by

the interlacing inequalities we directly have

λν(SΓν
) ≥ λν(SAA,ν), (23)

Therefore the required lower bound for ̂̀ν is easily obtained if we apply (21). We formally state

the following:

Proposition 1 : Let κγ = (1+
√
γ)2 and 0 < ε < `1ν

2 be any number such that `ν > κγ +2ε. Then,

P(λν(SΓν
) ≤ κγ + ε) ≤ 2ν exp

(
− nε2

6`21ν2

)
+ ν(ν − 1) exp

(
− nε2

3`21ν2

)
(24)

Proof : In view of (23) we only need to establish the inequality for λν(SAA,ν). Let Λν =

diag(`1, . . . , `ν). Then for ν ′ = 1, . . . , ν,

|λν′(SAA,ν)− `ν′ | ≤‖ SAA,ν − Λν ‖ (25)

In certain circumstances this upper bound can be improved with a more careful analysis, but we

do not need that here. The bound appearing on the RHS can be majorized by the Hilbert-Schmidt

norm:

‖ SAA,ν − Λν ‖HS=

√√√√ ν∑
k=1

|skk − `k|2 +
ν∑
j 6=k
|sjk|2

where sjk is the (j, k)-th element of SAA, 1 ≤ j, k ≤ M . In order to bound the terms appearing

inside square roots we use large deviation inequalities for quadratic forms of Gaussian random
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variables. Observe that sjk =
√
`j`k

1
nZ

T
A,jZA,k where ZTA,j is the j-th row of ZA. Taking X = ZA,j ,

Y = ZA,k, C(Z) = I and L = 1 in Lemma A.1 we get

P(|skj | >
√
`j`kt) ≤ 2 exp(−(1− δ)nt2

2
), 0 < t <

δ

1− δ
(26)

Similarly, applying Lemma A.2 with X = ZA,k, C(Z) = I and L = 1 we get

P(|skk − `k| > `kt) ≤ 2 exp(−(1− δ)nt2

4
), 0 < t <

2δ
1− δ

(27)

Thus, taking δ = 1
3 in (26) and (27) and setting t = ε

`1ν
, since 0 < ε < `1ν

2 we get, after using (25)

and the expression for ‖ SAA,ν − Λν ‖HS

P(|λν(SAA,ν)− `ν | > ε) ≤ 2ν exp
(
− nε2

6`21ν2

)
+ ν(ν − 1) exp

(
− nε2

3`21ν2

)
(28)

From this (24) follows.

Next we state a result about the concentration of largest few eigenvalues of SBB around κγ . This

is proved in Appendix A.

Proposition 2 : For any 0 < δ < κγ/2,

P(|µ1 − κγ | ≥ δ) ≤ 2 exp
(
− nδ2

32κγ

)
, for n ≥ n0(γ, δ) (29)

where n0(γ, δ) is an integer large enough such that |Median(µ1)− κγ | ≤ δ
4 for n ≥ n0(γ, δ).

Remark : The proof relies on the asymptotic distribution of the largest eigenvalue of a sample

covariance matrix in the identity covariance case (Johnstone, 2001) and a concentration inequality

for singular values of Gaussian random matrices. Soshnikov (2002) proved that when centered and

scaled by the same numbers, a similar type of limiting law holds for any leading eigenvalue (i.e.

any µj with j fixed). The details of these distributions can be found in Tracy and Widom (1994),

(1996). So the same proposition applies to any µj for j fixed.

4.2 Upper bound for ̂̀ν
First we derive a tight upper bound for ̂̀ν . Our strategy is to utilize the upper bound in (21). For

this we do not need (24). However, we need the bound (29). For simplicity of notations, we shall

use λ̂1,ν to mean λ1(SΓν−1). Our aim is to prove the following:

Proposition 3 : Let `ν > 1 +
√
γ for some 1 ≤ ν ≤M . Then given ε > 0 there exists n1(ν, ε,Λ, γ)

large enough such that, for n ≥ n1(ν, ε,Λ, γ),

P(̂̀ν > ρν + ε, µ1 < κγ + ε/2) ≤ (M − ν + 1)ε1(n, ε,Λ, γ) + (M − ν)(M − ν + 1)ε2(n, ε,Λ, γ),

(30)

12



where ε1 and ε2 are the terms appearing on the RHS of equations (47) and (39), respectively.

Proof : First, from (21) we have

P(̂̀ν > ρν + ε, µ1 < κγ + ε/2) ≤ P(λ̂1,ν > ρν + ε, µ1 < κγ + ε/2)

Since λ̂1,ν is an eigenvalue of KΓν−1(λ̂1,ν) where KG(·) is defined through (22),

λ̂1,ν ≤ λ1(KΓν−1(ρν + ε)) on the set J1,ν := {λ̂1,ν > ρν + ε, µ1 < κγ + ε/2} (31)

To verify (31) observe that on J1,ν the inequalities µj

λ̂1,ν−µj
≤ µj

ρν+ε−µj hold for all j = 1, . . . , N−M .

This implies the inequality for positive semidefinite matrices: KΓν−1(λ̂1,ν) ≤ KΓν−1(ρν + ε) (since,

for any a ∈ RM−|G|, aTKG(x)a = aTSAA,Ga+
∑N−M

j=1 c2
jµj(x− µj)−1 where c = TGΛ1/2

G a).

Let ΛG(ρ) be defined through (19). Then by (31) and a simple inequality for eigenvalues of

symmetric matrices, on the set J1,ν ,

λ̂1,ν ≤ `ν(1 + γ

∫
x

ρν + ε− x
dFγ(x))+ ‖ KΓν−1(ρν + ε)− ΛΓν−1(ρν + ε) ‖HS (32)

since `ν(1 + γ
∫

x
ρν+ε−xdFγ(x)) is the largest eigenvalue of ΛΓν−1(ρν + ε).

Now, let δ := δ(ε) > 0 be such that

`ν(1 + γ

∫
x

ρν + ε− x
dFγ(x)) + δ = ρν + ε (33)

Indeed we can find such a δ because if we define `ν,ε to be `ν,ε = (ρν + ε)(1 + γ
∫

x
ρν+ε−xdFγ(x))−1,

then we have `ν,ε > `ν (since, by definition, ρν is the solution to equation (3)), and hence

`ν(1 + γ

∫
x

ρν + ε− x
dFγ(x)) =

`ν
`ν,ε

(ρν + ε) < ρν + ε

Denote the matrix appearing inside ‖ ‖HS on the RHS of (32) by D̃ν = ((D̃ν,jk))M−ν+1
j,k=1 . From

our construction, if

|D̃ν,jk| < δjk, 1 ≤ j, k ≤M − ν + 1, where δjk > 0, ∀ j, k, and
M−ν+1∑
j=1

M−ν+1∑
k=1

δ2
jk ≤ δ2,

then from (32) we get, on J1,ν , λ̂1,ν < ρν + ε which is an impossibility. Hence after taking the union

bound,

P(J1,ν) ≤
M−ν+1∑
j=1

P(|D̃ν,jj | ≥ δjj , µ1 < κγ + ε/2) +
M−ν+1∑
j<k

P(|D̃ν,jk| ≥ δjk, µ1 < κγ + ε/2) (34)

We set δjj = `j+ν−1δ̃1, j = 1, . . . ,M − ν + 1 and δjk =
√
`j+ν−1`k+ν−1 δ̃2, 1 ≤ j < k ≤M − ν + 1

where δ̃1, δ̃2 > 0 are such that δ2 = δ̃2
1

∑M
j=ν `

2
j + δ̃2

2(
∑M

j=ν `j)
2. To be specific, we take δ̃2 =

δ√
2
(
∑M

j=ν `j)
−1 and δ̃1 = δ√

2
(
∑M

j=ν `
2
j )
−1/2.
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Remark : Notice that the bound we are using here is rather crude. In specific situations, e.g.

when `1, . . . , `ν are distinct, one may be able to get better bounds.

Observe that for j = 1, . . . ,M − ν + 1,

D̃ν,jj = `j+ν−1(
1
n
ZTA,j+ν−1ZA,j+ν−1 − 1)

+`j+ν−1(tTj+ν−1M((ρν + ε)I −M)−1tj+ν−1 −
1
n
trace (M((ρν + ε)I −M)−1))

+`j+ν−1(
1
n
trace (M((ρν + ε)I −M)−1)− γ

∫
x

ρν + ε− x
dFγ(x)) (35)

whereas, for 1 ≤ j 6= k ≤M − ν + 1,

D̃ν,jk =
√
`j+ν−1`k+ν−1[

1
n
ZTA,j+ν−1ZA,k+ν−1 + tTj+ν−1M((ρν + ε)I −M)−1tk+ν−1] (36)

Define Jγ(ε) := {µ1 ≤ κγ + ε}. Then to bound P(|D̃ν,jk| ≥ δjk, Jγ(ε/2)), for j 6= k, observe that

from (26) we have

P(| 1
n
ZTA,j+ν−1ZA,k+ν−1| ≥ δ̃2/2) ≤ 2 exp

(
−nδ̃

2
2

12

)
, for 0 < δ̃2 < 1 (37)

Since
√
ntj ∼ N(0, IN−M ) for j = 1, . . . ,M , and

‖ M((ρν + ε)I −M)−1 ‖= µ1

ρν + ε− µ1
≤ κγ + ε/2
ρν + ε/2− κγ

on Jγ(ε/2), we can apply Lemma A.1 to conclude that (taking δ = 1
3 in the lemma), for j 6= k,

P(|tTj+ν−1M((ρν + ε)I −M)−1tk+ν−1| ≥ δ̃2/2, Jγ(ε/2))

= 2 exp

(
− n

N −M
(ρν + ε/2− κγ)2nδ̃2

2

12(κγ + ε/2)2

)

= 2 exp

(
−1
γ

(ρν + ε/2− κγ)2nδ̃2
2

12(κγ + ε/2)2
(1 + o(1))

)
, for 0 < δ̃2 <

κγ + ε/2
ρν + ε/2− κγ

(38)

Combining (36), (37) and (38), for 0 < δ̃2 < min{1, κγ+ε/2
ρν+ε/2−κγ },

P(|D̃ν,jk| ≥ δjk, µ1 < κγ + ε/2) ≤ 2 exp

(
−nδ̃

2
2

12

)
+ 2 exp

(
− n

N −M
(ρν + ε/2− κγ)2nδ̃2

2

12(κγ + ε/2)2

)
(39)

for all 1 ≤ j < k ≤M − ν + 1

In order to obtain a similar bound for D̃ν,jj , first observe that from (27),

P(| 1
n
ZTA,j+ν−1ZA,j+ν−1 − 1| ≥ δ̃1/4) ≤ 2 exp

(
−nδ̃

2
1

96

)
, for 0 < δ̃1 < 4 (40)
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Again, argument silimlar to that leading to (38) implies (this time using Lemma A.2 ),

