Abstract

Many models for the spread of infectious diseases in populations have been analyzed mathematically and applied to specific diseases. Threshold theorems involving the basic reproduction number $R_{0}$, the contact number $\sigma$, and the replacement number R are reviewed for the classic SIR epidemic and endemic models. Similar results with new expressions for $R_{0}$ are obtained for MSEIR and SEIR endemic models with either continuous age or age groups. Values of $R_{0}$ and $\sigma$ are estimated for various diseases including measles in Niger and pertussis in the United States. Previous models with age structure, heterogeneity, and spatial structure are surveyed.

MSC codes

  1. 92D30
  2. 34C23
  3. 34C60
  4. 35B32
  5. 35F25

Keywords

  1. thresholds
  2. basic reproduction number
  3. contact number
  4. epidemiology
  5. infectious diseases

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
F. R. Adler, The effects of averaging on the basic reproduction ratio, Math. Biosci., 111 (1992), pp. 89–98.
2.
L. J. S. Allen, Some discrete‐time SI, SIR, and SIS epidemic models, Math. Biosci., 124 (1994), pp. 83–105.
3.
L. J. S. Allen and A. M. Burgin, Comparison of deterministic and stochastic SIS and SIR models in discrete‐time, Math. Biosci., 163 (2000), pp. 1–33.
4.
H. Amann, Ordinary Differential Equations, Walter de Gruyter, Berlin, 1990.
5.
R. M. Anderson, ed., Population Dynamics of Infectious Diseases, Chapman and Hall, London, 1982.
6.
R. M. Anderson, ed., The role of mathematical models in the study of HIV transmission and the epidemiology of AIDS, J. AIDS, 1 (1988), pp. 241–256.
7.
R. M. Anderson and R. M. May, Population biology of infectious diseases I, Nature, 180 (1979), pp. 361–367.
8.
R. M. Anderson and R. M. May, The population dynamics of microparasites and their invertebrate hosts, Philos. Trans. Roy. Soc. London Ser. B, 291 (1981), pp. 451–524.
9.
R. M. Anderson and R. M. May, eds., Population Biology of Infectious Diseases, Springer‐Verlag, Berlin, Heidelberg, New York, 1982.
10.
R. M. Anderson and R. M. May, eds., Vaccination against rubella and measles: Quantitative investigations of different policies, J. Hyg. Camb., 90 (1983), pp. 259–325.
11.
R. M. Anderson and R. M. May, eds., Age related changes in the rate of disease transmission: Implication for the design of vaccination programs, J. Hyg. Camb., 94 (1985), pp. 365–436.
12.
R. M. Anderson and R. M. May, eds., Infectious Diseases of Humans: Dynamics and Control, Oxford University Press, Oxford, UK, 1991.
13.
R. M. Anderson, G. P. Medley, R. M. May, and A. M. Johnson, A preliminary study of the transmission dynamics of the human immunodeficiency virus, the causative agent of AIDS, IMA J. Math. Appl. Med. Biol., 3 (1986), pp. 229–263.
14.
V. Andreasen, Disease regulation of age‐structured host populations, Theoret. Population Biol., 36 (1989), pp. 214–239.
15.
V. Andreasen, The effect of age‐dependent host mortality on the dynamics of an endemic disease, Math. Biosci., 114 (1993), pp. 29–58.
16.
V. Andreasen, Instability in an SIR‐model with age‐dependent susceptibility, in Mathematical Population Dynamics, Vol. 1, O. Arino, D. Axelrod, M. Kimmel, and M. Langlais, eds., Wuerz Publishing, Winnipeg, MB, Canada, 1995, pp. 3–14.
17.
V. Andreasen, J. Lin, and S. A. Levin, The dynamics of cocirculating influenza strains conferring partial cross‐immunity, J. Math. Biol., 35 (1997), pp. 825–842.
18.
N. T. J. Bailey, The Mathematical Theory of Infectious Diseases, 2nd ed., Hafner, New York, 1975.
19.
N. T. J. Bailey, The Biomathematics of Malaria, Charles Griffin, London, 1982.
20.
M. Bartlett, Stochastic Population Models in Ecology and Epidemiology, Methuen, London, 1960.
21.
N. Becker, The use of epidemic models, Biometrics, 35 (1978), pp. 295–305.
22.
N. Becker, Analysis of Infectious Disease Data, Chapman and Hall, New York, 1989.
23.
