Skip to main content

Targeted Drug Delivery Systems: Strategies and Challenges

  • Chapter
  • First Online:
Targeted Drug Delivery : Concepts and Design

Abstract

The past few decades have brought in advances for the many maladies existent in the world. Still, the want of complete cure in several diseases remains unfulfilled because of complications related to the therapeutic substance and the diseased tissue/infectious agents. Undesirable physicochemical properties and the potential of exhibiting unwanted adverse effects limit many potential leads. Moreover, many diseased tissues/infectious agents have a tendency of being inaccessible to the “free” drug dosage. To overcome such hurdles novel strategies are undertaken to target the diseased tissues. The advantage of targeted drug delivery is to enhance the presence of the active therapeutic substance at specifically desired location in the body whilst minimizing nonspecific side effects. Approaches undertaken for targeted drug delivery are several including chemical modifications to the drug, prodrugs, use of surface-functionalized nanocarriers, etc. The task of selecting a targeted drug delivery approach is intricate and depends on the therapeutic substance, the disease as well as the specific location of the disease. This chapter aims to provide an overview of the challenges and the strategies employed in targeted drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

DDS:

Drug delivery system

TDDS:

Targeted drug delivery system

HIV:

Human immunodeficiency virus

AIDS:

Acquired immunodeficiency syndrome

BBB:

Blood–brain barrier

RES:

Reticuloendothelial system

PEG:

Poly(ethylene) glycol

MNP:

Magnetic nanoparticles

SPION:

Superparamagnetic iron oxide nanoparticles

ADEPT:

Antibody-directed enzyme prodrug therapy

GDEPT:

Gene-directed enzyme prodrug therapy

DNA:

Deoxyribonucleic acid

RNA:

Ribonucleic acid

HSV:

Herpes simplex virus

EPR:

Enhanced permeability and retention

SLN:

Solid lipid nanoparticle

FDA:

Food and Drug Administration

siRNA:

Small inhibiting RNA

RNAi:

RNA interference

TNF-α:

Tumor necrosis factor alpha

WHO:

World Health Organization

TB:

Tuberculosis

MSNP:

Mesoporous silica nanoparticles

PEI:

Polyethyleneimine

CNS:

Central nervous system

RBC:

Red blood cells

PLA:

Poly (d,l-lactide)

HAART:

Highly active antiretroviral therapy

MDR:

Multidrug resistance

AZT:

Azidothymidine

BCSFB:

Blood–cerebrospinal fluid barrier

CMT:

Carrier-mediated transport

RME:

Receptor-mediated endocytosis

AME:

Absorptive-mediated endocytosis

APO E:

Apolipoprotein E

LDL:

Low density lipoprotein

CSSS:

Cyanoacrylate skin surface stripping

PLGA:

Poly (dl-lactide-co-glycolide)

BRB:

Blood–retinal barrier

RPE:

Retinal pigmented epithelium

P-gp:

P-glycoprotein

PepT:

Peptide transporters

IBD:

Inflammatory bowel diseases

IBS:

Irritable bowel syndrome

CDDS:

Colon targeted drug delivery systems

GIT:

Gastrointestinal tract

RISC:

RNA-induced silencing complex

CPPs:

Cell penetrating peptides

References

  1. Strebhardt K, Ullrich A (2008) Paul Ehrlich’s magic bullet concept: 100 years of progress. Nat Rev Cancer 8(6):473–480

    CAS  PubMed  Google Scholar 

  2. Langer R (2001) Drug delivery. Drugs on target. Science 293(5527):58–59

    CAS  PubMed  Google Scholar 

  3. Childress EM, Kleinstreuer C, Kennedy AS (2012) A new catheter for tumor-targeting with radioactive microspheres in representative hepatic artery systems–part II: solid tumor-targeting in a patient-inspired hepatic artery system. J Biomech Eng 134(5):051005

    CAS  PubMed  Google Scholar 

  4. Kleinstreuer C et al (2012) A new catheter for tumor targeting with radioactive microspheres in representative hepatic artery systems. Part I: impact of catheter presence on local blood flow and microsphere delivery. J Biomech Eng 134(5):051004

    CAS  PubMed  Google Scholar 

  5. Dunaevsky A (2013) The gene-gun approach for transfection and labeling of cells in brain slices. Methods Mol Biol 1018:111–118

    PubMed  Google Scholar 

  6. Han HK, Amidon GL (2000) Targeted prodrug design to optimize drug delivery. AAPS PharmSci 2(1):E6

    CAS  PubMed  Google Scholar 

  7. Mahato R, Tai W, Cheng K (2011) Prodrugs for improving tumor targetability and efficiency. Adv Drug Deliv Rev 63(8):659–670

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Torchilin VP (2006) Nanoparticulates as drug carriers. Imperial college press, London, UK

    Google Scholar 

  9. Garnett MC (2001) Targeted drug conjugates: principles and progress. Adv Drug Deliv Rev 53(2):171–216

    CAS  PubMed  Google Scholar 

  10. Crielaard BJ et al (2012) Drug targeting systems for inflammatory disease: one for all, all for one. J Control Release 161(2):225–234

    CAS  PubMed  Google Scholar 

  11. Stylianopoulos T (2013) EPR-effect: utilizing size-dependent nanoparticle delivery to solid tumors. Ther Deliv 4(4):421–423

    CAS  PubMed  Google Scholar 

  12. Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46(12 Pt 1):6387–6392

    CAS  PubMed  Google Scholar 

  13. Torchilin V (2011) Tumor delivery of macromolecular drugs based on the EPR effect. Adv Drug Deliv Rev 63(3):131–135

    CAS  PubMed  Google Scholar 

  14. Santos-Magalhaes NS, Mosqueira VC (2010) Nanotechnology applied to the treatment of malaria. Adv Drug Deliv Rev 62(4–5):560–575

    CAS  PubMed  Google Scholar 

  15. Torchilin VP (2007) Targeted pharmaceutical nanocarriers for cancer therapy and imaging. AAPS J 9(2):E128–E147

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Zhang X, Lin Y, Gillies RJ (2010) Tumor pH and its measurement. J Nucl Med 51(8):1167–1170

    CAS  PubMed  Google Scholar 

  17. Singh S, Khan AR, Gupta AK (2012) Role of glutathione in cancer pathophysiology and therapeutic interventions. J Exp Ther Oncol 9(4):303–316

    CAS  PubMed  Google Scholar 

  18. Sawant RR et al (2012) Polyethyleneimine-lipid conjugate-based pH-sensitive micellar carrier for gene delivery. Biomaterials 33(15):3942–3951

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Wu H, Zhu L, Torchilin VP (2013) pH-sensitive poly(histidine)-PEG/DSPE-PEG co-polymer micelles for cytosolic drug delivery. Biomaterials 34(4):1213–1222