P(|tTj+ν−1M((ρν + ε)I −M)−1tj+ν−1 −
1
n
trace (M((ρν + ε)I −M)−1)| ≥ δ̃1/4, Jγ(ε/2))

≤ 2 exp

(
− n

N −M
(ρν + ε/2− κγ)2nδ̃2

1

96(κγ + ε/2)2

)

= 2 exp

(
−1
γ

(ρν + ε/2− κγ)2nδ̃2
1

96(κγ + ε/2)2
(1 + o(1))

)
, for 0 < δ̃1 <

4(κγ + ε/2)
ρν + ε/2− κγ

(41)

To provide a bound for the remaining terms, we observe that on Jγ(ε/2),

trace (M((ρν + ε)I −M)−1) + (N −M) = (ρν + ε) trace (((ρν + ε)I −M)−1)

= (ρν + ε) trace G1(SBB; ρν + ε, γ, ε/2),

where the function G1(·; ·, ·, ·) is defined through (90) in Appendix A. Therefore we can apply

Proposition A.1 (in the Appendix ) to get

P(| 1
n
trace (M((ρν + ε)I −M)−1)−

E(
1
n

(ρν + ε) trace G1(SBB; ρν + ε, γ, ε/2)) +
N −M

n
| > δ̃1/4, Jγ(ε/2))

= P(| 1
n
trace G1(SBB; ρν + ε, γ, ε/2)− E(

1
n
trace G1(SBB; ρν + ε, γ, ε/2))|

> (ρν + ε)−1δ̃1/4, Jγ(ε/2))

≤ 2 exp

(
− n

n+N −M
n2δ̃2

1

2
(ρν + ε/2− κγ)4

64(ρν + ε)2(κγ + ε/2)

)

= 2 exp

(
− n2δ̃2

1

2(1 + γ)
(ρν + ε/2− κγ)4

64(ρν + ε)2(κγ + ε/2)
(1 + o(1))

)
(42)

Now to tackle the remainder we notice that

E(
1
n
trace G1(SBB; ρν + ε, γ, ε/2)) =

N −M
n

E

∫
G1(x; ρν + ε, γ, ε/2)dF̂n,N−M (x)

where F̂n,N−M denotes the ESD of the matrix SBB. Note thatG1 is bounded above and monotone in

its first argument. Further, defining Fn,N−M to be the expected ESD, by linearity of expectation,

E

∫
G1(x; ρν + ε, γ, ε/2)dF̂n,N−M (x) =

∫
G1(x; ρν + ε, γ, ε/2)dFn,N−M (x). It is well-known that

Fn,N−M =⇒ Fγ as n → ∞, where Fγ is the Marchenko-Pastur law with parameter γ. Bai (1993)

proved under fairly weak conditions that (Bai, 1993, Theorem 3.2) if θ1 ≤ p
n ≤ θ2 where 0 < θ1 <

1 < θ2 <∞, then

‖ Fn,p − Fp/n ‖∞≤ C1(θ1, θ2)n−5/48. (43)

When 0 < θ1 < θ2 < 1, he also showed (Bai, 1993, Theorem 3.1) that

‖ Fn,p − Fp/n ‖∞≤ C2(θ1, θ2)n−1/4. (44)
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Here ‖ · ‖∞ means the sup-norm and C1, C2 are constants with values depending on θ1, θ2.

Then utilizing the fact that Fγ has bounded support, G1(·; ρν + ε, γ, ε/2) is bounded, nonde-

creasing and differentiable everywhere except at x = κγ + ε/2 with G′1(x) ≡ 0 on (κγ + ε/2,∞),

and integrating by parts, we get from (43), for any 0 < θ1 < 1,

|
∫
G1(x; ρν + ε, γ, ε/2)dFn,N−M (x)−

∫
G1(x; ρν + ε, γ, ε/2)dFγ(x)|

≤ |
∫
G1(x; ρν + ε, γ, ε/2)dFn,N−M (x)−

∫
G1(x; ρν + ε, γ, ε/2)dF(N−M)/n(x)|

+ |
∫
G1(x; ρν + ε, γ, ε/2)dF(N−M)/n(x)−

∫
G1(x; ρν + ε, γ, ε/2)dFγ(x)|

≤ C3(θ1)(n−5/48+ ‖ F(N−M)/n − Fγ ‖∞)
∫ κγ+ε/2

0
|G′1(x; ρν + ε, γ, ε/2)|dx

≤ C ′3(θ1)(n−5/48 + C4(
N −M

n
− γ))

(κγ + ε/2)
(ρν + ε/2− κγ)2

(45)

uniformly in θ1 ≤ N−M
n ≤ 1, where C3, C

′
3 are constants depending on θ1 and C4(·) is a nonnegative

function converging to 0 at 0. Observe that∫
G1(x; ρν + ε, γ, ε/2)dFγ(x) =

∫
1

ρν + ε− x
dFγ(x)

Therefore ∃ n1(ν, ε,Λ, γ) ≥ 1 such that for n ≥ n1(ν, ε,Λ, γ),

|(ρν + ε)E(
1
n
trace G1(SBB; ρν + ε, γ, ε/2))− N −M

n
− γ

∫
x

ρν + ε− x
dFγ(x)| ≤ δ̃1/4 (46)

Combining (40), (41), (42) and (46), for δ̃1 < 4 min{1, κγ+ε/2
ρν+ε/2−κγ },

P(|D̃ν,jj | ≥ δjj , µ1 < κγ + ε/2)

≤ 2 exp

(
−nδ̃

2
1

96

)
+ 2 exp

(
− n

N −M
(ρν + ε/2− κγ)2nδ̃2

1

96(κγ + ε/2)2

)

+2 exp

(
− n

n+N −M
n2δ̃2

1

2
(ρν + ε/2− κγ)4

64(ρν + ε)2(κγ + ε/2)

)
for 1 ≤ j ≤M − ν + 1 (47)

for all n ≥ n1(ν, ε,Λ, γ).

Remark : Since the upper bounds in (39) and (47) involve quantities δ̃2 and δ̃1, respectively, it is

important to clarify their behaviour vis-a-vis ε when ε → 0. Since δ̃1, δ̃2 are proportional to δ(ε),

defined by (33), we study the latter. From (33), we get

dδ(ε)
dε

= 1 + `νγ

∫
x

(ρν + ε− x)2
dFγ(x)→ 1 +

`νγ

(`ν − 1)2 − γ
as ε→ 0,

by Lemma B.2. This shows that ∃ 0 < c1 < c2 <∞ such that c1ε ≤ δ(ε) ≤ c2ε for ε small enough.
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4.3 Lower bound for ̂̀ν
Now, we derive a sharp lower bound for ̂̀ν under the restriction that {̂̀ν > κγ + ε/2 > µ1} for

ε > 0 small enough so that κγ + 2ε < ρν . Then utilizing the lower bound in (21) in a way very

similiar to the proof of Proposition 3, we obtain :

Proposition 4 : Let `ν > 1 +
√
γ for some 1 ≤ ν ≤M . Let ε > 0 be such that ρν > κγ + 2ε. Then

there exists n2(ν, ε,Λ, γ) large enough such that, for n ≥ n2(ν, ε,Λ, γ),

P(̂̀ν < ρν − ε, µ1 < κγ + ε/2, λν(SΓν
) > κγ + ε/2) ≤ νε̃1(n, ε,Λ, γ) + ν(ν − 1)ε̃2(n, ε,Λ, γ) (48)

where ε̃1 and ε̃2 are given by the RHS of (53) and (52), respectively.

Proof : Define λ̂ν,ν = λν(SΓν
). From (21) we have

P(̂̀ν < ρν − ε, µ1 < κγ + ε/2, λ̂ν,ν > κγ + ε/2) ≤ P(λ̂ν,ν < ρν − ε, µ1 < κγ + ε/2, λ̂ν,ν > κγ + ε/2)

Since λ̂ν,ν is an eigenvalue of KΓν
(λ̂ν,ν),

λ̂ν,ν ≥ λν(KΓν
(ρν − ε)) on the set Jν,ν := {κγ + ε/2 < λ̂ν,ν < ρν − ε, µ1 < κγ + ε/2} (49)

Then, with ΛG(ρ) defined through (19), on the set Jν,ν ,

λ̂ν,ν ≥ `ν(1 + γ

∫
x

ρν − ε− x
dFγ(x))− ‖ KΓν

(ρν − ε)− ΛΓν
(ρν − ε) ‖HS (50)

since `ν(1 + γ
∫

x
ρν−ε−xdFγ(x)) is the smallest eigenvalue of ΛΓν

(ρν − ε).
Now, let δ := δ(ε) > 0 be such that `ν(1 + γ

∫
x

ρν−ε−xdFγ(x)) − δ = ρν − ε. We can find such

a δ because if we define `ν,ε to be `ν,ε = (ρν − ε)(1 + γ
∫

x
ρν−ε−xdFγ(x))−1, then we have `ν,ε < `ν

(since, by definition, ρν is the solution to equation (3)), and hence

`ν(1 + γ

∫
x

ρν − ε− x
dFγ(x)) =

`ν

`ν,ε
(ρν − ε) > ρν − ε

Note also that δ ↓ 0 as ε ↓ 0. Denote the matrix appearing inside ‖ ‖HS on the RHS of (50) by

Dν = ((Dν,jk))νj,k=1. From our construction, if

|Dν,jk| ≤ δjk, 1 ≤ j, k ≤ ν, where δjk > 0, ∀ j, k, and
ν∑
j=1

ν∑
k=1

δ
2
jk ≤ δ

2
,

then from (50) we get, on Jν,ν , λ̂ν,ν > ρν − ε which is impossible. Hence after taking the union

bound,

P(Jν,ν) ≤
ν∑
j=1

P(|Dν,jj | ≥ δjj , µ1 < κγ + ε/2) +
ν∑
j<k

P(|Dν,jk| ≥ δjk, µ1 < κγ + ε/2) (51)
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We set δjj = `j δ̃3, j = 1, . . . , ν and δjk =
√
`j`k δ̃4, 1 ≤ j < k ≤ ν where δ̃3, δ̃4 > 0 are

such that δ2 = δ̃2
3

∑ν
j=1 `

2
j + δ̃2

4(
∑ν

j=1 `j)
2. To be specific, we take δ̃4 = δ√

2
(
∑ν

j=1 `j)
−1 and δ̃3 =

δ√
2
(
∑ν

j=1 `
2
j )
−1/2.

