Skip to main content

Advertisement

Log in

Unveiling the spread of epidemics involving partial immunity and reinfection: insights from a time-delayed mathematical model

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

In recent times, several infectious diseases that breakthrough contagiousness in vaccinated people and reinfections in primarily infected counterparts have become more common. In most cases, reinfection occurs as a result of viral mutations. The mutated pathogens may possess alternate modes of transmission, and even the exposure period may vary in some cases. Hence, to gain a deeper understanding of disease transmission dynamics, it becomes eminent to incorporate a dedicated compartment for reinfection within a mathematical model. To account for these vital factors, this research presents an epidemic model that includes a specific compartment for individuals experiencing reinfection. The model also incorporates two separate time delay parameters that account for the incubation periods for the initial infection and the subsequent reinfection. The study reveals that the system exhibits forward bifurcation with respect to the parameter \(\beta _1\) in the absence of time delays. However, in the presence of time delay, Hopf bifurcation is identified when the delays exceed corresponding cut-off values. The research further highlights that an extension in the exposure period leads to a rise in the reinfected population, thereby contributing to the persistence of the disease over an extended timeframe. To demonstrate the practical applicability of the proposed model, we have fitted our model with the data of real-time vaccination cases for COVID-19 in India. Notably, the constructed model can be readily adapted for other infectious diseases by selecting appropriate parameter values based on pertinent real-time data. The theoretical results are validated via numerical simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability statement

The data that support the findings of this study are openly available from the website https://github.com/owid/covid-19-data/blob/master/public/data/vaccinations/country_data/India.csv#L1.

References

  1. T.Q. Tang, Z. Shah, R. Jan, E. Alzahrani, Modeling the dynamics of tumor-immune cells interactions via fractional calculus. Eur. Phys. J. Plus 137(3), 367 (2022)

    Article  Google Scholar 

  2. R. Jan, Z. Shah, W. Deebani, E. Alzahrani, Analysis and dynamical behavior of a novel dengue model via fractional calculus. Int. J. Biomath. 15(6), 2250036 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Jan, R. Jan, H. Khan, M.S. Zobaer et al., Fractional-order dynamics of Rift Valley fever in ruminant host with vaccination. Commun. Math. Biol. Neurosci. 2020(79), 2052 (2020)

    Google Scholar 

  4. S. Gao, P. Binod, C.W. Chukwu, T. Kwofie et al., A mathematical model to assess the impact of testing and isolation compliance on the transmission of COVID-19. Infect. Dis. Model. 8(2), 427–444 (2023)

    Google Scholar 

  5. S. Gargouri, A. Souissi, N. Abid, A. Chtourou et al., Evidence of sars-cov-2 symptomatic reinfection in four healthcare professionals from the same hospital despite the presence of antibodies. Int. J. Infect. Dis. 117, 146–154 (2022)

    Article  Google Scholar 

  6. T.P. Gujarati, G. Ambika, Virus antibody dynamics in primary and secondary dengue infections. J. Math. Biol. 69, 1773–1800 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. G. Katriel, Epidemics with partial immunity to reinfection. Math. Biosci. 228(2), 153–159 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. R. Puthiyedath, S. Kataria, U. Payyappallimana et al., Ayurvedic clinical profile of covid-19-a preliminary report. J. Ayurv. Integr. Med. 13(1), 100326 (2022)

    Article  Google Scholar 

  9. P. Tamilalagan, B. Krithika, P. Manivannan, S. karthiga, Is reinfection negligible effect in COVID-19? A mathematical study on the effects of reinfection in COVID-19. Math. Methods Appl. Sci. (2023). https://doi.org/10.1002/mma.9614