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Liu J et al (2011) Redox-responsive polyphosphate nanosized assemblies: a smart drug delivery platform for cancer therapy. Biomacromolecules 12(6):2407–2415

    CAS  PubMed  Google Scholar 

  21. Pan YJ et al (2012) Redox/pH dual stimuli-responsive biodegradable nanohydrogels with varying responses to dithiothreitol and glutathione for controlled drug release. Biomaterials 33(27):6570–6579

    CAS  PubMed  Google Scholar 

  22. Lee ES, Na K, Bae YH (2005) Doxorubicin loaded pH-sensitive polymeric micelles for reversal of resistant MCF-7 tumor. J Control Release 103(2):405–418

    CAS  PubMed  Google Scholar 

  23. Veiseh O, Gunn JW, Zhang M (2010) Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv Drug Deliv Rev 62(3):284–304

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Chomoucka J et al (2010) Magnetic nanoparticles and targeted drug delivering. Pharmacol Res 62(2):144–149

    CAS  PubMed  Google Scholar 

  25. Kempe M et al (2010) The use of magnetite nanoparticles for implant-assisted magnetic drug targeting in thrombolytic therapy. Biomaterials 31(36):9499–9510

    CAS  PubMed  Google Scholar 

  26. Bi F et al (2009) Chemical conjugation of urokinase to magnetic nanoparticles for targeted thrombolysis. Biomaterials 30(28):5125–5130

    CAS  PubMed  Google Scholar 

  27. Chorny M et al (2010) Endothelial delivery of antioxidant enzymes loaded into non-polymeric magnetic nanoparticles. J Control Release 146(1):144–151

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Riegler J et al (2010) Targeted magnetic delivery and tracking of cells using a magnetic resonance imaging system. Biomaterials 31(20):5366–5371

    CAS  PubMed  Google Scholar 

  29. Pouponneau P et al (2011) Co-encapsulation of magnetic nanoparticles and doxorubicin into biodegradable microcarriers for deep tissue targeting by vascular MRI navigation. Biomaterials 32(13):3481–3486

    CAS  PubMed  Google Scholar 

  30. Hua MY et al (2010) Magnetic-nanoparticle-modified paclitaxel for targeted therapy for prostate cancer. Biomaterials 31(28):7355–7363

    CAS  PubMed  Google Scholar 

  31. Dilnawaz F et al (2010) Dual drug loaded superparamagnetic iron oxide nanoparticles for targeted cancer therapy. Biomaterials 31(13):3694–3706

    CAS  PubMed  Google Scholar 

  32. Enriquez GG et al (2013) Formulation and evaluation of drug-loaded targeted magnetic microspheres for cancer therapy. Int J Nanomedicine 8:1393–1402

    PubMed Central  PubMed  Google Scholar 

  33. Hua MY et al (2011) Superhigh-magnetization nanocarrier as a doxorubicin delivery platform for magnetic targeting therapy. Biomaterials 32(34):8999–9010

    CAS  PubMed  Google Scholar 

  34. Purushotham S, Ramanujan RV (2010) Thermoresponsive magnetic composite nanomaterials for multimodal cancer therapy. Acta Biomater 6(2):502–510

    CAS  PubMed  Google Scholar 

  35. Wang H et al (2012) Folate-targeting magnetic core-shell nanocarriers for selective drug release and imaging. Int J Pharm 430(1–2):342–349

    CAS  PubMed  Google Scholar 

  36. Dilnawaz F et al (2012) The transport of non-surfactant based paclitaxel loaded magnetic nanoparticles across the blood brain barrier in a rat model. Biomaterials 33(10):2936–2951

    CAS  PubMed  Google Scholar 

  37. Yang FY et al (2012) Focused ultrasound and interleukin-4 receptor-targeted liposomal doxorubicin for enhanced targeted drug delivery and antitumor effect in glioblastoma multiforme. J Control Release 160(3):652–658

    CAS  PubMed  Google Scholar 

  38. Park EJ et al (2012) Ultrasound-mediated blood-brain/blood-tumor barrier disruption improves outcomes with trastuzumab in a breast cancer brain metastasis model. J Control Release 163(3):277–284

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Nomikou N, McHale AP (2010) Exploiting ultrasound-mediated effects in delivering targeted, site-specific cancer therapy. Cancer Lett 296(2):133–143

    CAS  PubMed  Google Scholar 

  40. Nomikou N, Li YS, McHale AP (2010) Ultrasound-enhanced drug dispersion through solid tumours and its possible role in aiding ultrasound-targeted cancer chemotherapy. Cancer Lett 288(1):94–98

    CAS  PubMed  Google Scholar 

  41. Gasselhuber A et al (2012) Targeted drug delivery by high intensity focused ultrasound mediated hyperthermia combined with temperature-sensitive liposomes: computational modelling and preliminary in vivovalidation. Int J Hyperthermia 28(4):337–348

    CAS  PubMed  Google Scholar 

  42. Anderson CR et al (2011) Ultrasound molecular imaging of tumor angiogenesis with an integrin targeted microbubble contrast agent. Invest Radiol 46(4):215–224

    PubMed Central  PubMed  Google Scholar 

  43. Cochran MC et al (2011) Doxorubicin and paclitaxel loaded microbubbles for ultrasound triggered drug delivery. Int J Pharm 414(1–2):161–170

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Wang CH et al (2012) Aptamer-conjugated and drug-loaded acoustic droplets for ultrasound theranosis. Biomaterials 33(6):1939–1947

    CAS  PubMed  Google Scholar 

  45. Li P et al (2012) Ultrasound triggered drug release from 10-hydroxycamptothecin-loaded phospholipid microbubbles for targeted tumor therapy in mice. J Control Release 162(2):349–354

    CAS  PubMed  Google Scholar 

  46. Zhao YZ et al (2011) Enhancing chemotherapeutic drug inhibition on tumor growth by ultrasound: an in vivo experiment. J Drug Target 19(2):154–160

    CAS  PubMed  Google Scholar 

  47. Rapoport NY et al (2009) Controlled and targeted tumor chemotherapy by ultrasound-activated nanoemulsions/microbubbles. J Control Release 138(3):268–276

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Ting CY et al (2012) Concurrent blood-brain barrier opening and local drug delivery using drug-carrying microbubbles and focused ultrasound for brain glioma treatment. Biomaterials 33(2):704–712

    CAS  PubMed  Google Scholar 

  49. Korin N et al (2012) Shear-activated nanotherapeutics for drug targeting to obstructed blood vessels. Science 337(6095):738–742