Therefore by derivations similar to (39), we have for 0 < δ̃4 < min{1, κγ+ε/2
ρν−3ε/2−κγ },

P(|Dν,jk| ≥ δjk, µ1 < κγ + ε/2) ≤ 2 exp

(
−nδ̃

2
4

12

)
+ 2 exp

(
− n

N −M
(ρν − 3ε/2− κγ)2nδ̃2

4

12(κγ + ε/2)2

)
(52)

for all 1 ≤ j < k ≤ ν

Similarly, ∃ n2(ν, ε,Λ, γ) such that for δ̃3 < 4 min{1, κγ+ε/2)
ρν−3ε/2−κγ },

P(|Dν,jj | ≥ δjj , µ1 < κγ + ε/2)

≤ 2 exp

(
−nδ̃

2
3

96

)
+ 2 exp

(
− n

N −M
(ρν − 3ε/2− κγ)2nδ̃2

3

96(κγ + ε/2)2

)

+2 exp

(
− n

n+N −M
n2δ̃2

3

2
(ρν − 3ε/2− κγ)4

64(ρν − ε)2(κγ + ε/2)

)
for 1 ≤ j ≤ ν (53)

for all n ≥ n2(ν, ε,Λ, γ).

Proof of Theorem 2 : The remark following Proposition 3 remains valid for Proposition 4 as well

(possibly with different constants). And so, the proof in the case when `ν > (1 +
√
γ)2 now follows

easily by combining Proposition 1, Proposition 2, Proposition 3 and Proposition 4 and applying

first Borel-Cantelli lemma.

Proof for the general case is deduced by combining Proposition 2, Proposition 3 and Proposition

B.2 and then applying first Borel-Cantelli lemma.

4.4 Proof of Theorem 1

By interlacing inequality, it follows that ̂̀ν ≥ µν . Proposition 2 and the remark following that

ensure that µν concentrates around κγ . In view of this we only need to show that for every ε > 0

the probability P(̂̀ν > κγ + ε) is summable over n, so that an Application of Borel-Cantelli lemma

will complete the proof.

We take essentially the same approach as in proving Proposition 3. As before, we denote

λ1(SΓν−1) by λ̂1,ν and use (21). So we only need to ensure that P(λ̂1,ν > κγ + ε, µ1 < κγ + ε/2) is

summable. As before, consider the set J̃1,ν := {λ̂1,ν > κγ + ε, µ1 < κγ + ε/2}. Then, since λ̂1,ν is

an eigenvalue of KΓν−1(λ̂1,ν), with KG(·) defined by (22), we have

λ̂1,ν ≤ λ1(KΓν−1(κγ + ε)) on the set J̃1,ν . (54)

Then on the set J̃1,ν ,

λ̂1,ν ≤ `ν(1 + γ

∫
x

κγ + ε− x
dFγ(x))+ ‖ KΓν−1(κγ + ε)− ΛΓν−1(κγ + ε) ‖HS (55)
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since `ν(1 + γ
∫

x
κγ+ε−xdFγ(x)) is the largest eigenvalue of ΛΓν−1(κγ + ε), where the last quantity

is defined through (19).

∃ δ := δ(ε) > 0 such that

`ν(1 + γ

∫
x

κγ + ε− x
dFγ(x)) + δ = κγ + ε (56)

This is because, if we define κγ,ε = (κγ + ε)(1 +γ
∫

x
κγ+ε−xdFγ(x))−1, then κγ,ε > 1 +

√
γ ≥ `ν since

whenever ρ > κγ , ∃ a unique ` > 1 +
√
γ which solves the equation (3), so that

`ν(1 + γ

∫
x

κγ + ε− x
dFγ(x)) =

`ν
κγ,ε

(κγ + ε) < κγ + ε

As should be clear by now, the proof of Proposition 3 can now be followed verbatim just by replacing

the quantity ρν + ε by κν + ε, and replacing J1,ν by J̃1,ν . Thus, skipping all the details we simply

present the final result :

Proposition 5 : Let `ν ≤ 1 +
√
γ. With δ̃1 and δ̃2 having the same definition as in the proof of

Proposition 3, and δ = δ(ε) defined through (56) sufficiently small, ∃ n3(ν, ε,Λ, γ) large enough so

that for n ≥ n3(ν, ε,Λ, γ)

P(̂̀ν > κγ + ε, µ1 < κγ + ε/2) ≤ (M − ν + 1)ε1(n, ε,Λ, γ) + (M − ν)(M − ν + 1)ε2(n, ε,Λ, γ, )

(57)

where

ε1 = 2 exp

(
−nδ̃

2
1

96

)
+ 2 exp

(
− n

N −M
nδ̃2

1ε
2

384(κγ + ε/2)2

)

+ 2 exp

(
− n

n+N −M
n2δ̃2

1

2
ε4

1024(κγ + ε)2(κγ + ε/2)

)

ε2 = 2 exp

(
−nδ̃

2
2

12

)
+ 2 exp

(
− n

N −M
nδ̃2

2ε
2

48(κγ + ε/2)2

)

Remark : It is important to take note of the behaviour of δ(ε). When `ν < 1 +
√
γ, (56) implies

that as ε ↓ 0, δ(ε)→ κγ− `ν(1 +γ
∫

x
κγ−xdFγ(x)), by Monotone Convergence Theorem. By Lemma

B.1, the limit equals κγ − `ν(1 +
√
γ) > 0. This shows that δ(ε) is bounded below, and so the same

is true for δ̃1 and δ̃2. However, if `ν = 1 +
√
γ then δ(ε)→ 0 as ε ↓ 0 and therefore we need to do a

more careful analysis to ensure that the bound in (57) is meaningful. Again using Lemma B.1, we
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can write, for 0 < ε < 2γ,

δ(ε) = ε+ (1 +
√
γ)γ

[∫
x

κγ − x
dFγ(x)−

∫
x

κγ + ε− x
dFγ(x)

]
= ε+ (1 +

√
γ)γ

∫ κγ

(1−√γ)2

xε

(κγ + ε− x)(κγ − x)
1

2πγx

√
(κγ − x)(x− (1−√γ)2)dx

> ε+
ε(1 +

√
γ)

2π

∫ κγ

κγ−ε

√
κγ − ε− (1−√γ)2

(κγ + ε− x)
√
κγ − x

dx

> ε+
ε(1 +

√
γ)

2π
· ε ·
√

4γ − ε
2ε
√
ε

>
√
ε

[√
ε+

(1 +
√
γ)
√
γ

2
√

2π

]
Which means that for 0 < ε < ε0, say, δ(ε) > c

√
ε for some constant c > 0 and so the bound (57)

is strong enough.

Thus the proof of summability of P(̂̀ν > κγ + ε) is completed by combining Proposition 5 with

Proposition 2.

5 Proof of Theorem 3

The proof involves several parts. The first step is to utilize the eigen-equation (15) to get

̂̀
ν = bTν (SAA + Λ1/2T TM(̂̀νI −M)−1TΛ1/2)bν (58)

Next step is to show that

bν − eν = −[Rν(K(ρν)− ρν
`ν

Λ)eν + (ρν − ̂̀ν)RνKν(ρν)eν ] + (̂̀ν − ρν)2OP (1) + oP (n−1/2) (59)

where K(x) is defined by (16), Rν is a deterministic diagonal matrix, and K(ρν) is a stochastic

matrix with norm OP (n−1/2). This is done in Section 6. Then we can write (see Section 6.1 ), after

expanding K(̂̀ν) appearing in (58) around ρν , using (59), changing sides, and finally multiplying

by
√
n,

√
n(̂̀ν − ρν)(1 + `νt

T
νM(ρνI −M)−2tν + dν) =

√
n(sνν + `νt

T
νM(ρνI −M)−1tν − ρν) + oP (1)

(60)

where dν = −`ν(̂̀ν −ρν)(tTνM(ρνI−M)−2(̂̀νI−M)−1tν +OP (1)) and sνν is the (ν, ν)-th element

of S. It readily follows that dν = oP (1). We first show that the term on the RHS of (60) converges

in distribution to a Gaussian random variable with zero mean and variance given by

2`νρν

(
1 + `νγ

∫
x

(ρν − x)2
dFγ(x)

)
(61)

Next, from Proposition 6 stated below, it follows that

tTνM(ρνI −M)−2tν
a.s.−→ γ

∫
x

(ρν − x)2
dFγ(x) (62)
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Hence (4), with σ2(`) given by the first expression in (5), follows from (61), (62) and (60) once we

apply Slutsky’s theorem. Application of (99) gives the second equality in (5) and the third follows

from simple algebra.

Proposition 6 : Suppose N
n → γ ∈ (0, 1) as n→∞. Let δ, ε > 0 be such that δ < 16(κγ+ε/2)

ε2
, and

ρ ≥ κγ + ε. Then ∃ n4(ρ, δ, ε, γ) such that for all n ≥ n4(ρ, δ, ε, γ),

P(|tTjM(ρI −M)−2tj − γ
∫

x

(ρ− x)2
dFγ(x)| > δ, µ1 < κγ + ε/2)

≤ 2 exp
(
− n

N −M
n(δ/4)2(ρ− κγ − ε/2)4

6(κγ + ε/2)2

)
+ 2 exp

(
− n

n+N −M
n2(δ/4)2

2
(ρ− κγ − ε/2)6

16ρ2(κγ + ε/2)

)
+2 exp

(
− n

n+N −M
n2(δ/4)2

2
(ρ− κγ − ε/2)4

4(κγ + ε/2)

)
, 1 ≤ j ≤M,

The proof of this proposition is given in Appendix B.

The main term on the RHS of (60) can be expressed as Wn +W ′n, where

Wn =
√
n(sνν − (1− γ)`ν + `νt

T
νM(ρνI −M)−1tν − `νρν

1
n
trace((ρνI −M)−1))

and

W ′n =
√
n`ν(ρν

1
n
trace((ρνI −M)−1)− γ`ν

`ν − 1
)

Note that by (97),
γ`ν
`ν − 1

= γ(1 +
1

`ν − 1
) = γ

∫
ρν

ρν − x
dFγ(x)

On the other hand

ρν
1
n
trace((ρνI −M)−1) =

N −M
n

∫
ρν

ρν − x
F̂n,N−M (x)

Since the function 1
ρν−z is analytic in an open set containing the interval [(1−√γ)2, (1+

√
γ)2], from

Bai and Silverstein (2004, Theorem 1.1) the sequence W ′n = oP (1) once we invoke N
n −γ = o(n−1/2).