    Article  Google Scholar 

  10. M. Cerón Gómez, H.M. Yang, A simple mathematical model to describe antibody-dependent enhancement in heterologous secondary infection in dengue. Math. Med. Biol. J. IMA. 36(4), 411–438 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  11. F. Camargo, M. Adimy, L. Esteva et al., Modeling the relationship between antibody-dependent enhancement and disease severity in secondary dengue infection. Bull. Math. Biol. 83(8), 85 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  12. A. Danchin, O. Pagani-Azizi, G. Turinici, G. Yahiaoui, Covid-19 adaptive humoral immunity models: weakly neutralizing versus antibody-disease enhancement scenarios. Acta. Biotheor. 70(4), 23 (2022)

    Article  Google Scholar 

  13. H. Song, Z. Yuan, S. Liu, Z. Jin, G. Sun, Mathematical modeling the dynamics of sars-cov-2 infection with antibody-dependent enhancement. Nonlinear Dyn. 111(3), 2943–2958 (2023)

    Article  Google Scholar 

  14. P. Tamilalagan, S. Karthiga, P. Manivannan, Dynamics of fractional order hiv infection model with antibody and cytotoxic t-lymphocyte immune responses. J. Comput. Appl. Math. 382, 113064 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  15. P. Balasubramaniam, M. Prakash, P. Tamilalagan, Stability and hopf bifurcation analysis of immune response delayed hiv type 1 infection model with two target cells. Math. Methods Appl. Sci. 38(17), 3653–3669 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. H.W. Hethcote, The mathematics of infectious diseases. SIAM Rev. 42, 599–653 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. S. Pathak, A. Maiti, G.P. Samanta, Rich dynamics of an sir epidemic model. Nonlinear Anal. Model. Control. 15(1), 71–81 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. S. Sharma, G.P. Samanta, Stability analysis and optimal control of an epidemic model with vaccination. Int. J. Biomath. 8(03), 1550030 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. H. Sasidharakurup, G. Kumar, B. Nair, S. Diwakar, Mathematical modeling of severe acute respiratory syndrome coronavirus 2 infection network with cytokine storm, oxidative stress, thrombosis, insulin resistance, and nitric oxide pathways. OMICS 25(12), 770–781 (2021)

    Article  Google Scholar 

  20. M.S. Narasima, D. John, S.P. Anbuudayasankar, G.R. Jammy, R. Pant, L. Choudhury, Shivir-an agent-based model to assess the transmission of covid-19 in India. medRxiv (2022). https://doi.org/10.1101/2022.05.26.22275624

    Article  Google Scholar 

  21. S. Banerjee, Dynamics of the COVID-19 pandemic: nonlinear approaches on the modelling, prediction and control. Eur. Phys. J. Spec. Top. 231(18–20), 3275–3280 (2022)

    Article  Google Scholar 

  22. F. Karim, S. Chauhan, J. Dhar, Analysing an epidemic-economic model in the presence of novel corona virus infection: capital stabilization, media effect, and the role of vaccine. Eur. Phys. J. Spec. Top. 231(8–20), 3545–3562 (2022)

    Article  Google Scholar 

  23. M.B. Devi, A. Devi, P.K. Gupta et al., Response of vaccination on community transmission of COVID-19: a dynamical approach. Eur. Phys. J. Spec. Top. 231(18), 3749–3765 (2022)

    Article  Google Scholar 

  24. O.J. Watson, G. Barnsley, J. Toor et al., Global impact of the first year of COVID-19 vaccination: a mathematical modelling study. Lancet. Infect. Dis 22(9), 1293–1302 (2022)

    Article  Google Scholar 

  25. S. Alyobi, R. Jan, Qualitative and quantitative analysis of fractional dynamics of infectious diseases with control measures. Fractal Fract. 7(5), 400 (2023)

    Article  Google Scholar 

  26. A. Jan, H.M. Srivastava, A. Khan, P.O. Mohammed et al., In vivo HIV dynamics, modeling the interaction of HIV and immune system via non-integer derivatives. Fractal Fract. 7(5), 361 (2023)