    CAS  PubMed  Google Scholar 

  50. Uesugi Y et al (2010) An ultrasound-responsive nano delivery system of tissue-type plasminogen activator for thrombolytic therapy. J Control Release 147(2):269–277

    CAS  PubMed  Google Scholar 

  51. Sun L et al (2013) The use of cationic microbubbles to improve ultrasound-targeted gene delivery to the ischemic myocardium. Biomaterials 34(8):2107–2116

    CAS  PubMed  Google Scholar 

  52. Deckers R, Moonen CT (2010) Ultrasound triggered, image guided, local drug delivery. J Control Release 148(1):25–33

    CAS  PubMed  Google Scholar 

  53. Bohmer MR et al (2009) Ultrasound triggered image-guided drug delivery. Eur J Radiol 70(2):242–253

    PubMed  Google Scholar 

  54. Rapoport N et al (2011) Ultrasound-mediated tumor imaging and nanotherapy using drug loaded, block copolymer stabilized perfluorocarbon nanoemulsions. J Control Release 153(1):4–15

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Liu HL et al (2010) Magnetic resonance monitoring of focused ultrasound/magnetic nanoparticle targeting delivery of therapeutic agents to the brain. Proc Natl Acad Sci U S A 107(34):15205–15210

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Ranjan A et al (2012) Image-guided drug delivery with magnetic resonance guided high intensity focused ultrasound and temperature sensitive liposomes in a rabbit Vx2 tumor model. J Control Release 158(3):487–494

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Sharma SK et al (1994) Antibody-directed enzyme prodrug therapy (ADEPT). A three-phase study in ovarian tumor xenografts. Cell Biophys 24–25:219–228

    PubMed  Google Scholar 

  58. Rajendran L, Knolker HJ, Simons K (2010) Subcellular targeting strategies for drug design and delivery. Nat Rev Drug Discov 9(1):29–42

    CAS  PubMed  Google Scholar 

  59. Christopher ME, Wong JP (2006) Recent developments in delivery of nucleic acid-based antiviral agents. Curr Pharm Des 12(16):1995–2006

    CAS  PubMed  Google Scholar 

  60. Shan L et al (2012) A paclitaxel-conjugated adenovirus vector for targeted drug delivery for tumor therapy. Biomaterials 33(1):146–162

    CAS  PubMed  Google Scholar 

  61. Musacchio T et al (2010) Effective stabilization and delivery of siRNA: reversible siRNA-phospholipid conjugate in nanosized mixed polymeric micelles. Bioconjug Chem 21(8):1530–1536

    CAS  PubMed  Google Scholar 

  62. Buyens K et al (2012) Liposome based systems for systemic siRNA delivery: stability in blood sets the requirements for optimal carrier design. J Control Release 158(3):362–370

    CAS  PubMed  Google Scholar 

  63. Goula D et al (1998) Polyethylenimine-based intravenous delivery of transgenes to mouse lung. Gene Ther 5(9):1291–1295

    CAS  PubMed  Google Scholar 

  64. Patel NR et al (2013) Nanopreparations to overcome multidrug resistance in cancer. Adv Drug Deliv Rev 65(13–14):1748–1762

    CAS  PubMed  Google Scholar 

  65. Grupp SA et al (2013) Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med 368(16):1509–1518

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Maeda H, Bharate GY, Daruwalla J (2009) Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect. Eur J Pharm Biopharm 71(3):409–419

    CAS  PubMed  Google Scholar 

  67. Patil YB et al (2010) The use of nanoparticle-mediated targeted gene silencing and drug delivery to overcome tumor drug resistance. Biomaterials 31(2):358–365

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Patel NR et al (2011) Reversal of multidrug resistance by co-delivery of tariquidar (XR9576) and paclitaxel using long-circulating liposomes. Int J Pharm 416(1):296–299

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Bae S et al (2012) Doxorubicin-loaded human serum albumin nanoparticles surface-modified with TNF-related apoptosis-inducing ligand and transferrin for targeting multiple tumor types. Biomaterials 33(5):1536–1546

    CAS  PubMed  Google Scholar 

  70. Wagner S et al (2010) Enhanced drug targeting by attachment of an anti alphav integrin antibody to doxorubicin loaded human serum albumin nanoparticles. Biomaterials 31(8):2388–2398

    CAS  PubMed  Google Scholar 

  71. Sawant RR et al (2013) Targeted transferrin-modified polymeric micelles: enhanced efficacy in vitro and in vivo in ovarian carcinoma. Mol Pharm 11(2):375–381

    PubMed  Google Scholar 

  72. Lukyanov AN et al (2004) Tumor-targeted liposomes: doxorubicin-loaded long-circulating liposomes modified with anti-cancer antibody. J Control Release 100(1):135–144

    CAS  PubMed  Google Scholar 

  73. Abouzeid AH et al (2013) Anti-cancer activity of anti-GLUT1 antibody-targeted polymeric micelles co-loaded with curcumin and doxorubicin. J Drug Target 21(10):994–1000

    CAS  PubMed  Google Scholar 

  74. Zhu L, Torchilin VP (2013) Stimulus-responsive nanopreparations for tumor targeting. Integr Biol (Camb) 5(1):96–107

    CAS  Google Scholar 

  75. Koren E et al (2012) Multifunctional PEGylated 2C5-immunoliposomes containing pH-sensitive bonds and TAT peptide for enhanced tumor cell internalization and cytotoxicity. J Control Release 160(2):264–273

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Sawant RR, Torchilin VP (2011) Design and synthesis of novel functional lipid-based bioconjugates for drug delivery and other applications. Methods Mol Biol 751:357–378

    CAS  PubMed  Google Scholar 

  77. Perche F, Torchilin VP (2013) Recent trends in multifunctional liposomal nanocarriers for enhanced tumor targeting. J Drug Deliv 2013:705265

    PubMed Central  PubMed  Google Scholar 

  78. Torchilin VP (2006) Multifunctional nanocarriers. Adv Drug Deliv Rev 58(14):1532–1555

    CAS  PubMed  Google Scholar 

  79. Jackman AL, Leamon CP (2011) Targeted drug strategies for cancer and inflammation. Springer, New York, NY

    Google Scholar 

  80. Kratz F, Senter P, Steinhagen H (2012) Drug delivery in oncology: from basic research to cancer therapy. Weinheim, Wiley-VCH-Verlag

    Google Scholar 

  81. Neidle S (2013) Cancer drug design and discovery. Elsevier Science, Amsterdam

    Google Scholar 

  82. Tew K, Fisher P (2013) Advances in cancer research. Elsevier Science, Amsterdam

    Google Scholar 

  83. Giaccone G, Soria JC (2013) Targeted therapies in oncology. Taylor & Francis, London

    Google Scholar 

  84. Antoniadou A et al (2013) Impact of a hospital-wide antibiotic restriction policy program on the resistance rates of nosocomial Gram-negative bacteria. Scand J Infect Dis 45(6):438–445