Remark : The result of Bai and Silverstein (2004) is actually much stronger than what we need.

They also show the result under fairly weak conditions. From their result one can deduce asymptotic

normality of the sequence
√
nW ′n if we replace γ by N−M

n . However, for our purpose we only need

that W ′n = oP (1).

5.1 Asymptotic normality of Wn

First we recall that by definition of T , tν = 1√
n
HTZA,ν where ZTA,ν is the ν-th row of ZA. Since

N −M < n, and columns of H are orthonormal, we can extend them to form an orthonormal basis
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of Rn given by the matrix H̃ = [H : Hc] where Hc is n× (n−N +M). Thus, H̃H̃T = H̃T H̃ = In.

Then writing

sνν = `ν
1
n
ZTA,νZA,ν = `ν

1
n
ZTA,νH̃H̃

TZA,ν = `ν(‖ 1√
n
HTZA,ν ‖2 + ‖ 1√

n
HT
c ZA,ν ‖2)

= `ν(‖ tν ‖2 + ‖ wν ‖2)

with wν := 1√
n
HT
c ZA,ν , we have wν ∼ N(0, 1

nIn−N+M ), tν ∼ N(0, 1
nIN−M ), and these are mutu-

ally independent and independent of ZB (since H̃ is an orthonormal basis and ZA,ν ∼ N(0, In)).

Therefore we can decompose Wn as a sum of two independent random variables W1,n and W2,n

where

W1,n = `ν
√
n(‖ wν ‖2 −(1− γ)), and W2,n = `νρν

√
n(tTν (ρνI −M)−1tν −

1
n
trace((ρνI −M)−1))

Since n ‖ wν ‖2∼ χ2
n−N+M and N

n − γ = o(n−1/2), we get W1,n =⇒ N(0, 2`2ν(1 − γ)). In Section

5.2 we prove that

W2,n =⇒ N(0, 2`2νγ
∫

ρ2
ν

(ρν − x)2
dFγ(x)). (63)

The asymptotic normality of Wn is therefore established. Since W ′n = oP (1) this implies asymptotic

normality of the RHS of (60). The expression (61) for asymptotic variance is then deduced as

follows:∫
ρ2
ν

(ρν − x)2
dFγ(x) = 1 + 2

∫
x

(ρν − x)
dFγ(x) +

∫
x2

(ρν − x)2
dFγ(x)

= 1 + 2
∫

x

ρν − x
dFγ(x) + ρν

∫
x

(ρν − x)2
dFγ(x)−

∫
x

ρν − x
dFγ(x)

= 1 +
1

`ν − 1
+ ρν

∫
x

(ρν − x)2
dFγ(x)

where in the last step we used (97). Therefore the asymptotic variance of Wn is

2`2ν(1− γ) + 2`2νγ
∫

ρ2
ν

(ρν − x)2
dFγ(x) = 2`2ν(1 +

γ

`ν − 1
) + 2`2νρνγ

∫
x

(ρν − x)2
dFγ(x),

from which (61) follows since `ν(1 + γ
`ν−1) = ρν .

5.2 Proof of (63)

Let tν = (tν,1, . . . , tν,N−M )T . tν,j
i.i.d.∼ N(0, 1

n) and independent of M. Hence defining yj =
√
ntν,j ,

we have

W2,n = `νρν
1√
n

N−M∑
j=1

1
ρν − µj

y2
j −

N−M∑
j=1

1
ρν − µj

 , where {yj}N−Mj=1
i.i.d.∼ N(0, 1),
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and {yj}N−Mj=1 are independent of M. Thus, given M, W2,n is a weighted sum of i.i.d. mean 0

random variables. To establish (63) we need to show that

φW2,n(t) := E exp(itW2,n)→ φσ̃2(`ν)(t) := exp
(
− t

2σ̃2(`ν)
2

)
, for all t ∈ R, as n→∞

where σ̃2(`) = 2`2γ
∫ ρ2(`)

(ρ2(`)−x)2dFγ(x) for ` > 1 +
√
γ. It is enough to show that

E

∣∣∣∣E(eitW2,n | M) exp
(
t2σ̃2(`ν)

2

)
− 1
∣∣∣∣→ 0, for all t ∈ R, as n→∞

where the outer expectation is with respect to the distribution of M. We break this expectation

into two parts, one over the set Jγ(δ) := {µ1 ≤ κγ + δ} where δ > 0 is any number such that

ρν > κγ + 2δ, and the complementary part over the set Jcγ(δ) = {µ1 > κγ + δ}. Note that Jγ(δ) is

a measurable set that depends on n and P(Jγ(δ))→ 1 as n→∞. Since the inner expectation is a

bounded r.v., the second term converges to zero. Thus we only need to establish that

E

[∣∣∣∣E(eitW2,n | M) exp
(
t2σ̃2(`ν)

2

)
− 1
∣∣∣∣ , µ1 ≤ κγ + δ

]
→ 0, for all t ∈ R, as n→∞

(64)

Since characteristic function of a χ2
1 random variable at any point t is given by ψ(t) := 1√

1−2it
, on

the set {µ1 ≤ κγ + δ} the inner conditional expectation is

N−M∏
j=1

ψ

(
t`νρν√

n(ρν − µj)

)
exp

− it`νρν√
n

N−M∑
j=1

1
ρν − µj


=

N−M∏
j=1

(
1− 2it`νρν√

n(ρν − µj)

)−1/2

exp

− it`νρν√
n

N−M∑
j=1

1
ρν − µj

 (65)

Denoting by log z (z ∈ C) the principal branch of the complex logarithm we have(
1− 2it`νρν√

n(ρν − µj)

)−1/2

= exp
(
−1

2
log
(

1− 2it`νρν√
n(ρν − µj)

))
Recalling the Taylor series expansion of log(1+z) (valid for |z| < 1), we can write, for n ≥ n∗(ν, γ, δ),
large enough so that |t|`νρν√

n(ρν−κγ−δ) <
1
2 , the conditional expectation (65) as

exp

1
2

N−M∑
j=1

∞∑
k=1

1
k

(
2it`νρν√

n

1
ρν − µj

)k
− it`νρν√

n

N−M∑
j=1

1
ρν − µj


The inner sum is dominated by a geometric series and hence finite for n ≥ n∗(ν, γ, δ) on the set

Jγ(δ). Interchanging the order of summations, on Jγ(δ), the term within exponent becomes

1
2

∞∑
k=2

1
k

(
2it`νρν√

n

)k N−M∑
j=1

1
(ρν − µj)k

= − t
2

2

2`2νρ
2
ν

1
n

N−M∑
j=1

1
(ρν − µj)2

+
1
2

∞∑
k=3

1
k

(
2it`νρν√

n

)k N−M∑
j=1

1
(ρν − µj)k

(66)
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Denoting the first term of (66) by an(t) and the second term by r̃n(t), for n ≥ n∗(ν, γ, δ), on Jγ(δ),

|r̃n(t)| ≤ t2

3

2`2νρ
2
ν

1
n

N−M∑
j=1

1
(ρν − µj)2

 ∞∑
k=1

(
2|t|`νρν√

n(ρν − κγ − δ)

)k

=
t2

3

2`2νρ
2
ν

1
n

N−M∑
j=1

1
(ρν − µj)2

( 2|t|`νρν√
n(ρν − κγ − δ)

)(
1− 2|t|`νρν√

n(ρν − κγ − δ)

)−1

(67)

Let G2(· ; ρ, γ, δ) to be the bounded function (defined for ρ > κγ + δ) defined through (90) in the

appendix. Then on Jγ(δ), 1
n

∑N−M
j=1

1
(ρν−µj)2 = N−M

n

∫
G2(x; ρν , γ, δ)dF̂n,N−M (x) and the quantity

on the RHS converges almost surely to γ
∫
G2(x; ρν , γ, δ)dFγ(x) = γ

∫
1

(ρν−x)2dFγ(x). Moreover, on

Jγ(δ), an(t) and r̃n(t) are bounded for n ≥ n∗(ν, γ, δ). Therefore, from this observation and (65)

and (66),

E

[∣∣∣∣E(eitW2,n | M) exp
(
t2σ̃2(`ν)

2

)
− 1
∣∣∣∣ , Jγ(δ)

]
= E

[
| exp

(
an(t) + r̃n(t) +

t2σ̃2(`ν)
2

)
− 1|IJγ(δ)

]
≤ E

[
exp

(
an(t) +

t2σ̃2(`ν)
2

)
(exp (|r̃n(t)|)− 1) IJγ(δ)

]
+ E

[
| exp

(
an(t) +

t2σ̃2(`ν)
2

)
− 1| IJγ(δ)

]
→ 0 + 0, as n→∞

by bounded convergence theorem. Since t ∈ R is arbitrary, (64) follows.

6 Approximation to the eigenvectors

In this section we derive a first order asymptotic expansion of the vector bν associated with the

eigenvalue ̂̀ν , when `ν is greater than 1 +
√
γ and has multiplicity 1. This expansion has already

been used in the proof of Theorem 3. We proceed with the standard perturbation analysis approach.

Our construction follows Kneip and Utikal (2001), (see also Kato, 1980, Chapter 2). First observe

that ρν is the eigenvalue of ρν
`ν

Λ associated with the eigenvector eν . Define

Rν =
M∑
k 6=ν

`ν
ρν(`k − `ν)

ekeTk (68)

Note that Rν is the resolvent of ρν
`ν

Λ “evaluated” at ρν . Then utilizing the defining equation (15)

we can express

(
ρν
`ν

Λ− ρνI)bν = −(K(̂̀ν)− ρν
`ν

Λ)bν + (̂̀ν − ρν)bν

Defining Dν = K(̂̀ν)− ρν
`ν

Λν , premultiplying both sides by Rν and observing that Rν(ρν`ν Λ−ρνI) =

IM − eνeTν := P⊥ν we get,

P⊥ν bν = −RνDνbν + (̂̀ν − ρν)Rνbν (69)
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As a convention let us suppose 〈eν , bν〉 ≥ 0. Then expressing bν = 〈eν , bν〉eν +P⊥ν bν and observing

that Rνeν = 0, we get

bν − eν = −RνDνeν + rν (70)

where

rν = −(1− 〈eν , bν〉)eν −RνDν(bν − eν) + (̂̀ν − ρν)Rν(bν − eν)

Now, define

αν =‖ RνDν ‖ +|̂̀ν − ρν | ‖ Rν ‖ and βν =‖ RνDνeν ‖ (71)

Lemma 1 : rν satisfies

‖ rν ‖ ≤

βν
(

αν(1+αν)
1−αν(1+αν) + βν

(1−αν(1+αν))2

)
if αν <

√
5−1
2

α2
ν + 2αν always

(72)

Proof : Rewriting (69) we get

P⊥ν bν = −RνDνeν −RνDν(bν − eν) + (̂̀ν − ρν)Rν(bν − eν) (73)

From this

yν :=‖ P⊥ν bν ‖ ≤ ‖ RνDνeν ‖ +(‖ RνDν ‖ +|̂̀ν − ρν | ‖ Rν ‖) ‖ bν − eν ‖= βν + αν ‖ bν − eν ‖
(74)

On the other hand, from the decomposition bν = 〈eν , bν〉eν + P⊥ν bν , and observing that

1− 〈eν , bν〉 = 1−
√

1− ‖ P⊥ν bν ‖2 ≤‖ P⊥ν bν ‖2,

we also have

‖ bν − eν ‖ ≤ ‖ P⊥ν bν ‖ (1+ ‖ P⊥ν eν ‖) = yν(1 + yν) ≤ yν(1 + αν)

where the last inequality is a result of the fact that from (69) one gets ‖ P⊥ν bν ‖≤ αν . Substituting

this in (74) we get yν ≤ βν + αν(1 + αν)yν implying that yν ≤ βν
1−αν(1+αν) whenever αν <

√
5−1
2 .