A. S. Benenson, Control of Communicable Diseases in Man, 16th ed., American Public Health Association, Washington, DC, 1995.
24.
D. Bernoulli, Essai d’une nouvelle analyse de la mortalité causée par la petite vérole et des avantages de l’inoculation pour la prévenir, in Mémoires de Mathématiques et de Physique, Académie Royale des Sciences, Paris, 1760, pp. 1–45.
25.
F. L. Black, W. J. Hierholzer, F. D. P. Pinheiro, et al., Evidence for the persistence of infectious disease agents in isolated human populations, Am. J. Epidemiol., 100 (1974), pp. 230–250.
26.
S. P. Blythe and C. Castillo‐Chavez, Like with like preference and sexual mixing models, Math. Biosci., 96 (1989), pp. 221–238.
27.
B. M. Bolker and B. T. Grenfell, Chaos and biological complexity in measles dynamics, Proc. Roy. Soc. London Ser. B, 251 (1993), pp. 75–81.
28.
J. Bongaarts, A model of the spread of HIV infection and the demographic impact of AIDS, Stat. Med., 8 (1989), pp. 103–120.
29.
F. Brauer, Models for the spread of universally fatal diseases, J. Math. Biol., 28 (1990), pp. 451–462.
30.
H. J. Bremermann and H. R. Thieme, A competitive exclusion principle for pathogen virulence, J. Math. Biol., 27 (1989), pp. 179–190.
31.
M. Burnett and D. O. White, Natural History of Infectious Disease, 4th ed., Cambridge University Press, Cambridge, UK, 1974.
32.
S. Busenberg and C. Castillo‐Chavez, A general solution of the problem of mixing of subpopulations and its application to risk‐ and age‐structured models for the spread of AIDS, IMA J. Math. Appl. Med. Biol., 8 (1991), pp. 1–29.
33.
S. Busenberg and K. L. Cooke, Vertically Transmitted Diseases, Biomathematics 23, Springer‐Verlag, Berlin, 1993.
34.
S. N. Busenberg, K. L. Cooke, and M. Iannelli, Endemic thresholds and stability in a class of age‐structured epidemics, SIAM J. Appl. Math., 48 (1988), pp. 1379–1395.
35.
S. N. Busenberg and K. P. Hadeler, Demography and epidemics, Math. Biosci., 101 (1990), pp. 41–62.
36.
S. N. Busenberg, M. Iannelli, and H. R. Thieme, Global behavior of an age‐structured epidemic model, SIAM J. Math. Anal., 22 (1991), pp. 1065–1080.
37.
S. N. Busenberg and P. van den Driessche, Analysis of a disease transmission model in a population with varying size, J. Math. Biol., 28 (1990), pp. 257–270.
38.
V. Capasso, Mathematical Structures of Epidemic Systems, Lecture Notes in Biomath. 97, Springer‐Verlag, Berlin, 1993.
39.
C. Castillo‐Chavez, ed., Mathematical and Statistical Approaches to AIDS Epidemiology, Lecture Notes in Biomath. 83, Springer‐Verlag, Berlin, 1989.
40.
C. Castillo‐Chavez, H. W. Hethcote, V. Andreasen, S. A. Levin, and W. M. Liu, Epidemiological models with age structure, proportionate mixing, and cross‐immunity, J. Math. Biol., 27 (1989), pp. 233–258.
41.
C. Castillo‐Chavez, W. Huang, and J. Li, Competitive exclusion in gonorrhea models and other sexually‐transmitted diseases, SIAM J. Appl. Math., 56 (1996), pp. 494–508.
42.
C. Castillo‐Chavez, W. Huang, and J. Li, Competitive exclusion and multiple strains in an SIS STD model, SIAM J. Appl. Math., 59 (1999), pp. 1790–1811.
43.
Centers for Disease Control and Prevention, Summary of notifiable diseases, United States, 1998, MMWR, 47 (1999), pp. 78–83.
44.
Centers for Disease Control and Prevention, Ten great public health achievements—United States, 1900–1999, MMWR, 48 (1999), pp. 241–248.
45.
Centers for Disease Control and Prevention, Progress toward global poliomyelitis eradication, 1997–1998, MMWR, 48 (1999), pp. 416–421.
46.
Centers for Disease Control and Prevention, Rubella outbreak—Westchester County, New York, 1997–1998, MMWR, 48 (1999), pp. 560–563.
47.
Centers for Disease Control and Prevention, Epidemiology of measles—United States, 1998, MMWR, 48 (1999), pp. 749–753.
48.
Centers for Disease Control and Prevention, Global measles control and regional elimination, 1998–99, MMWR, 48 (1999), pp. 1124–1130.
49.
Centers for Disease Control and Prevention, Update: Raccoon rabies epizootic—United States and Canada, 1999, MMWR, 49 (2000), pp. 31–35.