    PubMed  Google Scholar 

  85. Hurdle JG et al (2011) Targeting bacterial membrane function: an underexploited mechanism for treating persistent infections. Nat Rev Microbiol 9(1):62–75

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Sharma A et al (2012) Nano-technology for targeted drug delivery to combat antibiotic resistance. Expert Opin Drug Deliv 9(11):1325–1332

    CAS  PubMed  Google Scholar 

  87. Zhang L et al (2010) Development of nanoparticles for antimicrobial drug delivery. Curr Med Chem 17(6):585–594

    CAS  PubMed  Google Scholar 

  88. Takemoto K et al (2004) Comparative studies on the efficacy of Am Bisome and Fungizone in a mouse model of disseminated aspergillosis. J Antimicrob Chemother 53(2):311–317

    CAS  PubMed  Google Scholar 

  89. Umamaheshwari RB, Jain NK (2003) Receptor mediated targeting of lectin conjugated gliadin nanoparticles in the treatment of Helicobacter pylori. J Drug Target 11(7):415–423, discussion 423–424

    CAS  PubMed  Google Scholar 

  90. Subramanya S et al (2010) Targeted delivery of small interfering RNA to human dendritic cells to suppress dengue virus infection and associated proinflammatory cytokine production. J Virol 84(5):2490–2501

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Koul A et al (2011) The challenge of new drug discovery for tuberculosis. Nature 469(7331):483–490

    CAS  PubMed  Google Scholar 

  92. Kaneko T, Cooper C, Mdluli K (2011) Challenges and opportunities in developing novel drugs for TB. Future Med Chem 3(11):1373–1400

    CAS  PubMed  Google Scholar 

  93. Clemens DL et al (2012) Targeted intracellular delivery of antituberculosis drugs to Mycobacterium tuberculosis-infected macrophages via functionalized mesoporous silica nanoparticles. Antimicrob Agents Chemother 56(5):2535–2545

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Bhatt K, Salgame P (2007) Host innate immune response to Mycobacterium tuberculosis. J Clin Immunol 27(4):347–362

    CAS  PubMed  Google Scholar 

  95. Chono S et al (2008) Efficient drug targeting to rat alveolar macrophages by pulmonary administration of ciprofloxacin incorporated into mannosylated liposomes for treatment of respiratory intracellular parasitic infections. J Control Release 127(1):50–58

    CAS  PubMed  Google Scholar 

  96. Wijagkanalan W et al (2008) Efficient targeting to alveolar macrophages by intratracheal administration of mannosylated liposomes in rats. J Control Release 125(2):121–130

    CAS  PubMed  Google Scholar 

  97. Pandey R, Khuller GK (2005) Solid lipid particle-based inhalable sustained drug delivery system against experimental tuberculosis. Tuberculosis (Edinb) 85(4):227–234

    CAS  Google Scholar 

  98. Abdulla S et al (2013) Randomized, controlled trial of the long term safety, immunogenicity and efficacy of RTS, S/AS02(D) malaria vaccine in infants living in a malaria-endemic region. Malar J 12:11

    PubMed Central  PubMed  Google Scholar 

  99. Qiu L, Jing N, Jin Y (2008) Preparation and in vitro evaluation of liposomal chloroquine diphosphate loaded by a transmembrane pH-gradient method. Int J Pharm 361(1–2):56–63

    CAS  PubMed  Google Scholar 

  100. Robertson RT et al (2008) Liposomes incorporating a Plasmodium amino acid sequence target heparan sulfate binding sites in liver. J Pharm Sci 97(8):3257–3273

    CAS  PubMed  Google Scholar 

  101. Haynes SM et al (2008) Liposomal polyethyleneglycol and polyethyleneglycol-peptide combinations for active targeting to liver in vivo. Drug Deliv 15(4):207–217

    CAS  PubMed  Google Scholar 

  102. Tsai MS et al (2011) Binding patterns of peptide-containing liposomes in liver and spleen of developing mice: comparison with heparan sulfate immunoreactivity. J Drug Target 19(7):506–515

    CAS  PubMed  Google Scholar 

  103. Mosqueira VC et al (2004) Efficacy and pharmacokinetics of intravenous nanocapsule formulations of halofantrine in Plasmodium berghei-infected mice. Antimicrob Agents Chemother 48(4):1222–1228

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Gupta Y, Jain A, Jain SK (2007) Transferrin-conjugated solid lipid nanoparticles for enhanced delivery of quinine dihydrochloride to the brain. J Pharm Pharmacol 59(7):935–940

    CAS  PubMed  Google Scholar 

  105. Agrawal AK, Gupta CM (2000) Tuftsin-bearing liposomes in treatment of macrophage-based infections. Adv Drug Deliv Rev 41(2):135–146

    CAS  PubMed  Google Scholar 

  106. Olotu A et al (2013) Four-year efficacy of RTS, S/AS01E and its interaction with malaria exposure. N Engl J Med 368(12):1111–1120

    CAS  PubMed  Google Scholar 

  107. Moorthy VS et al (2013) Assessment of the RTS, S/AS01 malaria vaccine. Lancet Infect Dis 13(4):280–282

    CAS  PubMed  Google Scholar 

  108. Schrager LK, D’Souza MP (1998) Cellular and anatomical reservoirs of HIV-1 in patients receiving potent antiretroviral combination therapy. JAMA 280(1):67–71

    CAS  PubMed  Google Scholar 

  109. Gupta U, Jain NK (2010) Non-polymeric nano-carriers in HIV/AIDS drug delivery and targeting. Adv Drug Deliv Rev 62(4–5):478–490

    CAS  PubMed  Google Scholar 

  110. Taylor PR et al (2005) Macrophage receptors and immune recognition. Annu Rev Immunol 23:901–944

    CAS  PubMed  Google Scholar 

  111. Mishra V et al (2006) Targeted brain delivery of AZT via transferrin anchored pegylated albumin nanoparticles. J Drug Target 14(1):45–53

    CAS  PubMed  Google Scholar 

  112. Kaur CD, Nahar M, Jain NK (2008) Lymphatic targeting of zidovudine using surface-engineered liposomes. J Drug Target 16(10):798–805

    CAS  PubMed  Google Scholar 

  113. Shah LK, Amiji MM (2006) Intracellular delivery of saquinavir in biodegradable polymeric nanoparticles for HIV/AIDS. Pharm Res 23(11):2638–2645

    CAS  PubMed  Google Scholar 

  114. Gunaseelan S et al (2010) Surface modifications of nanocarriers for effective intracellular delivery of anti-HIV drugs. Adv Drug Deliv Rev 62(4–5):518–531