Therefore, if αν <
√

5−1
2 then ‖ bν − eν ‖ ≤ βν(1+αν)

1−αν(1+αν) . Substituting this in the general bound

‖ rν ‖ ≤ ‖ P⊥ν bν ‖2 +αν ‖ bν − eν ‖ (75)

and using the last two relationships, we get the first inequality in (72). The second inequality is a

trivial consequence of (75).
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Next task is to establish that βν = oP (1) and αν = oP (1). First, consider the following

decomposition.

Dν = (SAA − Λ) + Λ1/2

(
T TM(ρνI −M)−1T − 1

n
trace(M(ρνI −M)−1)I

)
Λ1/2

+
(

1
n
trace(M(ρνI −M)−1)− γ

∫
x

ρν − x
dFγ(x)

)
Λ

+ (ρν − ̂̀ν)Λ1/2T TM(ρνI −M)−1(̂̀νI −M)−1TΛ1/2 (76)

Since ̂̀ν a.s.→ ρν > κγ and µ1
a.s.→ κγ , in view of the analysis carried out in Section 4, it is straightfor-

ward to see that ‖ Dν ‖
a.s.→ 0. Therefore, αν

a.s.→ 0 and βν
a.s.→ 0 from the definition (71). However,

because of the special structure, we can get a much better bound for βν . For that we need to look

at the term RνDνeν more closely, which we do now.

Define V (i,ν) := T TM(ρνI −M)−iT − 1
n trace(M(ρνI −M)−i)I for i = 1, 2. Expanding Dν

upto second order around ρν , and observing that Rν∆eν = 0 for any diagonal matrix ∆, we have

RνDνeν = Rν(SAA − Λ)eν +RνΛ1/2V (1,ν)Λ1/2eν + (ρν − ̂̀ν)RνΛ1/2V (2,ν)Λ1/2eν

+ (ρν − ̂̀ν)2
[
RνΛ1/2T TM(ρνI −M)−2(̂̀νI −M)−1TΛ1/2eν

]
(77)

= Rν(K(ρν)− ρν
`ν

Λ)eν + (ρν − ̂̀ν)RνK(ρν)eν + (̂̀ν − ρν)2rν

where K(ρν) = Λ1/2V (2,ν)Λ1/2 and rν is the vector appearing inside square brackets the second line.

From this expansion and the observations (i) all except the diagonal of the matrix Λ1/2T TM(ρνI−
M)−iTΛ1/2eν is OP (n−1/2) for i = 1, 2 (obtained through an inequality similar to (38)), (ii) all

except the diagonal of SAA is OP (n−1/2), and (iii) Rν is diagonal with (ν, ν)-th entry equal to 0, it

easily follows that

βν = OP (n−1/2) + (̂̀ν − ρν)2OP (1). (78)

Remark : The proof of (78) is somewhat long winded and deliberately so. Note that if we use (i)

and (ii) above, the condition N
n − γ = o(n−1/2), and a decomposition similar to the decomposition

of (ν, ν)-th element of
√
n(K(ρν) − ρν

`ν
Λ) as Wn + W ′n, as in the proof of Theorem 3, then by Bai

and Silverstein (2004, Theorem 1.1) we immediately get ‖ Dν ‖= OP (n−1/2) + (̂̀ν − ρν)OP (1) by

considering a second order expansion of Dν in the spirit of (76). However, the way we have done it,

the bound in (78) is actually a concentration bound and does not depend on the asymptotic limit

theorem of Bai and Silverstein (2004).

As a simple consequence of (78), Lemma 1 and Theorem 3 we get the following:

Corollary 1: When `ν > 1 +
√
γ and of multiplicity one, bν = eν +OP (n−1/2).
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6.1 Explanation for expansion (60)

RHS of (58) can be written as

eTνK(̂̀ν)eν + 2eTνK(̂̀ν)(bν − eν) + (bν − eν)TK(̂̀ν)(bν − eν) (79)

First term in (79) is the major contributor in (60), since it can be written as

sνν + `νt
T
νM(ρνI −M)−1tν + (ρν − ̂̀ν)`νtTνM(ρνI −M)−2tν

+ (ρν − ̂̀ν)2`νt
T
νM(ρνI −M)−2(̂̀νI −M)−1tν

Again, by (70), (71), (72) and (78),

(bν − eν)TK(̂̀ν)(bν − eν) = ‖ bν − eν ‖2 OP (1)

= β2
ν OP (1) = OP (n−1) + (̂̀ν − ρν)2OP (n−1/2) + (̂̀ν − ρν)4OP (1)

Finally, to check the negligibility of the second term in (79), we observe that by (70),

eTνK(̂̀ν)(bν −eν) = −eTνDνRνDνeν + eTνK(̂̀ν)rν = −eTνDνRνDνeν + oP (n−1/2) + (̂̀ν −ρν)2oP (1),

where in the last step we used (72) together with (78). Expanding Dνeν as in (77), and using the

definition of Rν we get the expression

eTνDνRνDνeν =
M∑
j=1

(Rν)jj [(Dνeν)j ]2

=
M∑
j 6=ν

`ν
ρν

(
`j`ν
`j − `ν

)[
sjν√
`j`ν

+ V
(1,ν)
jν + (ρν − ̂̀ν)V (2,ν)

jν + (ρν − ̂̀ν)2Ṽ
(3,ν)
jν

]2

where Ṽ (3,ν) = T TM(ρνI −M)−2(̂̀νI −M)−1T . Observe that for j 6= ν, each of the terms sjν ,

V
(1,ν)
jν and V

(2,ν)
jν is OP (n−1/2) and Ṽ

(3,ν)
jν = OP (1). It follows that

eTνDνRνDνeν = OP (n−1) + (̂̀ν − ρν)2OP (n−1/2) + (̂̀ν − ρν)4OP (1)

6.2 Proof of Theorem 4

Part (a) : As a convention we choose 〈pν , ẽν〉 ≥ 0. First note that with pA,ν as in (8)

〈pν , ẽν〉 = 〈pA,ν , eν〉 =
√

1−R2
ν 〈bν , eν〉

Since βν
a.s.→ 0, αν

a.s.→ 0, from (70) and (72), 〈bν , eν〉
a.s.→ 1. Therefore, from (17), (62), Theorem 2

and above display, we have

1
1−R2

ν

a.s.→ 1 + `νγ

∫
x

(ρν − x)2
dFγ(x)
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from which we get (6) after invoking Lemma B.2.

Part (b) : From (17) it is clear that in order that (7) holds, we need either bTν Λ1/2T TM(̂̀νI −
M)−2TΛ1/2bν

a.s.→ ∞ or 〈bν , eν〉
a.s.→ 0. Clearly, we can no longer use the perturbation analysis

argument to study the behaviour of bν , since in this case ̂̀ν a.s.→ κγ . However we shall show that

the smallest eigenvalue of the matrix E := T TM(̂̀νI −M)−2T diverges to infinity almost surely.

This will prove the result.

Our approach will be to show that given ε > 0, we can find a Cε > 0 such that the probability

P(λmin(E) ≤ Cε) is summable over n and that Cε →∞ as ε→ 0.

First, denote the rows of T by tTj , j = 1, . . . , N −M (treated as an 1×M vector). tj ’s are to

be distinguished from the vectors t1, . . . , tM , the columns of T . In fact tTj = (tj1, . . . , tjM ). Then

E =
N−M∑
j=1

µj

(̂̀ν − µj)2
tjtTj ≥

N−M∑
j=ν

µj

(̂̀ν − µj)2
tjtTj =: Eν , say,

in the sense of inequalities between positive semi-definite matrices. Thus λmin(E) ≥ λmin(Eν).

Then on the set J1,ν := {̂̀ν < κγ + ε, µ1 < κγ + ε/2}, we have

Eν ≥
N−M∑
j=ν

µj
(κγ + ε− µj)2

tjtTj =: Eν

since by interlacing inequality ̂̀ν ≥ µν . Thus, in view of Proposition 5, we only need to provide a

lower bound for the smallest eigenvalue of Eν . However, it will be more convenient to work with

the matrix

E =
N−M∑
j=1

µj
(κγ + ε− µj)2

tjtTj = T TM((κγ + ε)I −M)−2T (80)

Proving summability of P(λmin(E) ≤ Cε, J1,ν) suffices because it is easy to see that ‖ Eν−E ‖
a.s.→ 0

as n→∞.

By Proposition 6, and calculations similar to those in deriving (38), respectively, given δ > 0,

such that δ < 16(κγ+ε/2)
ε2

, ∃ n5(δ, ε, γ) such that for all n ≥ n5(δ, ε, γ),

P(|tTjM((κγ + ε)I −M)−2tj − γ
∫

x

(κγ + ε− x)2
dFγ(x)| > δ, J1,ν)

≤ 2 exp
(
− n

N −M
n(δ/4)2(ε/2)4

6(κγ + ε/2)2

)
+ 2 exp

(
− n

n+N −M
n2(δ/4)2

2
(ε/2)6

16(κγ + ε)2(κγ + ε/2)

)
+2 exp

(
− n

n+N −M
n2(δ/4)2

2
(ε/2)4

4(κγ + ε/2)

)
, 1 ≤ j ≤M, (81)

and

P(|tTjM((κγ + ε)I −M)−2tk| > δ, J1,ν) ≤ 2 exp
(
− n

N −M
nδ2(ε/2)4

3(κγ + ε/2)2

)
, 1 ≤ j 6= k ≤M.