50.
Centers for Disease Control and Prevention, Recommended childhood immunization schedule—United States, 2000, MMWR, 49 (2000), pp. 35–47.
51.
Centers for Disease Control and Prevention, Update: Influenza activity—United States, 1999–2000 season, MMWR, 49 (2000), pp. 53–57.
52.
Centers for Disease Control and Prevention, Measles outbreak—Netherlands, April 1999–January 2000, MMWR, 49 (2000), pp. 299–303.
53.
Y. Cha, M. Iannelli, and F. A. Milner, Existence and uniqueness of endemic states for age‐structured S‐I‐R epidemic model, Math. Biosci., 150 (1998), pp. 177–190.
54.
A. D. Cliff, Incorporating spatial components into models of epidemic spread, in Epidemic Models: Their Structure and Relation to Data, D. Mollison, ed., Cambridge University Press, Cambridge, UK, 1996, pp. 119–149.
55.
A. D. Cliff and P. Haggett, Atlas of Disease Distributions: Analytic Approaches to Epidemiological Data, Blackwell, London, 1988.
56.
D. J. Daley and J. Gani, Epidemic Modelling: An Introduction, Cambridge University Press, Cambridge, UK, 1999.
57.
M. C. M. De Jong, O. Diekmann, and J. A. P. Heesterbeek, How does transmission depend on population size?, in Human Infectious Diseases, Epidemic Models, D. Mollison, ed., Cambridge University Press, Cambridge, UK, 1995, pp. 84–94.
58.
O. Diekmann, J. A. P. Heesterbeek, and J. A. J. Metz, On the definition and the computation of the basic reproduction ratio R 0 in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), pp. 365–382.
59.
O. Diekmann and J. A. P. Heesterbeek, Mathematical Epidemiology of Infectious Diseases, Wiley, New York, 2000.
60.
K. Dietz, Epidemics and rumours: A survey, J. Roy. Statist. Soc. Ser. A, 130 (1967), pp. 505–528.
61.
K. Dietz, Transmission and control of arbovirus diseases, in Epidemiology, K. L. Cooke, ed., SIAM, Philadelphia, 1975, pp. 104–121.
62.
K. Dietz, The incidence of infectious diseases under the influence of seasonal fluctuations, in Mathematical Models in Medicine, J. Berger, W. Buhler, R. Repges, and P. Tautu, eds., Lecture Notes in Biomath. 11, Springer‐Verlag, Berlin, 1976, pp. 1–15.
63.
K. Dietz, Epidemiologic interference of virus populations, J. Math. Biol., 8 (1979), pp. 291–300.
64.
K. Dietz, The evaluation of rubella vaccination strategies, in The Mathematical Theory of the Dynamics of Populations, Vol. 2, R. W. Hiorns and D. Cooke, eds., Academic Press, London, 1981, pp. 81–97.
65.
K. Dietz, Density dependence in parasite transmission dynamics, Parasit. Today, 4 (1988), pp. 91–97.
66.
K. Dietz, The first epidemic model: A historical note on P. D. En’ko, Austral. J. Statist., 30A (1988), pp. 56‐65.
67.
K. Dietz and D. Schenzle, Mathematical models for infectious disease statistics, in A Celebration of Statistics, A. C. Atkinson and S. E. Feinberg, eds., Springer‐Verlag, New York, 1985, pp. 167–204.
68.
K. Dietz and D. Schenzle, Proportionate mixing models for age‐dependent infection transmission, J. Math. Biol., 22 (1985), pp. 117–120.
69.
R. Durrett, Stochastic spatial models, SIAM Rev., 41 (1999), pp. 677–718.
70.
G. Dwyer, S. A. Levin, and L. Buttel, A simulation model of the population dynamics and evolution of myxomatosis, Ecological Monographs, 60 (1990), pp. 423–447.
71.
D. J. D. Earn, P. Rohani, B. M. Bolker, and B. T. Grenfell, A simple model for complex dynamical transitions in epidemics, Science, 287 (2000), pp. 667–670.
72.
M. El‐Doma, Analysis of nonlinear integro‐differential equations arising in age‐dependent epidemic models, Nonlinear Anal., 11 (1987), pp. 913–937.
73.
L. Esteva and C. Vargas, Analysis of a dengue disease transmission model, Math. Biosci., 150 (1998), pp. 131–151.
74.
L. Esteva and C. Vargas, A model for dengue disease with variable human population, J. Math. Biol., 38 (1999), pp. 220–240.
75.
A. S. Evans, Viral Infections of Humans, 2nd ed., Plenum Medical Book Company, New York, 1982.
76.