    Article  Google Scholar 

  27. A. Alshehri, Z. Shah, R. Jan, Mathematical study of the dynamics of lymphatic filariasis infection via fractional-calculus. Eur. Phys. J. Plus. 138(3), 1–15 (2023)

    Article  Google Scholar 

  28. R. Jan, S. Qureshi, S. Boulaaras et al., Optimization of the fractional-order parameter with the error analysis for human immunodeficiency virus under Caputo operator. Discrete Contin. Dyn. Syst.-S. 16(8), 2118–2140 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  29. S. Boulaaras, Z.U. Rehman, F.A. Abdullah et al., Coronavirus dynamics, infections and preventive interventions using fractional-calculus analysis. AIMS Math. 8(4), 8680–8701 (2023)

    Article  MathSciNet  Google Scholar 

  30. M.G.M. Gomes, L.J. White, G.F. Medley, Infection, reinfection, and vaccination under suboptimal immune protection: epidemiological perspectives. J. Theor. Biol. 228(4), 539–549 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. N. Stollenwerk, J. Martins, A. Pinto, The phase transition lines in pair approximation for the basic reinfection model siri. Phys. Lett. A 371, 379–388 (2007)

    Article  ADS  Google Scholar 

  32. P. Rodrigues, A. Margheri, C. Rebelo, M.G.M. Gomes, Heterogeneity in susceptibility to infection can explain high reinfection rates. J. Theor. Biol. 259(2), 280–290 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. J. Gómez-Gardeñes, A.S. Barros, S.T. Pinho, R.F. Andrade, Abrupt transitions from reinfections in social contagions. Europhys. Lett. 110, 58006 (2015)

    Article  ADS  Google Scholar 

  34. R. Pagliara, B. Dey, N.E. Leonard, Bistability and resurgent epidemics in reinfection models. IEEE Control Syst. Lett. 2(2), 290–295 (2018)

    Article  MathSciNet  Google Scholar 

  35. S. Zhai, M. Du, Y. Wang et al., Effects of heterogeneous susceptibility on epidemiological models of reinfection. Nonlinear Dyn. 111, 1890–1902 (2023)

    Article  Google Scholar 

  36. R. Jan, S. Boulaaras, S. Alyobi et al., Transmission dynamics of Hand-Foot-Mouth Disease with partial immunity through non-integer derivative. Int. J. Biomath. 16(06), 2250115 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  37. D.M. Morens, J.K. Taubenberger, A.S. Fauci, Rethinking next-generation vaccines for coronaviruses, influenzaviruses, and other respiratory viruses. Cell Host Microbe. 31(1), 146–157 (2023)

    Article  Google Scholar 

  38. P. Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180(1–2), 29–48 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  39. O. Diekmann, J.A.P. Heesterbeek, J.A.J. Metz, On the definition and the computation of the basic reproduction ratio r 0 in models for infectious diseases in heterogeneous populations. J. Math. Biol. 28, 365–282 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  40. Z. Zhang, S. Kundu, J..P. Tripathi, S. Bugalia, Stability and hopf bifurcation analysis of an sveir epidemic model with vaccination and multiple time delays. Chaos Solitons Fractals 131, 109483 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  41. Average life expectancy of India. https://data.worldbank.org/indicator/SP.DYN.LE00.IN?locations=IN. Accessed 5 Feb 2020

  42. Coronavirus (COVID19) Statistics India. https://www.worldometers.info/coronavirus/country/india/. Accessed 12 Dec 2022

  43. COVID-19 Vaccinations - India. https://github.com/owid/covid-19-data/blob/master/public/data/vaccinations/country_data/India.csv. Accessed 7 Mar 2023

  44. K.S. Mathur, P. Narayan, Dynamics of an sveirs epidemic model with vaccination and saturated incidence rate. Int. J. Appl. Comput. Math. 4(5), 118 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  45. B.D. Hassard, B.D. Hassard, N.D. Kazarinoff, Y.H. Wan et al., Theory and Applications of hopf Bifurcation (CUP Archive, 1981)

