Skip to main content

Advertisement

Log in

Landscape genetic structure of chestnut (Castanea sativa Mill.) in Spain

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

The current need for forest conservation and management has driven a rapid expansion of landscape genetics approach. This discipline combines tools from molecular genetics, landscape ecology and spatial statistics and is decisive for improving not only ecological knowledge but also for properly managing population genetic resources. This approach could be appropriate to sweet chestnut (Castanea sativa Mill.), a multipurpose species of great economic importance in the Mediterranean basin and a species considered to be a good model of integration between natural and human-driven distribution of diversity. Sixteen chestnut populations, covering the distribution range of the species in Spain, were analysed using seven microsatellite markers. Results revealed a high level of genetic diversity in Spanish chestnut populations, which in part followed a geographical pattern, although distribution was not homogeneous. Likewise, areas particularly rich in diversity were detected, facilitating the development of a hypothesis about the history of chestnut in Spain. In conclusion, these results provide valuable baseline data for more in-depth studies on chestnut landscape genetics that can contribute to its conservation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adua M (1999) The sweet chestnut throughout history from the Miocene to the third millennium. Acta Hort 494:29–36

    Google Scholar 

  • Allendorf FW, Hohenlohe PA, Luikart G (2010) Genomics and the future of conservation genetics. Nat Rev Genet 11:697–709

    Article  PubMed  CAS  Google Scholar 

  • Allué JL (1990) Atlas fitoclimático de España. Monografías INIA, no 69. MAPA-INIA, Madrid, p 221

    Google Scholar 

  • Booy G, Hendricks RJJ, Smulders MJM, van Groenendael JM, Vosman B (2000) Genetic diversity and the survival of populations. Plant Biol 2:379–395

    Article  Google Scholar 

  • Buck EJ, Russell K, Hadonou M, James CJ, Blakesley D (2003) Isolation and characterization of polymorphic microsatellites in European chestnut (Castanea sativa Mill.). Mol Ecol Notes 3:239–241

    Article  CAS  Google Scholar 

  • Columela LJM (1979) De Res Rustica. Siglo I d.C. Los doce libros de Agricultura. Editorial Iberia, Barcelona

    Google Scholar 

  • Conedera M, Krebs P, Tinner W, Pradella M, Torriani D (2004) The cultivation of Castanea sativa Miller in Europe, from its origin to its diffusion on a continental scale. Veg Hist Archaebot 13:161–179

    Google Scholar 

  • Costa M, Morla C, Sainz H (1998) Los bosques ibéricos. Una interpretación paleobotánica. Editorial Planeta, Barcelona

    Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of cluster of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  PubMed  CAS  Google Scholar 

  • Fady B, Conord C (2010) Macroecological patterns of species and genetic diversity in vascular plants of the Mediterranean basin. Diversity Distrib 16:53–64

    Article  Google Scholar 

  • Fernandez-Lopez J, Monteagudo AB (2010) Genetic structure of wild Spanish populations of Castanea sativa as revealed by isozyme analysis. Forest Systems 19:156–169

    Google Scholar 

  • Fineschi S, Taurchini D, Villani F, Vendarmin GG (2000) Chlororplast DNA polymorphism reveals little geograpgical structure in Castanea sativa Mill. (Fagaceae) throughout southern European countries. Mol Ecol 9:1495–1503

    Article  PubMed  CAS  Google Scholar 

  • Frankman R, Ralls K (1998) Conservation biology: inbreeding leads to extinction. Nature 392:441–442

    Article  Google Scholar 

  • Garcia-Anton M, Morla C, Sainz H (1990) Consideraciones sobre la presencia de algunos vegetales relictos terciarios durante el cuaternario en la Península Ibérica. Bol R Soc Esp Hist Nat (Sec Biol) 86:95–105

    Google Scholar 

  • Gomez A, Vendramin GG, Gonzalez-Martinez S, Alia R (2005) Genetic diversity and differentiation of two Mediterranean pines (Pinus halepensis Mill. and Pinus pinaster Ait.) along a latitudinal cline using chloroplast microsatellite markers. Drivers Distribution 11:257–263