Z. Feng and J. X. Velasco‐Hernandez, Competitive exclusion in a vector‐host model for the dengue fever, J. Math. Biol., 35 (1997), pp. 523–544.
77.
F. Fenner, D. A. Henderson, I. Arita, Z. Jezek, and I. D. Ladnyi, Smallpox and its Eradication, World Health Organization, Geneva, 1988.
78.
N. M. Ferguson, R. M. Anderson, and G. P. Garnett, Mass vaccination to control chickenpox: The influence of zoster, Rev. Med. Virology, 6 (1996), pp. 151–161.
79.
N. M. Ferguson, D. J. Nokes, and R. M. Anderson, Dynamical complexity in age‐structured models of the transmission of measles virus: Epidemiological implications of high levels of vaccine uptake, Math. Biosci., 138 (1996), pp. 101–130.
80.
J. C. Frauenthal, Mathematical Modeling in Epidemiology, Springer‐Verlag Universitext, Berlin, 1980.
81.
J. P. Gabriel, C. Lefever, and P. Picard, eds., Stochastic Processes in Epidemic Theory, Springer‐Verlag, Berlin, 1990.
82.
L. Garrett, The Coming Plague, Penguin, New York, 1995.
83.
L. Q. Gao and H. W. Hethcote, Disease transmission models with density‐dependent demographics, J. Math. Biol., 30 (1992), pp. 717–731.
84.
L. Gao, J. Mena‐Lorca, and H. W. Hethcote, Four SEI endemic models with periodicity and separatrices, Math. Biosci., 128 (1995), pp. 157–184.
85.
L. Gao, J. Mena‐Lorca, and H. W. Hethcote, Variations on a theme of SEI endemic models, in Differential Equations and Applications to Biology and to Industry, M. Martelli, K. Cooke, E. Cumberbatch, B. Tang, and H. Thieme, eds., World Scientific Publishing, Singapore, 1996, pp. 191–207.
86.
D. Greenhalgh, Analytical threshold and stability results on age‐structured epidemic models with vaccination, Theoret. Population Biol., 33 (1988), pp. 266–290.
87.
D. Greenhalgh, Vaccination campaigns for common childhood diseases, Math. Biosci., 100 (1990), pp. 201–240.
88.
D. Greenhalgh and R. Das, Some threshold and stability results for epidemic models with a density dependent death rate, Theoret. Population Biol., 42 (1992), pp. 130–151.
89.
B. T. Grenfell and R. M. Anderson, Pertussis in England and Wales: An investigation of transmission dynamics and control by mass vaccination, Proc. Roy. Soc. London Ser. B, 236 (1989), pp. 213–252.
90.
B. T. Grenfell and A. P. Dobson, eds., Ecology of Infectious Diseases in Natural Populations, Cambridge University Press, Cambridge, UK, 1995.
91.
G. Gripenberg, On a nonlinear integral equation modelling an epidemic in an age‐structured population, J. Reine Angew. Math., 341 (1983), pp. 147–158.
92.
J. K. Hale, Ordinary Differential Equations, Wiley‐Interscience, New York, 1969.
93.
M. E. Halloran, S. L. Cochi, T. A. Lieu, M. Wharton, and L. Fehrs, Theoretical epidemiologic and morbidity effects of routine varicella immunization of preschool children in the United States, Am. J. Epidemiol., 140 (1994), pp. 81–104.
94.
M. E. Halloran, L. Watelet, and C. J. Struchiner, Epidemiological effects of vaccines with complex direct effects in an age‐structured population, Math. Biosci., 121 (1994), pp. 193–225.
95.
W. H. Hamer, Epidemic disease in England, Lancet, 1 (1906), pp. 733–739.
96.
H. W. Hethcote, Qualitative analyses of communicable disease models, Math. Biosci., 28 (1976), pp. 335–356.
97.
H. W. Hethcote, An immunization model for a heterogeneous population, Theoret. Population Biol., 14 (1978), pp. 338–349.
98.
H. W. Hethcote, Measles and rubella in the United States, Am. J. Epidemiol., 117 (1983), pp. 2–13.
99.
H. W. Hethcote, Optimal ages of vaccination for measles, Math. Biosci., 89 (1988), pp. 29–52.
100.
H. W. Hethcote, Three basic epidemiological models, in Applied Mathematical Ecology, L. Gross, T. G. Hallam, and S. A. Levin, eds., Springer‐Verlag, Berlin, 1989, pp. 119–144.
101.
H. W. Hethcote, Rubella, in Applied Mathematical Ecology, L. Gross, T. G. Hallam, and S. A. Levin, eds., Springer‐Verlag, Berlin, 1989, pp. 212–234.
102.