    CAS  PubMed Central  PubMed  Google Scholar 

  115. das Neves J et al (2010) Nanotechnology-based systems for the treatment and prevention of HIV/AIDS. Adv Drug Deliv Rev 62(4–5):458–477

    CAS  PubMed  Google Scholar 

  116. Wong HL et al (2010) Nanotechnology applications for improved delivery of antiretroviral drugs to the brain. Adv Drug Deliv Rev 62(4–5):503–517

    CAS  PubMed  Google Scholar 

  117. Alam MI et al (2010) Strategy for effective brain drug delivery. Eur J Pharm Sci 40(5):385–403

    CAS  PubMed  Google Scholar 

  118. Pardridge WM (2003) Blood-brain barrier drug targeting: the future of brain drug development. Mol Interv 3(2):90, -105, 51

    CAS  PubMed  Google Scholar 

  119. Roney C et al (2005) Targeted nanoparticles for drug delivery through the blood-brain barrier for Alzheimer’s disease. J Control Release 108(2–3):193–214

    CAS  PubMed  Google Scholar 

  120. Westphal M et al (2006) Gliadel wafer in initial surgery for malignant glioma: long-term follow-up of a multicenter controlled trial. Acta Neurochir (Wien) 148(3):269–275, discussion 275

    CAS  Google Scholar 

  121. Beduneau A, Saulnier P, Benoit JP (2007) Active targeting of brain tumors using nanocarriers. Biomaterials 28(33):4947–4967

    CAS  PubMed  Google Scholar 

  122. Temsamani J et al (2000) Brain drug delivery technologies: novel approaches for transporting therapeutics. Pharm Sci Technolo Today 3(5):155–162

    CAS  PubMed  Google Scholar 

  123. Begley DJ (2004) Delivery of therapeutic agents to the central nervous system: the problems and the possibilities. Pharmacol Ther 104(1):29–45

    CAS  PubMed  Google Scholar 

  124. Wang M, Etu J, Joshi S (2007) Enhanced disruption of the blood brain barrier by intracarotid mannitol injection during transient cerebral hypoperfusion in rabbits. J Neurosurg Anesthesiol 19(4):249–256

    PubMed  Google Scholar 

  125. Cosolo WC et al (1989) Blood-brain barrier disruption using mannitol: time course and electron microscopy studies. Am J Physiol 256(2 Pt 2):R443–R447

    CAS  PubMed  Google Scholar 

  126. Doolittle ND et al (1998) Blood-brain barrier disruption for the treatment of malignant brain tumors: The National Program. J Neurosci Nurs 30(2):81–90

    CAS  PubMed  Google Scholar 

  127. Erdlenbruch B et al (2002) Increased delivery of erucylphosphocholine to C6 gliomas by chemical opening of the blood-brain barrier using intracarotid pentylglycerol in rats. Cancer Chemother Pharmacol 50(4):299–304

    CAS  PubMed  Google Scholar 

  128. Cloughesy TF, Black KL (1995) Pharmacological blood-brain barrier modification for selective drug delivery. J Neurooncol 26(2):125–132

    CAS  PubMed  Google Scholar 

  129. Salahuddin TS et al (1988) Observations on exsudation of fibronectin, fibrinogen and albumin in the brain after carotid infusion of hyperosmolar solutions. An immunohistochemical study in the rat indicating longlasting changes in the brain microenvironment and multifocal nerve cell injuries. Acta Neuropathol 76(1):1–10

    CAS  PubMed  Google Scholar 

  130. Sawynok J (1986) The therapeutic use of heroin: a review of the pharmacological literature. Can J Physiol Pharmacol 64(1):1–6

    CAS  PubMed  Google Scholar 

  131. Yang SC et al (1999) Body distribution in mice of intravenously injected camptothecin solid lipid nanoparticles and targeting effect on brain. J Control Release 59(3):299–307

    CAS  PubMed  Google Scholar 

  132. Tsuji A (2005) Small molecular drug transfer across the blood-brain barrier via carrier-mediated transport systems. NeuroRx 2(1):54–62

    PubMed Central  PubMed  Google Scholar 

  133. Mena I, Cotzias GC (1975) Protein intake and treatment of Parkinson’s disease with levodopa. N Engl J Med 292(4):181–184

    CAS  PubMed  Google Scholar 

  134. Pardridge WM (1992) Recent developments in peptide drug delivery to the brain. Pharmacol Toxicol 71(1):3–10

    CAS  PubMed  Google Scholar 

  135. Pardridge WM (2001) Brain drug targeting and gene technologies. Jpn J Pharmacol 87(2):97–103

    CAS  PubMed  Google Scholar 

  136. Thole M et al (2002) Uptake of cationzied albumin coupled liposomes by cultured porcine brain microvessel endothelial cells and intact brain capillaries. J Drug Target 10(4):337–344

    CAS  PubMed  Google Scholar 

  137. Vorbrodt AW (1989) Ultracytochemical characterization of anionic sites in the wall of brain capillaries. J Neurocytol 18(3):359–368

    CAS  PubMed  Google Scholar 

  138. Bickel U et al (1994) In vivo demonstration of subcellular localization of anti-transferrin receptor monoclonal antibody-colloidal gold conjugate in brain capillary endothelium. J Histochem Cytochem 42(11):1493–1497

    CAS  PubMed  Google Scholar 

  139. Shi N, Pardridge WM (2000) Noninvasive gene targeting to the brain. Proc Natl Acad Sci U S A 97(13):7567–7572

    CAS  PubMed Central  PubMed  Google Scholar 

  140. Gosk S et al (2004) Targeting anti-transferrin receptor antibody (OX26) and OX26-conjugated liposomes to brain capillary endothelial cells using in situ perfusion. J Cereb Blood Flow Metab 24(11):1193–1204

    CAS  PubMed  Google Scholar 

  141. Beduneau A et al (2007) Design of targeted lipid nanocapsules by conjugation of whole antibodies and antibody Fab′ fragments. Biomaterials 28(33):4978–4990

    CAS  PubMed  Google Scholar 

  142. Pardridge WM (2010) Biopharmaceutical drug targeting to the brain. J Drug Target 18(3):157–167

    CAS  PubMed  Google Scholar 

  143. Pardridge WM et al (1995) Human insulin receptor monoclonal antibody undergoes high affinity binding to human brain capillaries in vitro and rapid transcytosis through the blood-brain barrier in vivo in the primate. Pharm Res 12(6):807–816

    CAS  PubMed  Google Scholar 

  144. Dehouck B et al (1994) Upregulation of the low density lipoprotein receptor at the blood-brain barrier: intercommunications between brain capillary endothelial cells and astrocytes. J Cell Biol 126(2):465–473