    MATH  Google Scholar 

Download references

Acknowledgements

The research work of P. Tamilalagan and B. Krithika is supported by National Board for Higher Mathematics, Department of Atomic Energy, Mumbai, India under the Grant no. 02011/8/2020/NBHM/R &D-II/8071.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Tamilalagan.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Appendices

Appendix 1

$$\begin{aligned} \alpha _{11}&=\xi _4+\phi _1+\phi _2+\phi _3+\phi _4,\\ \alpha _{12}&=\xi _4\phi _1+\xi _4\phi _2+\phi _1\phi _2+\xi _4\phi _3+\phi _2\phi _3+\phi _5+\xi _4\phi _4\\&~~~+\phi _1\phi _4+\phi _2\phi _4+\phi _3\phi _4,\\ \alpha _{13}&=\phi _5(\xi _4+\phi _2+\phi _4)+\xi _4(\phi _1\phi _2+\phi _2\phi _3+\phi _1\phi _4\\&~~~+\phi _2\phi _4+\phi _3\phi _4)+\phi _2\phi _4(\phi _1+\phi _3),\\ \alpha _{14}&=\phi _5(\xi _4\phi _2+\xi _4\phi _4+\phi _2\phi _4)+\xi _4\phi _2\phi _4(\phi _1+\phi _3),\\ \alpha _{15}&=\xi _4\phi _2\phi _4\phi _5,\\ b_{11}&=\eta _2-\eta _1,\\ b_{12}&=(\eta _2-\eta _1)(\xi _4+\phi _3+\phi _4)+\eta _2\phi _1-\eta _1\phi _2,\\ b_{13}&=\phi _5+\eta _2\xi _4(\phi _1+\phi _3+\phi _4)-\eta _1(\xi _4(\phi _2+\phi _3+\phi _4)\\&~~~+(\phi _2\phi _3+\phi _2\phi _4+\phi _3\phi _4))+\eta _2\phi _4(\phi _1+\phi _3),\\ b_{14}&=\eta _2(\xi _4\phi _5+\phi _4\phi _5+\xi _4\phi _4(\phi _1+\phi _3))\\&~~~-\eta _1(\xi _4(\phi _2\phi _3+\phi _3\phi _4+\phi _2\phi _4)-\phi _2\phi _3\phi _4),\\ b_{15}&=\xi _4\phi _4(\eta _2\phi _5-\eta _1\phi _2\phi _3),\\ c_{11}&=\eta _3-\eta _4,\\ c_{12}&=r\eta _4+\eta _3(\xi _4+\phi _1+\phi _2+\phi _3)\\ &\quad -\eta _4(\phi _1+\phi _2+\phi _3+\phi _4),\\ c_{13}&=(\eta _3-\eta _4)(\phi _5+\phi _2(\phi _1+\phi _3))\\&~~~+(\phi _1+\phi _2+\phi _3)(r\eta _4+\eta _3\xi _4-\eta _4\phi _4),\\ c_{14}&=(r\eta _4+\eta _3\xi _4)(\phi _1\phi _2+\phi _2\phi _3+\phi _5)\\&~~~-\eta _4(\phi _5(\phi _2+\phi _4)+\phi _2\phi _4(\phi _1+\phi _3))+\eta _3\phi _2\phi _5,\\ c_{15}&=\phi _5\phi _2(r\eta _4+\eta _3\xi _4-\eta _4\phi _4),\\ f_{11}&=\eta _1(\eta _3-\eta _4)+\eta _2\eta _4,\\ f_{12}&=r\eta _4(\eta _1-\eta _2)+\eta _1\eta _3(\xi _4+\phi _2+\phi _3)\\&~~~-\eta _1\eta _4(\phi _2+\phi _3+\phi _4)+\eta _2\eta _4(\gamma +\phi _1+\phi _3+\phi _4),\\ f_{13}&=\eta _2\eta _4(\phi _5+(\gamma -r)(\phi _1+\phi _3)+\phi _4(\phi _1+\phi _2)-\rho \omega _2)\\&~~~+\eta _1\eta _4(r(\phi _2+\phi _3)-(\phi _2\phi _3+\phi _2\phi _4+\phi _3\phi _4))\\&~~~+\eta _1\eta _3(\xi _4\phi _2+\xi _4\phi _3+\phi _2\phi _3),\\ f_{14}&=r\eta _2\eta _4(\phi _1\phi _3+\rho \omega _1)+\eta _2\eta _4\psi _4(\gamma +\phi _4)\\&~~~+\eta _1\eta _4\phi _2\phi _3(r-\phi _4)+\phi _2(\eta _1\eta _3\xi _4\phi _3-\eta _2\eta _4\rho \omega _2),\\ \eta _1&=\beta _1(I_1^*+I_2^*)/N^*,\\ \eta _2&=\beta _1S^*/N^*,\\ \eta _3&=\beta _2C^*/N^*,\\ \eta _4&=\beta _2(I_1^*+I_2^*)/N^*. \end{aligned}$$