H. W. Hethcote, A thousand and one epidemic models, in Frontiers in Theoretical Biology, S. A. Levin, ed., Lecture Notes in Biomath. 100, Springer‐Verlag, Berlin, 1994, pp. 504–515.
103.
H. W. Hethcote, Modeling heterogeneous mixing in infectious disease dynamics, in Models for Infectious Human Diseases, V. Isham and G. F. H. Medley, eds., Cambridge University Press, Cambridge, UK, 1996, pp. 215–238.
104.
H. W. Hethcote, Modeling AIDS prevention programs in a population of homosexual men, in Modeling the AIDS Epidemic: Planning, Policy and Prediction, E. H. Kaplan and M. L. Brandeau, eds., Raven Press, New York, 1994, pp. 91–107.
105.
H. W. Hethcote, An age‐structured model for pertussis transmission, Math. Biosci., 145 (1997), pp. 89–136.
106.
H. W. Hethcote, Simulations of pertussis epidemiology in the United States: Effects of adult booster vaccinations, Math. Biosci., 158 (1999), pp. 47–73.
107.
H. W. Hethcote and S. A. Levin, Periodicity in epidemiological models, in Applied Mathematical Ecology, L. Gross, T. G. Hallam, and S. A. Levin, eds., Springer‐Verlag, Berlin, 1989, pp. 193–211.
108.
H. W. Hethcote, Y. Li, and Z. J. Jing, Hopf bifurcation in models for pertussis epidemiology, Math. Comput. Modelling, 30 (1999), pp. 29–45.
109.
H. W. Hethcote, H. W. Stech, and P. van den Driessche, Periodicity and stability in epidemic models: A survey, in Differential Equations and Applications in Ecology, Epidemics and Population Problems, S. N. Busenberg and K. L. Cooke, eds., Academic Press, New York, 1981, pp. 65–82.
110.
H. W. Hethcote and J. W. Van Ark, Epidemiological models with heterogeneous populations: Proportionate mixing, parameter estimation and immunization programs, Math. Biosci., 84 (1987), pp. 85–118.
111.
H. W. Hethcote and J. W. Van Ark, Modeling HIV Transmission and AIDS in the United States, Lecture Notes in Biomath. 95, Springer‐Verlag, Berlin, 1992.
112.
H. W. Hethcote and P. van den Driessche, Some epidemiological models with nonlinear incidence, J. Math. Biol., 29 (1991), pp. 271–287.
113.
H. W. Hethcote and J. A. Yorke, Gonorrhea Transmission Dynamics and Control, Lecture Notes in Biomath. 56, Springer‐Verlag, Berlin, 1984.
114.
F. Hoppensteadt, Mathematical Theories of Populations: Demographics, Genetics and Epidemics, SIAM, Philadelphia, 1975.
115.
W. Huang, K. L. Cooke, and C. Castillo‐Chavez, Stability and bifurcation for a multiple‐group model for the dynamics of HIV/AIDS transmission, SIAM J. Appl. Math., 52 (1992), pp. 835–854.
116.
H. F. Hull, N. A. Ward, B. F. Hull, J. B. Milstein, and C. de Quatros, Paralytic poliomyelitis: Seasoned strategies, disappearing disease, Lancet, 343 (1994), pp. 1331–1337.
117.
S. S. Hutchins, L. E. Markowitz, W. L. Atkinson, E. Swint, and S. Hadler, Measles outbreaks in the United States, 1987 through 1990, Pediatr. Infect. Dis. J., 15 (1996), pp. 31–38.
118.
J. M. Hyman and E. A. Stanley, Using mathematical models to understand the AIDS epidemic, Math. Biosci., 90 (1988), pp. 415–473.
119.
J. M. Hyman and E. A. Stanley, The effect of social mixing patterns on the spread of AIDS, in Mathematical Approaches to Problems in Resource Management and Epidemiology, C. Castillo‐Chavez, S. A. Levin, and C. Shoemaker, eds., Lecture Notes in Biomath. 81, Springer‐Verlag, New York, 1989.
120.
J. M. Hyman, J. Li, and E. A. Stanley, Threshold conditions for the spread of HIV infection in age‐structured populations of homosexual men, J. Theoret. Biol., 166 (1994), pp. 9–31.
121.
J. M. Hyman, J. Li, and E. A. Stanley, The differential infectivity and staged progression models for the transmission of HIV, Math. Biosci., 155 (1999), pp. 77–109.
122.
J. M. Hyman and J. Li, An intuitive formulation for the reproductive number for the spread of diseases in heterogeneous populations, Math. Biosci., 167 (2000), pp. 65–86.
123.
M. Iannelli, Mathematical Theory of Age‐Structured Population Dynamics, C.N.R. Applied Mathematics Monograph 7, Giardini Editori, Pisa, Italy, 1994.
124.