    CAS  PubMed  Google Scholar 

  145. Meresse S et al (1989) Low-density lipoprotein receptor on endothelium of brain capillaries. J Neurochem 53(2):340–345

    CAS  PubMed  Google Scholar 

  146. Ramge P et al (2000) Polysorbate-80 coating enhances uptake of polybutylcyanoacrylate (PBCA)-nanoparticles by human and bovine primary brain capillary endothelial cells. Eur J Neurosci 12(6):1931–1940

    CAS  PubMed  Google Scholar 

  147. Alyautdin RN et al (1997) Delivery of loperamide across the blood-brain barrier with polysorbate 80-coated polybutylcyanoacrylate nanoparticles. Pharm Res 14(3):325–328

    CAS  PubMed  Google Scholar 

  148. Ambruosi A et al (2006) Biodistribution of polysorbate 80-coated doxorubicin-loaded [14C]-poly(butyl cyanoacrylate) nanoparticles after intravenous administration to glioblastoma-bearing rats. J Drug Target 14(2):97–105

    CAS  PubMed  Google Scholar 

  149. Wilson B et al (2008) Targeted delivery of tacrine into the brain with polysorbate 80-coated poly(n-butylcyanoacrylate) nanoparticles. Eur J Pharm Biopharm 70(1):75–84

    CAS  PubMed  Google Scholar 

  150. Wilson B et al (2008) Poly(n-butylcyanoacrylate) nanoparticles coated with polysorbate 80 for the targeted delivery of rivastigmine into the brain to treat Alzheimer’s disease. Brain Res 1200:159–168

    CAS  PubMed  Google Scholar 

  151. Blasi P et al (2007) Solid lipid nanoparticles for targeted brain drug delivery. Adv Drug Deliv Rev 59(6):454–477

    CAS  PubMed  Google Scholar 

  152. Salem AK et al (2001) Synthesis and characterisation of a degradable poly(lactic acid)-poly(ethylene glycol) copolymer with biotinylated end groups. Biomacromolecules 2(2):575–580

    CAS  PubMed  Google Scholar 

  153. Prow TW et al (2011) Nanoparticles and microparticles for skin drug delivery. Adv Drug Deliv Rev 63(6):470–491

    CAS  PubMed  Google Scholar 

  154. Papakostas D et al (2011) Nanoparticles in dermatology. Arch Dermatol Res 303(8):533–550

    CAS  PubMed  Google Scholar 

  155. Agrawal U et al (2013) Hyperbranched dendritic nano-carriers for topical delivery of dithranol. J Drug Target 21(5):497–506

    CAS  PubMed  Google Scholar 

  156. Bhalekar MR et al (2009) Preparation and evaluation of miconazole nitrate-loaded solid lipid nanoparticles for topical delivery. AAPS PharmSciTech 10(1):289–296

    CAS  PubMed Central  PubMed  Google Scholar 

  157. Liu J et al (2007) Isotretinoin-loaded solid lipid nanoparticles with skin targeting for topical delivery. Int J Pharm 328(2):191–195

    CAS  PubMed  Google Scholar 

  158. Maia CS, Mehnert W, Schafer-Korting M (2000) Solid lipid nanoparticles as drug carriers for topical glucocorticoids. Int J Pharm 196(2):165–167

    CAS  PubMed  Google Scholar 

  159. Tang T et al (2011) Targeting superficial or nodular Basal cell carcinoma with topically formulated small molecule inhibitor of smoothened. Clin Cancer Res 17(10):3378–3387

    CAS  PubMed Central  PubMed  Google Scholar 

  160. de Jalon EG et al (2001) PLGA microparticles: possible vehicles for topical drug delivery. Int J Pharm 226(1–2):181–184

    PubMed  Google Scholar 

  161. Pierre MB, Dos Santos Miranda Costa I (2011) Liposomal systems as drug delivery vehicles for dermal and transdermal applications. Arch Dermatol Res 303(9):607–621

    CAS  PubMed  Google Scholar 

  162. Knorr F et al (2009) Follicular transport route–research progress and future perspectives. Eur J Pharm Biopharm 71(2):173–180

    CAS  PubMed  Google Scholar 

  163. Lademann J et al (2001) Investigation of follicular penetration of topically applied substances. Skin Pharmacol Appl Skin Physiol 14(Suppl 1):17–22

    PubMed  Google Scholar 

  164. Lademann J et al (2008) Hair follicles–an efficient storage and penetration pathway for topically applied substances. Summary of recent results obtained at the Center of Experimental and Applied Cutaneous Physiology, Charite -Universitatsmedizin Berlin, Germany. Skin Pharmacol Physiol 21(3):150–155

    CAS  PubMed  Google Scholar 

  165. Toll R et al (2004) Penetration profile of microspheres in follicular targeting of terminal hair follicles. J Invest Dermatol 123(1):168–176

    CAS  PubMed  Google Scholar 

  166. Meidan VM, Bonner MC, Michniak BB (2005) Transfollicular drug delivery–is it a reality? Int J Pharm 306(1–2):1–14

    CAS  PubMed  Google Scholar 

  167. Blume-Peytavi U, Vogt A (2011) Human hair follicle: reservoir function and selective targeting. Br J Dermatol 165(Suppl 2):13–17

    CAS  PubMed  Google Scholar 

  168. Otberg N et al (2007) Follicular penetration of topically applied caffeine via a shampoo formulation. Skin Pharmacol Physiol 20(4):195–198

    CAS  PubMed  Google Scholar 

  169. Agarwal R, Katare OP, Vyas SP (2000) The pilosebaceous unit: a pivotal route for topical drug delivery. Methods Find Exp Clin Pharmacol 22(2):129–133

    CAS  PubMed  Google Scholar 

  170. Jain B et al (2010) Development and characterization of minoxidil-loaded liposomal system for delivery to pilosebaceous units. J Liposome Res 20(2):105–114

    CAS  PubMed  Google Scholar 

  171. Balsari AL et al (1994) Protection against doxorubicin-induced alopecia in rats by liposome-entrapped monoclonal antibodies. FASEB J 8(2):226–230

    CAS  PubMed  Google Scholar 

  172. Yarosh D et al (1994) Localization of liposomes containing a DNA repair enzyme in murine skin. J Invest Dermatol 103(4):461–468

    CAS  PubMed  Google Scholar 

  173. Gupta PN et al (2005) Non-invasive vaccine delivery in transfersomes, niosomes and liposomes: a comparative study. Int J Pharm 293(1–2):73–82