    Article  Google Scholar 

  • Gomez-Sanz V, Blanco-Andray A, Sánchez-Palomares O, Rubio-Sánchez A, Elena-Roselló R, Graña-Domínguez D (2002) Autoecología de los castañares andaluces. Inv Agrar Sist Rec F 11:205–226

    Google Scholar 

  • Goudet J (2002) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3.2). Available from http://www.unil.ch/izea/softwares/fstat.html. Accessed 15 Sept 2010

  • Gupta PK, Balyan IS, Sharma PC, Ramesh B (1996) Microsatellite in plants—a new class of molecular markers. Curr Sci 70:45–54

    CAS  Google Scholar 

  • Hedrick PW (2005) A standardised genetic differentiation measure. Evolution 59:1633–1638

    PubMed  CAS  Google Scholar 

  • Holderegger R, Wagner HH (2008) Landscape genetics. Bioscience 58:199–207

    Article  Google Scholar 

  • Huntley B, Kirks HJB (1983) An atlas of past and present pollen maps for Europe: 0–13,000 years ago. Cambridge University Press, Cambridge

    Google Scholar 

  • Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 14:1801–1806

    Google Scholar 

  • Krebs P, Conedera M, Pradella M, Torriani D, Felber M, Tinner W (2004) Quaternary refugia of the sweet chestnut (Castanea sativa Miller): an extended palynological approach. Veg Hist Archaebot 13:145–160

    Google Scholar 

  • Latta RG (2006) Integrating patterns across multiple genetic markers to infer spatial process. Landscape Ecol 21:809–820

    Article  Google Scholar 

  • Lauteri M, Monteverdi MC, Sansotta A, Cherubini M, Spaccino L, Villani F, Küçük M (1998) Adaptation to drought in European chestnut. Evidences from a hybrid zone and from controlled crosses between drought and wet adpated populations. Acta Hort 494:345–353

    Google Scholar 

  • Manel S, Schwartz MK, Luikart G, Taberlet P (2003) Landscape genetics: combining landscape ecology and population genetics. Trends Ecol Evol 18:189–197

    Article  Google Scholar 

  • Manly BFJ (1985) The statistics of natural selection. Chapman and Hall, London

    Google Scholar 

  • Marinoni D, Akkak A, Bounous G, Edwards KJ, Botta R (2003) Development and characterization of microsatellite markers in Castanea sativa (Mill.). Mol Breeding 11:127–136

    Article  CAS  Google Scholar 

  • Martín MA, Alvarez JB, Mattioni C, Cherubini M, Villani F, Martín LM (2009) Identification and characterisation of traditional chestnut varieties of southern Spain using morphological and simple sequence repeats SSR markers. Ann Appl Biol 154:389–398

    Article  Google Scholar 

  • Martín MA, Mattioni C, Cherubini M, Taurchini D, Villani F (2010) Neutral and adaptive genetic diversity in European chestnut populations by means of genomic and genic microsatellite markers. Tree Genet Genom 6:735–744

    Article  Google Scholar 

  • Mattioni C, Cherubini M, Micheli E, Villani F, Bucci G (2008) Role of domestication in shaping Castanea sativa genetic variation in Europe. Tree Genet Genomes 4:563–574

    Article  Google Scholar 

  • Miller MP (2005) Alleles in the Space (AIS): computer software for the joint analysis of interindividual spatial and genetic information. J Heredity 96:722–724

    Article  CAS  Google Scholar 

  • Monmonier M (1973) Maximun-differences barriers: an alternative numerical regionalization method. Geogr Anal 5:245–261

    Article  Google Scholar 

  • Namkoong G (2001) Forest genetics: pattern and complexity. Can J Forest Res 31:623–632

    CAS  Google Scholar 

  • Nei M (1972) Genetic distance between populations. Amer Nat 106:283–392

    Article  Google Scholar 

  • Oddou-Muratorio S, Demuse-Munsh B, Pélissier R, Gouyon PH (2004) Impacts of gene flow and logging history on the local genetic structure of scattered tree species, Sorbus torminalis L. Crantz. Mol Ecol 13:3689–3702

    Article  PubMed  Google Scholar 

  • Pautasso M (2009) Geographical genetics and the conservation of forest trees. Perspect Plant Ecol 11:157–189