M. Iannelli, F. A. Milner, and A. Pugliese, Analytic and numerical results for the age‐structured S‐I‐S model with mixed inter‐intracohort transmission, SIAM J. Math. Anal., 23 (1992), pp. 662–688.
125.
H. Inaba, Threshold and stability results for an age‐structured epidemic model, J. Math. Biol., 28 (1990), pp. 411–434.
126.
V. Isham, Mathematical modeling of the transmission dynamics of HIV infection and AIDS: A review, J. Roy. Statist. Soc. Ser. A, 151 (1988), pp. 5–31.
127.
V. Isham and G. Medley, eds., Models for Infectious Human Diseases, Cambridge University Press, Cambridge, UK, 1996.
128.
J. A. Jacquez and C. P. Simon, The stochastic SI model with recruitment and deaths I: Comparison with the closed SIS model, Math. Biosci., 117 (1993), pp. 77–125.
129.
J. A. Jacquez, C. P. Simon, and J. S. Koopman, The reproduction number in deterministic models of contagious diseases, Curr. Topics in Theoret. Biol., 2 (1991), pp. 159–209.
130.
J. A. Jacquez, J. S. Koopman, C. P. Simon, and I. M. Longini, Role of the primary infection in epidemics of HIV infection in gay cohorts, J. AIDS, 7 (1994), pp. 1169–1184.
131.
J. A. Jacquez, C. P. Simon, and J. S. Koopman, Core groups and the R 0 ’s for subgroups in heterogeneous SIS models, in Epidemic Models: Their Structure and Relation to Data, D. Mollison, ed., Cambridge University Press, Cambridge, UK, 1996, pp. 279–301.
132.
J. A. Jacquez, C. P. Simon, J. S. Koopman, L. Sattenspiel, and T. Perry, Modeling and analyzing HIV transmission: The effect of contact patterns, Math. Biosci., 92 (1988), pp. 119–199.
133.
A. V. Kaninda, S. Richardson, and H. W. Hethcote, Influence of Heterogeneous Mixing on Measles Transmission in an African Context, preprint, 2000.
134.
M. M. Kaplan and R. G. Webster, The epidemiology of influenza, Scientific American, 237 (1977), pp. 88–105.
135.
W. Katzmann and K. Dietz, Evaluation of age‐specific vaccination strategies, Theoret. Population Biol., 25 (1984), pp. 125–137.
136.
W. O. Kermack and A. G. McKendrick, Contributions to the mathematical theory of epidemics, part 1, Proc. Roy. Soc. London Ser. A, 115 (1927), pp. 700–721.
137.
J. Kranz, ed., Epidemics of Plant Diseases: Mathematical Analysis and Modelling, Springer‐Verlag, Berlin, 1990.
138.
C. M. Kribs‐Zaleta, Structured models for heterosexual disease transmission, Math. Biosci., 160 (1999), pp. 83–108.
139.
C. M. Kribs‐Zaleta, Core recruitment effects in SIS models with constant total populations, Math. Biosci., 160 (1999), pp. 109–158.
140.
A. Lajmanovich and J. A. Yorke, A deterministic model for gonorrhea in a nonhomogeneous population, Math. Biosci., 28 (1976), pp. 221–236.
141.
H. A. Lauwerier, Mathematical Models of Epidemics, Mathematisch Centrum, Amsterdam, 1981.
142.
R. Levins, T. Awerbuch, U. Brinkman, I. Eckardt, P. Epstein, N. Makhoul, C. A. de Possas, C. Puccia, A. Spielman, and M. E. Wilson, The emergence of new diseases, American Scientist, 82 (1994), pp. 52–60.
143.
M. Y. Li and J. S. Muldowney, Global stability for the SEIR model in epidemiology, Math. Biosci., 125 (1995), pp. 155–164.
144.
M. Y. Li, J. R. Graef, L. Wang, and J. Karsai, Global dynamics of an SEIR model with varying population size, Math. Biosci., 160 (1999), pp. 191–213.
145.
M. Y. Li, J. S. Muldowney, and P. van den Driessche, Global stability for the SEIRS models in epidemiology, Canad. Quart. Appl. Math., to appear.
146.
X. Lin, H. W. Hethcote, and P. van den Driessche, An epidemiological model for HIV/AIDS with proportional recruitment, Math. Biosci., 118 (1993), pp. 181–195.
147.
W. M. Liu, H. W. Hethcote, and S. A. Levin, Dynamical behavior of epidemiological models with nonlinear incidence rates, J. Math. Biol., 25 (1987), pp. 359–380.
148.
W. M. Liu, S. A. Levin, and Y. Iwasa, Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models, J. Math. Biol., 23 (1986), pp. 187–204.
149.
W. P. London and J. A. Yorke, Recurrent outbreaks of measles, chickenpox and mumps I: Seasonal variation in contact rates, Am. J. Epidemiol., 98 (1973), pp. 453–468.