    CAS  PubMed  Google Scholar 

  174. Wosicka H, Cal K (2010) Targeting to the hair follicles: current status and potential. J Dermatol Sci 57(2):83–89

    CAS  PubMed  Google Scholar 

  175. Rytting E et al (2008) Biodegradable polymeric nanocarriers for pulmonary drug delivery. Expert Opin Drug Deliv 5(6):629–639

    CAS  PubMed  Google Scholar 

  176. Vyas SP, Khatri K (2007) Liposome-based drug delivery to alveolar macrophages. Expert Opin Drug Deliv 4(2):95–99

    CAS  PubMed  Google Scholar 

  177. Shoyele SA, Cawthorne S (2006) Particle engineering techniques for inhaled biopharmaceuticals. Adv Drug Deliv Rev 58(9–10):1009–1029

    CAS  PubMed  Google Scholar 

  178. Garcia-Contreras L et al (2006) Evaluation of dosing regimen of respirable rifampicin biodegradable microspheres in the treatment of tuberculosis in the guinea pig. J Antimicrob Chemother 58(5):980–986

    CAS  PubMed  Google Scholar 

  179. Ruijgrok EJ, Vulto AG, Van Etten EW (2001) Efficacy of aerosolized amphotericin B desoxycholate and liposomal amphotericin B in the treatment of invasive pulmonary aspergillosis in severely immunocompromised rats. J Antimicrob Chemother 48(1):89–95

    CAS  PubMed  Google Scholar 

  180. Vyas SP et al (2005) Aerosolized liposome-based delivery of amphotericin B to alveolar macrophages. Int J Pharm 296(1–2):12–25

    CAS  PubMed  Google Scholar 

  181. Vyas SP et al (2004) Design of liposomal aerosols for improved delivery of rifampicin to alveolar macrophages. Int J Pharm 269(1):37–49

    CAS  PubMed  Google Scholar 

  182. Zhang Q, Shen Z, Nagai T (2001) Prolonged hypoglycemic effect of insulin-loaded polybutylcyanoacrylate nanoparticles after pulmonary administration to normal rats. Int J Pharm 218(1–2):75–80

    CAS  PubMed  Google Scholar 

  183. Kawashima Y et al (1999) Pulmonary delivery of insulin with nebulized DL-lactide/glycolide copolymer (PLGA) nanospheres to prolong hypoglycemic effect. J Control Release 62(1–2):279–287

    CAS  PubMed  Google Scholar 

  184. Amidi M et al (2008) Preparation and physicochemical characterization of supercritically dried insulin-loaded microparticles for pulmonary delivery. Eur J Pharm Biopharm 68(2):191–200

    CAS  PubMed  Google Scholar 

  185. Howard KA et al (2006) RNA interference in vitro and in vivo using a novel chitosan/siRNA nanoparticle system. Mol Ther 14(4):476–484

    CAS  PubMed  Google Scholar 

  186. Kennedy BG, Mangini NJ (2002) P-glycoprotein expression in human retinal pigment epithelium. Mol Vis 8:422–430

    CAS  PubMed  Google Scholar 

  187. Marmor MF (1975) Structure and function of the retinal pigment epithelium. Int Ophthalmol Clin 15(1):115–130

    CAS  PubMed  Google Scholar 

  188. Duvvuri S, Majumdar S, Mitra AK (2003) Drug delivery to the retina: challenges and opportunities. Expert Opin Biol Ther 3(1):45–56

    CAS  PubMed  Google Scholar 

  189. Urtti A (2006) Challenges and obstacles of ocular pharmacokinetics and drug delivery. Adv Drug Deliv Rev 58(11):1131–1135

    CAS  PubMed  Google Scholar 

  190. Janoria KG et al (2007) Novel approaches to retinal drug delivery. Expert Opin Drug Deliv 4(4):371–388

    CAS  PubMed  Google Scholar 

  191. Lee SS, Hughes PM, Robinson MR (2009) Recent advances in drug delivery systems for treating ocular complications of systemic diseases. Curr Opin Ophthalmol 20(6):511–519

    PubMed  Google Scholar 

  192. Geroski DH, Edelhauser HF (2000) Drug delivery for posterior segment eye disease. Invest Ophthalmol Vis Sci 41(5):961–964

    CAS  PubMed  Google Scholar 

  193. Kaur IP, Kanwar M (2002) Ocular preparations: the formulation approach. Drug Dev Ind Pharm 28(5):473–493

    CAS  PubMed  Google Scholar 

  194. Diaz-Llopis M et al (1992) Liposomally-entrapped ganciclovir for the treatment of cytomegalovirus retinitis in AIDS patients. Eperimental toxicity and pharmacokinetics, and clinical trial. Doc Ophthalmol 82(4):297–305

    CAS  PubMed  Google Scholar 

  195. Veloso AA Jr et al (1997) Ganciclovir-loaded polymer microspheres in rabbit eyes inoculated with human cytomegalovirus. Invest Ophthalmol Vis Sci 38(3):665–675

    PubMed  Google Scholar 

  196. Maurice D (2001) Review: practical issues in intravitreal drug delivery. J Ocul Pharmacol Ther 17(4):393–401

    CAS  PubMed  Google Scholar 

  197. Bourges JL et al (2003) Ocular drug delivery targeting the retina and retinal pigment epithelium using polylactide nanoparticles. Invest Ophthalmol Vis Sci 44(8):3562–3569

    PubMed  Google Scholar 

  198. Sakurai E et al (2001) Scleral plug of biodegradable polymers containing ganciclovir for experimental cytomegalovirus retinitis. Invest Ophthalmol Vis Sci 42(9):2043–2048

    CAS  PubMed  Google Scholar 

  199. Kim TW et al (2002) Intraocular distribution of 70-kDa dextran after subconjunctival injection in mice. Invest Ophthalmol Vis Sci 43(6):1809–1816

    PubMed  Google Scholar 

  200. Hosoya K, Tachikawa M (2009) Inner blood-retinal barrier transporters: role of retinal drug delivery. Pharm Res 26(9):2055–2065

    CAS  PubMed  Google Scholar 

  201. Han H et al (1998) 5′-Amino acid esters of antiviral nucleosides, acyclovir, and AZT are absorbed by the intestinal PEPT1 peptide transporter. Pharm Res 15(8):1154–1159

    CAS  PubMed  Google Scholar 

  202. McConnell EL, Short MD, Basit AW (2008) An in vivo comparison of intestinal pH and bacteria as physiological trigger mechanisms for colonic targeting in man. J Control Release 130(2):154–160

    CAS  PubMed  Google Scholar 

  203. Matsuda K et al (1996) Effect of food intake on the delivery of fluorescein as a model drug in colon delivery capsule after oral administration to beagle dogs. J Drug Target 4(2):59–67

    CAS  PubMed  Google Scholar 

  204. Patel MM (2011) Cutting-edge technologies in colon-targeted drug delivery systems. Expert Opin Drug Deliv 8(10):1247–1258