(82)
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If a symmetric matrix A is written as A = B + C where B is a diagonal matrix with the same

diagonal as A, then |λmin(A)− λmin(B)| ≤‖ C ‖HS . If we denote the RHS of (81) and (82) by ε5

and ε6, respectively, then similar decomposition of the matrix E yields

P(λmin(E) ≤
∫

x

(κγ + ε− x)2
dFγ(x)− δ(1 +

√
M(M − 1)), J1,ν) ≤Mε5 +

M(M − 1)
2

ε6 (83)

for 0 < δ <
16(κγ+ε/2)

ε2
, and for all n ≥ n5(δ, ε, γ).

On the other hand, observe that if 0 < ε < 2γ, then∫
x

(κγ + ε− x)2
dFγ(x) >

∫ κγ−ε/2

κγ−ε

x

(κγ + ε− x)2
fγ(x)dx

=
1

2πγ

∫ κγ−ε/2

κγ−ε

√
(κγ − x)(x− (1−√γ)2)

(κγ + ε− x)2
dx >

1
2πγ

[
1

(2ε)2

√
ε

2

√
κγ − ε− (1−√γ)2

]
ε

2

=
1

16
√

2πγ

√
4γ − ε√
ε

>
1

16
√
γπ

1√
ε

Therefore set δ = ε(1 +
√
M(M − 1))−1 and choose ε small enough so that

√
γ

16π
1√
ε
− ε > 0. Call

the last quantity Cε and observe that Cε satisfies the requirement : Cε →∞ as ε→ 0. By (83) the

result follows.

7 Appendix A

7.1 Weak concentration inequalities for random quadratic forms

The following two lemmas will be referred to as weak concentration inequalities.

Suppose C : X → R
n×n is a measureable function. Let Z be a random variable taking values

in X . Let ‖ C ‖ denote the operator norm of C, i.e., the largest singular value of K.

Lemma A.1 : Suppose X and Y are i.i.d. Nn(0, I) independent of Z. Then for every L > 0 and

0 < δ < 1,

P(
1
n
|XTC(Z)Y | > t, ‖ C(Z) ‖≤ L) ≤ 2 exp

(
−(1− δ)nt2

2L2

)
, for 0 < t <

δ

1− δ
L (84)

Lemma A.2 : Suppose X is distributed as Nn(0, I) independent of Z. Also let C(z) = CT (z)

for all z ∈ X . Let trace(B) denote the trace of a square matrix B. Then, for every L > 0 and

0 < δ < 1,

P(
1
n
|XTC(Z)X − trace(C(Z))| > t, ‖ C(Z) ‖≤ L) ≤ 2 exp

(
−(1− δ)nt2

4L2

)
, for 0 < t <

2δ
1− δ

L

(85)
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Proof of Lemma A.1 : In the proof for convenience we occassionally write C instead of C(Z).

Let 0 < λ < δ
L . Then if Z ∈ DL with DL := {z :‖ C(z) ‖≤ L},

P(
1
n
XTC(Z)Y > t|Z) ≤ e−nλtE

[
eλX

TC(Z)Y |Z
]

= e−nλtE

[
exp

(
λ2

2
‖ CY ‖2

)
|Z
]

= e−nλt(2π)−n/2
∫
Rn

exp
(
−1

2
yT (I − λ2CTC)y

)
dy

= e−nλt det(I − λ2CTC)−1/2 (86)

The last step is justified by the fact that λ2 ‖ CTC ‖≤ λ2L2 < 1 (by choice of λ) so the matrix

I − λ2CTC is positive definite on DL. Now, use the fact that log det(I − λ2CTC) =
∑n

i=1 log(1−
λ2σ2

i (C)), where σi(C) is the i-th largest singular value of C. Thus, since Z ∈ DL,

− log det(I−λ2CTC) =
n∑
i=1

∞∑
k=1

1
k

(λ2σ2
i (C))k ≤ λ2(

n∑
i=1

σ2
i (C))

∞∑
k=1

1
k

(λL)2(k−1) < nλ2L2
∞∑
k=0

(λ2L2)k

The geometric series in the last term converges for λ < 1
L and hence combining with (86) we get,

for 0 < δ < 1,

P(
1
n
XTC(Z)Y > t|Z) ≤ inf

0<λ< δ
L

e
−nλt+ 1

2(1−δ2)
nλ2L2

< inf
0<λ< δ

L

e
−nλt+ 1

2(1−δ)nλ
2L2

(87)

The function ft(λ) := −nλt + 1
2(1−δ)nλ

2L2 achieves its global minimum at λt = t(1−δ)
L2 . Therefore

if t < δL
1−δ then λt < δ

L so that we get the upper bound exp(ft(λt)) = − (1−δ)nt2
2L2 in (87) for Z ∈ DL.

By symmetry, the same upper bound holds for P( 1
nX

TC(Z)Y < −t|Z) and combining these two

and then taking expectation w.r.t. the distribution of Z over the set DL we get (84).

Proof of Lemma A.2 : As in the proof of Lemma A.1, for Z ∈ DL, 0 < λ < δ
L , and t > 0,

P(
1
n

(XTC(Z)X − trace(C(Z))) > t|Z) ≤ e−
λ
2

(nt+trace(C(Z)))
E

[
e
λ
2
XTC(Z)X |Z

]
= e−

λ
2

(nt+trace(C)) det(I − λC)−1/2, (88)

where in the second step we use the fact that I − λC is positive definite. Denoting the eigenvalues

of C(Z) in decreasing order by µi(C), we have (since by assumption ‖ C ‖≤ L < 1
λ)

− log det(I − λC)− λ trace(C) =
n∑
i=1

∞∑
k=1

1
k

(λµi(C))k − λ trace(C) =
∞∑
k=2

1
k
λk

n∑
i=1

(µi(C))k

≤ nλ2L2

2

∞∑
k=2

2
k

(λL)k−2 ≤ nλ2L2

2

∞∑
k=0

(λL)k,

where the inequality in the third step is by ‖ C(Z) ‖ = max{|µ1|, |µn|}. Now the rest of the proof

simply retraces the argument of the proof of Lemma A.1 and is therefore omitted.
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7.2 Concentration inequalities for Lipschitz functionals of random matrices

We restate Corollary 1.8(b) of Guionnet and Zeitouni (2000) in our context.

Lemma A.3 : Suppose Y is an m× n matrix, m ≤ n, with independent (real or complex) entries

Ykl following law Pkl, 1 ≤ k ≤ m, 1 ≤ l ≤ n. Let S∆ = Y∆Y∗ be a generalized Wishart matrix

where ∆ is a diagonal matrix with real, nonnegative diagonal entries and spectral radius φ∆ > 0.

Suppose the family {Pkl : 1 ≤ k ≤ m, 1 ≤ l ≤ n} satisfies the logarithmic Sobolev inequality with

uniformly bounded constant c. Then for any function f such that g(x) := f(x2) is Lipschitz, for

any δ > 0,

P

(
| 1
m
trace f(

1
m+ n

S∆)− E(
1
m
trace f(

1
m+ n

S∆))| > δ

)
≤ 2 exp

(
− m2δ2

2cφ∆|g|2L

)
(89)

where |g|L is the Lipschitz norm of g.

In order to apply this result to our context we take m = N −M , Y = ZB and ∆ = m+n
n In,

and recall that N(0, 1) satisfies logarithmic Sobolev inequality with constant c = 1 (Bogachev,

1998, Theorem 1.6.1). Then define fk(x) = Gk(x; ρ, γ, ε), k = 1, 2, where Gk(x; ρ, γ, ε) is defined

in (90), and gk(x) = fk(x2), and notice that gk(x) is Lipschitz with |gk|L = 2k(κγ+ε)1/2

(ρ−κγ−ε)k+1 . Further,

φ∆ = m+n
n and S∆ = (m+ n)SBB.

Gk(x; ρ, γ, ε) =


1

(ρ−x)k
x ≤ κγ + ε

1
(ρ−κγ−ε)k x > κγ + ε

where ρ > κγ + ε, k = 1, 2, . . . (90)

Therefore, applying Lemma A.3 we get the following :

Proposition A.1 : For k = 1, 2, and any δ > 0,

P

(
| 1
n
trace Gk(SBB; ρ, γ, ε)− E(

1
n
trace Gk(SBB; ρ, γ, ε))| > δ

)
≤ 2 exp

(
− n

n+N −M
n2δ2

2
(ρ− κγ − ε)2(k+1)

4k2(κγ + ε)

)

= 2 exp

(
− n2δ2

2(1 + γ)
(ρ− κγ − ε)2(k+1)

4k2(κγ + ε)
(1 + o(1))

)
(91)

7.3 Proof of Proposition 2

If we denote the singular values of ZB by σ1(ZB) > σ2(ZB) > . . . > σN−M (ZB). Using a concen-

tration inequality for singular values of random matrices (Ledoux, 2001),

P(|σi(ZB)−m(σi(ZB))| > r) ≤ 2e−
r2

4 , r > 0, 1 ≤ i ≤ N −M (92)

where m(σi(ZB)) is a median of σi(ZB). In this case, since N −M < n (at least for sufficiently

large n), the distribution of σi(ZB) is continuous so that the median is unique.
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Now, since µi := λi(SBB) = 1
n(σi(ZB))2 and σi(ZB) ≥ 0 so that

m(µi) := m(λi(SBB)) = m(σi(SBB)) =
1
n
m(σi(ZB))2,

it follows that for r > 0 and every i = 1, . . . , N −M ,

2e−
nr2

4 ≥ P(| 1√
n
σi(ZB)− 1√

n
m(σi(ZB))| > r) ≥ P(|µi −m(µi)| > r(2

√
m(µi) + r)) (93)

The last inequality follows from the fact that for real numbers x, y ∈ R+, on the set |x− y| ≤ r, we

have |x2− y2| = |x− y|(x+ y) ≤ r(2y+ r), and then taking x = 1√
n
σi(ZB) and y = 1√

n
m(σi(ZB)).

Denoting m(µi) by mi for convenience, set s = r(2
√
mi + r) = (r +

√
mi)2 −mi. Then solving

for r we get for s > 0, r =
√
s+mi −

√
mi. Substituting in the last display we get

P(|µi −mi| > s) ≤ 2e−
n
4

(
√
s+mi−

√
mi)

2
, s > 0, i = 1, . . . , N −M. (94)

The next step in the proof of Proposition 2 is to use the following results on the weak convergence

of the largest eigenvalue in the identity covariance case. The limiting distribution F1 is the so-called

Tracy-Widom law of order 1.