150.
A. J. Lotka, The stability of the normal age distribution, Proc. Nat. Acad. Sci. USA, 8 (1922), pp. 339–345.
151.
D. Ludwig and K. L. Cooke, eds., Epidemiology, SIMS Utah Conference Proceedings, SIAM, Philadelphia, 1975.
152.
P. Martens, How will climate change affect human health?, American Scientist, 87 (1999), pp. 534–541.
153.
R. M. May and R. M. Anderson, Population biology of infectious diseases II, Nature, 280 (1979), pp. 455–461.
154.
R. M. May and R. M. Anderson, Transmission dynamics of HIV infection, Nature, 326 (1987), pp. 137–142.
155.
R. M. May and R. M. Anderson, Parasite‐host coevolution, Parasitology, 100 (1990), pp. S89–S101.
156.
R. M. May, R. M. Anderson, and A. R. McLean, Possible demographic consequences of HIV/AIDS, Math. Biosci., 90 (1988), pp. 475–506.
157.
A. G. McKendrick, Applications of mathematics to medical problems, Proc. Edinburgh Math. Soc., 44 (1926), pp. 98–130.
158.
W. H. McNeill, Plagues and People, Blackwell, Oxford, UK, 1976.
159.
J. Mena‐Lorca and H. W. Hethcote, Dynamic models of infectious diseases as regulators of population sizes, J. Math. Biol., 30 (1992), pp. 693–716.
160.
J. Mena‐Lorca, J. X. Velasco‐Hernandez, and C. Castillo‐Chavez, Density‐dependent dynamics and superinfection in an epidemic model, IMA J. Math. Appl. Med. Biol., 16 (1999), pp. 307–317.
161.
J. A. J. Metz and F. van den Bosch, Velocities of epidemic spread, in Epidemic Models: Their Structure and Relation to Data, D. Mollison, ed., Cambridge University Press, Cambridge, UK, 1996, pp. 150–186.
162.
K. Mischaikow, H. Smith, and H. R. Thieme, Asymptotically autonomous semiflows: Chain recurrence and Lyapunov functions, Trans. Amer. Math. Soc., 53 (1993), pp. 1447–1479.
163.
D. Mollison, Dependence of epidemic and population velocities on basic parameters, Math. Biosci., 107 (1991), pp. 255–287.
164.
D. Mollison, Epidemic Models: Their Structure and Relation to Data, Cambridge University Press, Cambridge, UK, 1996.
165.
J. Muller, Optimal vaccination patterns in age‐structured populations, SIAM J. Appl. Math., 59 (1998), pp. 222–241.
166.
J. D. Murray, Mathematical Biology, Springer‐Verlag, Berlin, 1989.
167.
I. Nasell, Hybrid Models of Tropical Infections, Springer‐Verlag, Berlin, 1985.
168.
M. B. A. Oldstone, Viruses, Plagues, and History, Oxford University Press, New York, 1998.
169.
L. F. Olson and W. M. Schaffer, Chaos versus noisy periodicity: Alternative hypotheses for childhood epidemics, Science, 249 (1990), pp. 499–504.
170.
R. Preston, The Hot Zone, Random House, New York, 1994.
171.
A. Pugliese, Population models for diseases with no recovery, J. Math. Biol., 28 (1990), pp. 65–82.
172.
J. Radcliffe and L. Rass, Spatial Deterministic Epidemics, Mathematical Surveys and Monographs, AMS, Providence, RI, 2001.
173.
R. Ross, The Prevention of Malaria, 2nd ed., Murray, London, 1911.
174.
V. Rouderfer, N. Becker, and H. W. Hethcote, Waning immunity and its effects on vaccination schedules, Math. Biosci., 124 (1994), pp. 59–82.
175.
V. Rouderfer and N. Becker, Assessment of two‐dose vaccination schedules: Availability for vaccination and catch‐up, Math. Biosci., 129 (1995), pp. 41–66.
176.
L. A. Rvachev and I. M. Longini, A mathematical model for the global spread of influenza, Math. Biosci., 75 (1985), pp. 3–22.
177.
D. Schenzle, An age‐structured model of pre‐ and post‐vaccination measles transmission, IMA J. Math. Appl. Med. Biol., 1 (1984), pp. 169–191.
178.
L. Schlien, Hunting down the last of the poliovirus, Science, 279 (1998), p. 168.
179.
M. C. Schuette and H. W. Hethcote, Modeling the effects of varicella vaccination programs on the incidence of chickenpox and shingles, Bull. Math. Biol., 61 (1999), pp. 1031–1064.
180.
M. Schuette, Modeling the Transmission of the Varicella‐Zoster Virus, preprint, 2000.
181.
M. E. Scott and G. Smith, eds., Parasitic and Infectious Diseases, Academic Press, San Diego, 1994.