    CAS  PubMed  Google Scholar 

  205. Philip AK, Philip B (2010) Colon targeted drug delivery systems: a review on primary and novel approaches. Oman Med J 25(2):79–87

    PubMed Central  PubMed  Google Scholar 

  206. Ishibashi T et al (1999) In vivo drug release behavior in dogs from a new colon-targeted delivery system. J Control Release 57(1):45–53

    CAS  PubMed  Google Scholar 

  207. Yang L, Chu JS, Fix JA (2002) Colon-specific drug delivery: new approaches and in vitro/in vivo evaluation. Int J Pharm 235(1–2):1–15

    CAS  PubMed  Google Scholar 

  208. Friend DR, Chang GW (1985) Drug glycosides: potential prodrugs for colon-specific drug delivery. J Med Chem 28(1):51–57

    CAS  PubMed  Google Scholar 

  209. Friend DR, Chang GW (1984) A colon-specific drug-delivery system based on drug glycosides and the glycosidases of colonic bacteria. J Med Chem 27(3):261–266

    CAS  PubMed  Google Scholar 

  210. Saffran M et al (1991) Oral insulin in diabetic dogs. J Endocrinol 131(2):267–278

    CAS  PubMed  Google Scholar 

  211. Shantha KL, Ravichandran P, Rao KP (1995) Azo polymeric hydrogels for colon targeted drug delivery. Biomaterials 16(17):1313–1318

    CAS  PubMed  Google Scholar 

  212. Lamprecht A et al (2001) Biodegradable nanoparticles for targeted drug delivery in treatment of inflammatory bowel disease. J Pharmacol Exp Ther 299(2):775–781

    CAS  PubMed  Google Scholar 

  213. Eckert DM, Kim PS (2001) Mechanisms of viral membrane fusion and its inhibition. Annu Rev Biochem 70:777–810

    CAS  PubMed  Google Scholar 

  214. Zhou G, Chu S (2013) Discovery of small molecule fusion inhibitors targeting HIV-1 gp41. Curr Pharm Des 19(10):1818–1826

    CAS  PubMed  Google Scholar 

  215. Gruenberg J (2001) The endocytic pathway: a mosaic of domains. Nat Rev Mol Cell Biol 2(10):721–730

    CAS  PubMed  Google Scholar 

  216. Duan H, Nie S (2007) Cell-penetrating quantum dots based on multivalent and endosome-disrupting surface coatings. J Am Chem Soc 129(11):3333–3338

    CAS  PubMed  Google Scholar 

  217. Suma T et al (2012) Smart multilayered assembly for biocompatible siRNA delivery featuring dissolvable silica, endosome-disrupting polycation, and detachable PEG. ACS Nano 6(8):6693–6705

    CAS  PubMed  Google Scholar 

  218. Grabowski GA, Hopkin RJ (2003) Enzyme therapy for lysosomal storage disease: principles, practice, and prospects. Annu Rev Genomics Hum Genet 4:403–436

    CAS  PubMed  Google Scholar 

  219. Koshkaryev A et al (2011) Targeting of lysosomes by liposomes modified with octadecyl-rhodamine B. J Drug Target 19(8):606–614

    CAS  PubMed Central  PubMed  Google Scholar 

  220. Thekkedath R, Koshkaryev A, Torchilin VP (2013) Lysosome-targeted octadecyl-rhodamine B-liposomes enhance lysosomal accumulation of glucocerebrosidase in Gaucher’s cells in vitro. Nanomedicine (Lond) 8(7):1055–1065

    CAS  Google Scholar 

  221. Torchilin VP (2007) Tatp-mediated intracellular delivery of pharmaceutical nanocarriers. Biochem Soc Trans 35(Pt 4):816–820

    CAS  PubMed  Google Scholar 

  222. Sawant RR, Torchilin VP (2009) Enhanced cytotoxicity of TATp-bearing paclitaxel-loaded micelles in vitro and in vivo. Int J Pharm 374(1–2):114–118

    CAS  PubMed Central  PubMed  Google Scholar 

  223. Kale AA, Torchilin VP (2007) “Smart” drug carriers: PEGylated TATp-modified pH-sensitive liposomes. J Liposome Res 17(3–4):197–203

    CAS  PubMed Central  PubMed  Google Scholar 

  224. Patel LN, Zaro JL, Shen WC (2007) Cell penetrating peptides: intracellular pathways and pharmaceutical perspectives. Pharm Res 24(11):1977–1992

    CAS  PubMed  Google Scholar 

  225. Law B et al (2006) A mitochondrial targeted fusion peptide exhibits remarkable cytotoxicity. Mol Cancer Ther 5(8):1944–1949

    CAS  PubMed  Google Scholar 

  226. Muratovska A et al (2001) Targeting large molecules to mitochondria. Adv Drug Deliv Rev 49(1–2):189–198

    CAS  PubMed  Google Scholar 

  227. Szeto HH (2006) Mitochondria-targeted peptide antioxidants: novel neuroprotective agents. AAPS J 8(3):E521–E531

    CAS  PubMed Central  PubMed  Google Scholar 

  228. Szeto HH (2008) Development of mitochondria-targeted aromatic-cationic peptides for neurodegenerative diseases. Ann N Y Acad Sci 1147:112–121

    CAS  PubMed  Google Scholar 

  229. Biswas S et al (2012) Liposomes loaded with paclitaxel and modified with novel triphenylphosphonium-PEG-PE conjugate possess low toxicity, target mitochondria and demonstrate enhanced antitumor effects in vitro and in vivo. J Control Release 159(3):393–402

    CAS  PubMed Central  PubMed  Google Scholar 

  230. Patel NR et al (2010) Mitochondria-targeted liposomes improve the apoptotic and cytotoxic action of sclareol. J Liposome Res 20(3):244–249

    CAS  PubMed  Google Scholar 

  231. Biswas S et al (2012) Surface conjugation of triphenylphosphonium to target poly(amidoamine) dendrimers to mitochondria. Biomaterials 33(18):4773–4782

    CAS  PubMed Central  PubMed  Google Scholar 

  232. Biswas S et al (2011) Surface modification of liposomes with rhodamine-123-conjugated polymer results in enhanced mitochondrial targeting. J Drug Target 19(7):552–561

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir P. Torchilin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Controlled Release Society

About this chapter

Cite this chapter

Pattni, B.S., Torchilin, V.P. (2015). Targeted Drug Delivery Systems: Strategies and Challenges. In: Devarajan, P., Jain, S. (eds) Targeted Drug Delivery : Concepts and Design. Advances in Delivery Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-11355-5_1

Download citation

Publish with us

Policies and ethics