Result [Johnstone (2001a)] : When N
n → γ ∈ (0, 1), under the assumption of normality

γ−1/2(1 +
√
γ)−4/3(N −M)2/3

µ1 −

(
1 +

√
N −M

n

)2
 =⇒ F1. (95)

By (95) it follows that γ−1/2(1 +
√
γ)−4/3N2/3(m1 − (1 +

√
N−M
n )2)→ m(F1) where m(F1) is the

median of F1. In particular,

m1 − κγ = O(|N
n
− γ|) +O(n−2/3) (96)

Now to complete the proof of Proposition 2 observe that

√
s+m1 −

√
m1 =

s√
s+m1 +

√
m1
≥ s

2
√
m1

>
s

2
√
κγ + δ/4

for n ≥ n0(γ, δ). Now since δ < κγ/2 implies κγ + δ
4 <

9
8κγ , for n ≥ n0(γ, δ) we have

√
s+m1 −

√
m1 >

√
2s

3
√
κγ

. Therfore, choosing s = 3δ
4 and substituting in (94) we get the result after applying

the condition |m1 − κγ | ≤ δ
4 . Note also that by (96) we also get the rate at which n0(γ, δ) should

grow as δ ↓ 0.

8 Appendix B

8.1 Expression for ρν

Lemma B.1 : For `ν ≥ 1 +
√
γ, ρν = `ν

(
1 + γ

`ν−1

)
solves (3).
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Proof : We prove this by showing that for any ` > 1 +
√
γ we have∫

x

ρ(`)− x
fγ(x)dx =

1
`− 1

(97)

where ρ(`) = `
(

1 + γ
`−1

)
, and fγ(x) is the density of Marchenko-Pastur law with parameter γ(≤ 1)

and is given by

fγ(x) =
1

2πγx

√
(b(γ)− x)(x− a(γ))I(a(γ) ≤ x ≤ b(γ)), where a(γ) = (1−√γ)2, b(γ) = (1+

√
γ)2

The LHS of (97) is equal to

1
2πγ

∫ b(γ)

a(γ)

√
(b(γ)− x)(x− a(γ))

ρ(`)− x
dx

=
1

2πγ

∫ 2
√
γ

−2
√
γ

√
(2
√
γ − y)(y + 2

√
γ)

ρ(`)− (1 + γ)− y
dy, (setting y = x− (1 + γ))

Since ρ(`)− (1 + γ) = (`− 1) + γ
`−1 , setting K = `− 1 we can rewrite the last expression as

K

2πγ

∫ 2
√
γ

−2
√
γ

√
4γ − y2

K2 + γ −Ky
dy

=
2K
π

∫ 1

−1

√
1− z2

K2 + γ − 2K
√
γz
dz, (setting z =

y

2
√
γ

)

=
2K
π

[∫ 1

0

√
1− z2

(
1

K2 + γ − 2K
√
γz

+
1

K2 + γ + 2K
√
γz

)
dz

]
=

4K(K2 + γ)
π

∫ 1

0

√
1− z2

(K + γ)2 − 4K2γz2
dz

=
4K(K2 + γ)

π

∫ π/2

0

cos2 θ

(K + γ)2 − 4K2γ sin2 θ
dθ, (setting sin θ = z)

=
(
K2 + γ

Kγ

)
1
π

∫ π/2

0

(K2 + γ)2 − 4K2γ sin2 θ − ((K2 + γ)2 − 4K2γ)
(K2 + γ)2 − 4K2γ sin2 θ

dθ

Substituting the formula for indefinite integral (for a2 > b2)∫
dx

a2 − b2 sin2 cx
=

1
ac
√
a2 − b2

tan−1

(√
a2 − b2 tan cx

a

)
(98)

and then using the fact that tan 0 = 0 and tan π
2 =∞, the last expression equals(

K2 + γ

Kγ

)
1
π

[
π

2
− (K2 − γ)2

(K2 + γ)(K2 − γ)
π

2

]
=

1
2

(
K2 + γ

Kγ

)
(K2 + γ)− (K2 − γ)

K2 + γ
=

1
K

thus completing the proof for the case ` > 1 +
√
γ. The case ` = 1 +

√
γ follows from this by

applying Monotone convergence theorem to the nonnegative functions { x
ρ(`)−xI(a(γ) < x < b(γ)) :

` ≥ 1 +
√
γ}, since ρ(`) is monotonically increasing in ` ∈ [1 +

√
γ,∞).
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Lemma B.2 : For ` > 1 +
√
γ,∫

x

(ρ(`)− x)2
dFγ(x) =

1
(`− 1)2 − γ

(99)

Proof : Just as in the proof of Lemma B.1, after substituting z = (2
√
γ)−1(x − (1 + γ)), and

letting K = `− 1 we get∫
x

(ρ(`)− x)2
dFγ(x)

=
2K2

π

∫ 1

−1

√
1− z2

(K2 + γ − 2K
√
γz)2

dz

=
2K2

π

∫ 1

0

√
1− z2

(
1

(K2 + γ − 2K
√
γz)2

+
1

(K2 + γ + 2K
√
γz)2

)
dz

=
2K2

π

∫ 1

0

2((K2 + γ)2 + 4K2γz2)
√

1− z2

((K2 + γ)2 − 4K2γz2)2
dz

=
4K2

π

∫ 1

0

2(K2 + γ)2
√

1− z2

((K2 + γ)2 − 4K2γz2)2
dz − 4K2

π

∫ 1

0

√
1− z2

(K2 + γ)2 − 4K2γz2
dz

=
8K2(K2 + γ)2

π

∫ π/2

0

cos2 θdθ

((K2 + γ)2 − 4K2γ sin2 θ)2
− 1
K2 + γ

, setting sin θ = z and by (97)

=
8K2(K2 + γ)2

π

1
4K2γ

∫ π/2

0

(K2 + γ)2 − 4K2γ sin2 θ − ((K2 + γ)2 − 4K2γ)
((K2 + γ)2 − 4K2γ sin2 θ)2

dθ − 1
K2 + γ

=
2(K2 + γ)2

πγ

[∫ π/2

0

dθ

(K2 + γ)2 − 4K2γ sin2 θ
−
∫ π/2

0

(K2 − γ)2dθ

((K2 + γ)2 − 4K2γ sin2 θ)2

]
− 1
K2 + γ

=
2(K2 + γ)2

πγ

1
(K2 + γ)(K2 − γ)

π

2
− 1

2(K2 + γ)

− 2(K4 − γ2)2

πγ

∫ π/2

0

dθ

((K2 + γ)2 − 4K2γ sin2 θ)2
,

=
1
γ

(
K2 + γ

K2 − γ

)
− 1
K2 + γ

− (K4 − γ2)2

πγ

∫ π

0

dφ

(K4 + γ2 + 2K2γ cosφ)2
(100)

where eighth equality is due to (98) and in the last step we used cos 2θ = 1− 2 sin2 θ before setting

φ = 2θ. Since for a > b we have∫
dx

(a+ b cosx)2
= − b sinx

(a2 − b2)(a+ b cosx)
+

a

a2 − b2

∫
dx

a+ b cosx

= − b sinx
(a2 − b2)(a+ b cosx)

+
2a

(a2 − b2)3/2
tan−1

(√
a2 − b2 tan x

2

a+ b

)
setting a = K4 + γ2 and b = 2K2γ we get

(K4 − γ2)2

πγ

∫ π

0

dφ

(K4 + γ2 + 2K2γ cosφ)2
=

(K4 − γ2)2

πγ

2(K4 + γ2)
((K4 + γ2)2 − 4K4γ2)3/2

π

2

=
1
γ

(
K4 + γ2

K4 − γ2

)
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Substituting the last expression in (100) we get∫
x

(ρ(`)− x)2
dFγ(x) =

1
γ

(
K2 + γ

K2 − γ

)
− 1
K2 + γ

− 1
γ

(
K4 + γ2

K4 − γ2

)
=

(K2 + γ)2 − γ(K2 − γ)− (K4 + γ2)
γ(K2 − γ)(K2 + γ)

=
1

K2 − γ

8.2 Lower bound on eigenvalues in the general case

In this section we provide a lower bound for the sample eigenvalues ̂̀ν which holds with high

probability when `ν > 1 +
√
γ. It will be more useful to provide a lower bound for λ̂ν,ν = λν(SΓν

).

We do that using equations (14) and (15) and the observation that for any ν ≥ 1

ν∑
k=1

λk(SΓν
) = max

L∈Oν,N−M+ν

trace (LTSΓν
L) (101)

where Oν,N−M+ν is the set of (N −M + ν)× ν matrices whoses columns are orthonormal. Thus,

our approach is to construct an appropriate Lν for every ν with `ν > 1 +
√
γ such that the lower

bound trace (LTν SΓν
Lν) is close to

∑ν
k=1 ρk.

Thereafter by utilizing (21) we have

ν−1∑
k=1

λ1(SΓk−1
) + λν(SΓν

) ≥
ν−1∑
k=1

̂̀
k + λν(SΓν

) ≥
ν∑
k=1

λk(SΓν
) (102)

We construct the (N −M + ν)× ν matrix Lν as follows. Let R̃k, k = 1, . . . , ν be numbers between

0 and 1 to be specified. Write

Lν =

[
LA,ν

LB,ν

]
where LA,ν = diag(

√
1− R̃2

1, . . . ,

√
1− R̃2

ν)

and LB,ν = V Ξ̃D̃ where D̃ = diag(R̃1, . . . , R̃ν), V is as in (13) and the matrix Ξ̃ = (ζ̃1 : . . . : ζ̃ν)

is obtained by Gram-Schmidt orthonormalization of the matrix Ξ whose columns are ζk/ ‖ ζk ‖
where

ζk =
√
`kM1/2(ρkI −M)−1tk, k = 1, . . . , ν (103)

To be specific, we set ζ̃ν = ζν/ ‖ ζν ‖ and assume that the orthonormalization is carried out

backwards (w.r.t. the columns of Ξ). First thing to notice is that

‖ ζk ‖2= `kt
T
kM(ρkI −M)−2tk

and

ζ
T
j ζk =

√
`j`kt

T
jM(ρkI −M)−1(ρjI −M)−1tk, for 1 ≤ j 6= k ≤ ν
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With Jγ(ε) = {µ1 < κγ + ε}, we have, due to Lemma A.1 (taking δ = 1
3 in the lemma),

P(ζTj ζk ≥
√
`j`kδ0, Jγ(ε/2))

= 2 exp
(
− n

N −M
(ρj − ε/2− κγ)2(ρk − ε/2− κγ)2nδ2

0

12(κγ + ε/2)2

)
= 2 exp

(
−1
γ

(ρj − ε/2− κγ)2(ρk − ε/2− κγ)2nδ2
0

12(κγ + ε/2)2
(1 + o(1))

)
,

for 0 < δ0 <
2(κγ + ε/2)

(ρj − ε/2− κγ)(ρk − ε/2− κγ)
for 1 ≤ j 6= k ≤ ν (104)

We now choose R̃k as

R̃k =
‖ ζk ‖√

1+ ‖ ζk ‖2
or

√
1− R̃2

k =
1√

1+ ‖ ζk ‖2
(105)

Our aim is to prove the following proposition.