182.
D. Shalala, Bioterrorism: How prepared are we?, Emerg. Infect. Dis., 5 (1999). Available online from http://www.cdc.gov/ncidod/eid/vol5no4/shalala.htm.
183.
R. Shilts, And The Band Played On, St. Martin’s Press, New York, 1987.
184.
C. P. Simon and J. A. Jacquez, Reproduction numbers and the stability of equilibria of SI models for heterogeneous populations, SIAM J. Appl. Math., 52 (1992), pp. 541–576.
185.
R. Snacken, A. P. Kendal, L. R. Haaheim, and J. M. Wood, The next influenza pandemic: Lessons from Hong Kong, 1997, Emerg. Infect. Dis., 5 (1999). Available online from http://www.cdc.gov/ncidod/eid/vol5no2/snacken.htm.
186.
H. R. Thieme, Asymptotic estimates of the solutions of nonlinear integral equations and asymptotic speeds for the spread of populations, J. Reine Angew. Math., 306 (1979), pp. 94–121.
187.
H. R. Thieme, Global asymptotic stability in epidemic models, in Equadiff 82 Proceedings, H. W. Knobloch and K. Schmitt, eds., Lecture Notes in Math. 1017, Springer‐Verlag, Berlin, 1983, pp. 609–615.
188.
H. R. Thieme, Local stability in epidemic models for heterogeneous populations, in Mathematics in Biology and Medicine, V. Capasso, E. Grosso, and S. L. Paveri‐Fontana, eds., Lecture Notes in Biomath. 97, Springer‐Verlag, Berlin, 1985, pp. 185–189.
189.
H. R. Thieme, Stability change of the endemic equilibrium in age‐structured models for the spread of S‐I‐R type infectious diseases, in Differential Equations Models in Biology, Epidemiology, and Ecology, S. Busenberg and M. Martelli, eds., Lecture Notes in Biomath. 92, Springer‐Verlag, Berlin, 1991, pp. 139–158.
190.
H. R. Thieme, Epidemic and demographic interaction in the spread of potentially fatal diseases in growing populations, Math. Biosci., 111 (1992), pp. 99–130.
191.
H. R. Thieme, Persistence under relaxed point‐dissipativity (with an application to an endemic model), SIAM J. Math. Anal., 24 (1993), pp. 407–435.
192.
D. W. Tudor, An age‐dependent epidemic model with application to measles, Math. Biosci., 73 (1985), pp. 131–147.
193.
F. van den Bosch, J. A. J. Metz, and O. Diekmann, The velocity of spatial population expansion, J. Math. Biol., 28 (1990), pp. 529–565.
194.
J. E. Vanderplank, Plant Diseases: Epidemics and Control, Academic Press, New York, 1963.
195.
H. von Foerster, The Kinetics of Cellular Proliferation, Grune and Stratton, New York, 1959.
196.
P. E. Waltman, Deterministic Threshold Models in the Theory of Epidemics, Lecture Notes in Biomath. 1, Springer‐Verlag, Berlin, 1974.
197.
G. F. Webb, Theory of Nonlinear Age‐dependent Population Dynamics, Marcel Dekker, New York, 1985.
198.
R. G. Webster, Influenza: An emerging disease, Emerg. Infect. Dis., 4 (1998). Available online from http://www.cdc.gov/ncidod/eid/vol4no3/webster.htm.
199.
K. Wickwire, Mathematical models for the control of pests and infectious diseases: A survey, Theoret. Population Biol., 11 (1977), pp. 182–238.
200.
J. A. Yorke and W. P. London, Recurrent outbreaks of measles, chickenpox, and mumps II, Am. J. Epidemiol., 98 (1973), pp. 469–482.
201.
J. Zhou and H. W. Hethcote, Population size dependent incidence in models for diseases without immunity, J. Math. Biol., 32 (1994), pp. 809–834.
202.
H. Zinsser, Rats, Lice, and History, Little, Brown and Company, Boston, 1935.

Information & Authors

Information

Published In

cover image SIAM Review
SIAM Review
Pages: 599 - 653
ISSN (online): 1095-7200

History

Published online: 4 August 2006

MSC codes

  1. 92D30
  2. 34C23
  3. 34C60
  4. 35B32
  5. 35F25

Keywords

  1. thresholds
  2. basic reproduction number
  3. contact number
  4. epidemiology
  5. infectious diseases

Authors

Affiliations

Herbert W. Hethcote

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media

The SIAM Publications Library now uses SIAM Single Sign-On for individuals. If you do not have existing SIAM credentials, create your SIAM account https://my.siam.org.