    Article  Google Scholar 

  • Pereira-Lorenzo S, Costa R, Ramos-Cabrer A, Ribeiro C, da Silva M, Manzano G, Barreneche T (2010) Variation in grafted european chestnut and hybrids microsatellite reveals two main origins in the Iberian Peninsula. Tree Genet Genom 5:701–715

    Article  Google Scholar 

  • Petit RJ, Latouche-Hallé C, Pemonge MH, Kremer A (2002) Chloroplast DNA variation of oaks in France and the influence of forest fragmentation on genetic diversity. Forest Ecol Manag 156:115–129

    Article  Google Scholar 

  • Powell W, Machray GC, Provan J (1996) Polymorphism revealed by simple sequence repeats. Trends Plant Sci 1:215–222

    Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Rivas-Martinez S (1987) Memoria del mapa de vegetación de España. 1:400.000. ICONA, MAPA, Madrid, p 110

    Google Scholar 

  • Rosenberg NA (2004) DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138

    Google Scholar 

  • Saccheri I, Kuussaari M, Kankare M, Vikman P, Fortelius W, Hanski I (1998) Inbreeding and extintion in a butterfly metapopulation. Nature 392:491–494

    Article  CAS  Google Scholar 

  • Schneider S, Roessli D, Excoffier L (2000) Arlequin: a software for population genetics data analysis, version 3.1. Genetics and Biometry Laboratory, Department of Anthropology, University of Geneva

  • Shachak M, Boeken B, Groner E, Kadmon R, Lubin Y, Meron E, Neeman G, Perevolotsky A, Shkedy Y, Ungar ED (2008) Woody species as landscape modulators and their effect on biodiversity patterns. Bioscience 58:209–221

    Article  Google Scholar 

  • Sork VL, Smouse PE (2006) Genetic analysis of landscape connectivity in tree populations. Landscape Ecol 21:821–836

    Article  Google Scholar 

  • Storfer A, Murphy MA, Evans JS, Goldberg CS, Robinson S, Spear SF, Dezzani R, Delmelle E, Vierling L, Waits LP (2007) Putting the ‘landscape’ in landscape genetics. Heredity 98:128–142

    Article  PubMed  CAS  Google Scholar 

  • Tautz D, Renz M (1984) Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Res 12:4127–4138

    Article  PubMed  CAS  Google Scholar 

  • Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Micro-Checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  • Vendramin GG, Scotti I, Ziegenhagen B (2004) Microsatellites in forest tree species: characteristics, identification and application. In: Kumar S, Fladung M (eds) Molecular genetics and breeding of forest trees. Haworth Press, New York, p 429

    Google Scholar 

  • Villani F, Sansota A, Cherubini M, Cesaroni D, Sbordoni V (1999) Genetic structure of natural populations of Castanea sativa in Turkey: evidence of a hybrid zone. J Evol Biol 12:233–244

    Article  Google Scholar 

  • Watson DF (1992) Contouring: a guide to the analysis and display of spatial data. Pergamon Press, New York

    Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of populations structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Wright JP, Jones CG (2006) The concept of organisms as ecosystem engineers ten years on: progress, limitations, and challenges. Bioscience 56:203–209

    Article  Google Scholar 

  • Yeh FC, Yang RC, Boyle TBJ, Ye ZH, Mao JX (1997) Popgene ver 1.32. The user-friendly software for population genetic analysis. Molecular Biology and Biotechnology Center, University of Alberta, Canada

    Google Scholar 

Download references

Acknowledgements

This research was supported by grants AGL2009-07931 and AGL2010-15147 from the Spanish Ministry of Science and Innovation and the European Regional Development Fund (FEDER) from the European Union. The first author is grateful to the Alfonso Martin Escudero Foundation for a postdoctoral fellowship and the hosting institute of the fellowship, Agroenvironmental and Forest Biology Institute from the Italian National Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Angela Martín.

Additional information

Communicated by A. Kremer

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table

Pairwise F ST estimates among all populations of chestnut included in this study. Significant pairwise comparisons (P < 0.05) are included in bold (DOC 56 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martín, M.A., Mattioni, C., Molina, J.R. et al. Landscape genetic structure of chestnut (Castanea sativa Mill.) in Spain. Tree Genetics & Genomes 8, 127–136 (2012). https://doi.org/10.1007/s11295-011-0427-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-011-0427-x

Keywords

Navigation