Proposition B.1 : With this choice of Lν , given ε > 0, ∃ n6(ε,Λ, γ) such that for n ≥ n6(ε,Λ, γ),

P(trace(LTν SΓν
Lν) ≤

ν∑
k=1

ρk − ε/2, µ1 < κγ + ε/2) ≤ ε7(n, ε,Λ, γ) (106)

where
∑∞

n=n6(ε,Λ,γ) ε7(n, ε,Λ, γ) <∞.

Once we have this result, we apply Proposition 3 (with ρν + ε replaced by ρk + ε/(2ν) and ̂̀ν
replaced by λ1(SΓk−1

), k = 1, . . . , ν − 1; the validity of this is readily cheked by following the first

step of the proof), utilize (101), (102), and the inequality ̂̀ν ≥ λν(SΓν
), in combination with (106)

to prove the following.

Proposition B.2 : Given ε > 0, ∃ n7(ε,Λ, γ) such that for n ≥ n7(ε,Λ, γ),

P(̂̀ν ≤ ρν − ε, µ1 < κγ + ε/2) ≤ ε8(n, ε,Λ, γ)

where
∑∞

n=n7(ε,Λ,γ) ε8(n, ε,Λ, γ) <∞, provided ε is small enough so that ρν > κγ + 2ε.

The rest of the section is devoted to giving an outline of the proof of Proposition B.1. First step

in that direction is to express trace(LTν SΓν
Lν) as

trace(LTν SΓν
Lν) = trace(LTA,νSAA,νLA,ν) + 2 trace(LTA,νSAB,νLB,ν) + trace(LTB,νSBBLB,ν)

(107)

Here, as before, SAA,ν denotes the submatrix of SAA consisting of first ν rows and first ν columns.

SAB,ν is analogously defined. By definition of LA,ν ,

trace(LTA,νSAA,νLA,ν) =
ν∑
k=1

(1− R̃2
k)skk =

ν∑
k=1

(1− R̃2
k)`k

1
n
‖ ZA,k ‖2 (108)
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Next,

trace(LTA,νSAB,νLB,ν) = trace(LTA,νΛ1/2
ν T Tν M1/2Ξ̃D̃) =

ν∑
k=1

R̃k

√
1− R̃2

k

√
`kt

T
kM1/2ζ̃k (109)

Finally,

trace(LTB,νSBBLB,ν) = trace(D̃Ξ̃TMΞ̃D̃) =
ν∑
k=1

R̃2
kζ̃
T
kMζ̃k (110)

Now let us find an expression for ζ̃k. By definition, ζ̃ν = ζν/ ‖ ζν ‖ and

ζ̃j =

 ζj

‖ ζj ‖
−

ν∑
k=j+1

cjkζ̃k

 / ‖
ζj

‖ ζj ‖
−

ν∑
k=j+1

cjkζ̃k ‖, j = ν − 1, ν − 2, . . . , 1, (111)

where cjk are determined from the orthogonality relations. Therefore,

cjk =
〈ζj , ζ̃k〉
‖ ζj ‖

, for ν ≥ k > j.

Thus we can express Ξ̃ as Ξ∆ where ∆ is a lower triangular matrix whose entries are given as

follows:

∆jk =

0 if 1 ≤ k ≤ j − 1

−cjk∆jj if j + 1 ≤ k ≤ ν
with ∆jj =

‖ ζj

‖ ζj ‖
−

ν∑
k=j+1

cjkζ̃k ‖

−1

Note that

∆−2
jj =

‖ ζk ‖2

‖ ζk ‖2
− 2

∑
k>j

cjk
〈ζj , ζ̃k〉
‖ ζj ‖

+
∑
k>j

c2
jk = 1−

∑
k>j

c2
jk

This implies that for k > j,

cjk =
〈ζj , ζ̃k〉
‖ ζj ‖

=
∑
k′≥k

〈ζj , ζk′〉
‖ ζj ‖ · ‖ ζk′ ‖

∆kk′

= ∆kk

(
〈ζj , ζk〉

‖ ζj ‖ · ‖ ζk ‖
−
∑
k′>k

〈ζj , ζk′〉
‖ ζj ‖ · ‖ ζk′ ‖

ckk′

)
= ∆kk(τjk −

∑
k′>k

τjk′ckk′) (112)

where τjk = 〈ζj ,ζk〉
‖ζj‖·‖ζk‖

. Moreover,

|1−∆kk| =

∣∣∣∣∣∣1− 1√
1−

∑
k′>k c

2
kk′

∣∣∣∣∣∣ ≤
∑

k′>k c
2
kk′

1−
∑

k′>k c
2
kk′

=⇒ ∆kk ≤
1

1−
∑

k′>k c
2
kk′

(113)
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We aim to show that ζ̃j is close to ζj
‖ζj‖

. The following lemma helps us make such a statement.

Lemma B.3 : Let A > 1 be arbitrary. Suppose δ > 0 is such that δ < A−1
νA2 . If |τjk| ≤ δ for all

ν ≥ k > j ≥ 1, then

|cjk| ≤ Aδ, and ∆jj ≤
1

1− (ν − j)A2δ2
, ν ≥ k > j ≥ 1. (114)

Proof : We prove the result by backward induction on j, k. First note that cjν = τjν for j =

1, . . . , ν − 1. Thus |cjν | ≤ δ for j = 1, . . . , ν − 1. And by (113), ∆ν−1,ν−1 ≤ 1
1−δ2 . So the induction

hypothesis is satisfied for j = ν − 1, k = ν. Suppose the hypothesis holds for all ν ≥ k > j ≥ J + 1

where J ≥ 1. Want to show that the same holds for j = J . Evidently |cJν | ≤ δ. From (112) we

have, for k = J + 1, . . . , ν − 1

|cJk| ≤ ∆kk(|τJk|+
∑
k′>k

|τJk||ckk′ |) ≤
1

1− (ν − k)A2δ2
(δ +

ν∑
k′=k+1

δ ·Aδ) (by hypothesis)

=
δ(1 + (ν − k)Aδ)
1− (ν − k)A2δ2

≤ δ(1 + (ν − k)Aδ)
1− (ν − k)2A2δ2

=
δ

1− (ν − k)Aδ
≤ Aδ

Here the last inequality follows from the fact

1
1− (ν − k)Aδ

≤ A ⇔ 1− 1
A
≥ (ν − k)Aδ ⇔ δ ≤ A− 1

(ν − k)A2

and the last condition holds since δ < A−1
νA2 . The assertion about ∆JJ follows easily from this and

(113).

We are now in a position to finish the proof of Proposition B.1. We avoid all the messy details

since most of it is mere repitition of the analysis we carried out in Section 4. We just show how

the three terms behave asymptotically as n → ∞. Proposition 6 shows that for large n, ‖ ζk ‖2

concentrates around `kγ
∫

x
(ρk−x)2dFγ(x) = `kγ

(`k−1)2−1
. This and (104) imply that for every pair

j 6= k, τjk concentrates about 0. Therefore by Lemma B.3 we see that ζ̃j − ζj/ ‖ ζj ‖ is a

vector whose norm concentrates around zero. With this piece of information, we can strip off the

insignificant terms in (109) and (110) to claim that

trace(LTA,νSAB,νLB,ν) ∼
ν∑
k=1

1
‖ ζk ‖

R̃k

√
1− R̃2

k

√
`kt

T
kM1/2ζk

and trace(LTB,νSBBLB,ν) ∼
ν∑
k=1

1
‖ ζk ‖2

R̃2
kζ
T
kMζk

where ∼ means that the difference between the LHS and RHS concentrates around 0 as n → ∞.

Recalling (103) and (105), and using Proposition 6 and parts of the proof of Proposition 3, it is

easy to show that

trace(LTA,νSAA,νLA,ν) ∼
ν∑
k=1

1
1+ ‖ ζk ‖2

`k ∼
ν∑
k=1

`k

(
1 +

`kγ

(`k − 1)2 − γ

)−1

(115)
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trace(LTA,νSAB,νLB,ν) ∼
ν∑
k=1

1
1+ ‖ ζk ‖2

`kt
T
kM(ρkI −M)−1tk

∼
ν∑
k=1

`kγ

`k − 1

(
1 +

`kγ

(`k − 1)2 − γ

)−1

(116)

trace(LTA,νSAB,νLB,ν) ∼
ν∑
k=1

1
1+ ‖ ζk ‖2

`kt
T
kM2(ρkI −M)−2tk

∼
ν∑
k=1

`kγ

(
1 +

`kγ

(`k − 1)2 − γ

)−1 [ ρk
(`k − 1)2 − 1

− 1
`k − 1

]
(117)

Substituing (115), (116) and (117) in (107), after some simplification we get

trace(LTν SΓν
Lν) ∼

ν∑
k=1

ρk

Formalizing this argument we can prove (106).

8.3 Proof of Proposition 6

We simply give an outline. First consider the expansion

tTjM(ρI −M)−2tj − γ
∫

x

(ρ− x)2
dFγ(x)

=
[
tTjM(ρI −M)−2tj −

1
n
trace(M(ρI −M)−2)

]
+
[

1
n
trace(M(ρI −M)−2)− γ

∫
x

(ρ− x)2
dFγ(x)

]
For the first square-bracketed term use Lemma A.1 restricting to the set {µ1 < κγ+ε/2}. Subdivide

the second term further as

ρ

[
1
n
trace((ρI −M)−2)− γ

∫
1

(ρ− x)2
dFγ(x)

]
−
[

1
n
trace((ρI −M)−1)− γ

∫
1

ρ− x
dFγ(x)

]
= I − II, say.

Bounds for I and II on the set {µ1 < κγ + ε/2} are derived by imitating the arguments leading to

(47) and (45). Only notable difference is that for I we need to use the functionG2(·; ρ, γ, ε/2) instead

of G1(·; ρ, γ, ε/2). Keeping track of the constants we derive the upper bound in the statement of

Proposition 6.
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