Appendix 2

Proof of Theorem 3(c)

For \(\tau _1=0\), the Eq. (11) becomes

$$\begin{aligned}&\lambda ^5+A_{21}\lambda ^4+A_{22}\lambda ^3+A_{23}\lambda ^2+A_{24}\lambda +A_{25}\nonumber \\&-e^{-\lambda \tau _2}(A_{26}\lambda ^4+A_{27}\lambda ^3+A_{28}\lambda ^2+A_{29}\lambda +A_{20}), \end{aligned}$$
(19)

where

$$\begin{aligned} A_{21}&=\alpha _{11}-b_{11},\quad A_{22}=\alpha _{12}-b_{12},\quad A_{23}=\alpha _{13}-b_{13},\\ A_{24}&=\alpha _{14}-b_{14},\quad A_{25}=\alpha _{15}-b_{15},\quad A_{26}=c_{11},\\ A_{27}&=c_{12}+f_{11},\quad A_{28}=c_{13}+f_{12},\quad A_{29}=c_{14}+f_{13},\\ A_{20}&=c_{15}+f_{14}.\quad \end{aligned}$$

If \(\lambda =im\) is a root of the Eq. (19), we obtain

$$\begin{aligned} m^{10}+P_{61}m^8+P_{62}m^6+P_{63}m^4+P_{64}m^2+P_{65}=0. \end{aligned}$$
(20)

Where,

$$\begin{aligned} P_{61}&=A_{21}^2-2A_{22}-A_{26}^2,\\ P_{62}&=A_{22}^2-2A_{21}A_{23}+2A_{24}-A_{27}^2+2A_{26}A_{28},\\ P_{63}&=A_{23}^2+2A_{22}A_{24}-2A_{20}A_{26}-A_{28}^2+2A_{27}A_{29},\\ P_{64}&=A_{24}^2+2A_{20}A_{28}-A_{29}^2,\\ P_{65}&=-A_{20}^2.\\ \end{aligned}$$

Let \(m^2=t\). Then Eq. (20) becomes

$$\begin{aligned} t^5+P_{61}t^4+P_{62}t^3+P_{63}t^2+P_{64}t+P_{65}=0. \end{aligned}$$
(21)

Consider that Hypothesis 2: \(t_{20}\) is a positive root of Eq. (21). Then Eq. (20) has a positive root \(m_{20}=\sqrt{t_{20}}\) and further we obtain the following

$$\begin{aligned} \tau _{20}=\frac{1}{m_{20}}\arcsin \left( \frac{M_{21}M_{23}+M_{22}M_{24}}{M_{21}^2+M_{22}^2}\right) \end{aligned}$$

with

$$\begin{aligned} M_{21}&=A_{26}m^4-A_{28}m^2+A_{20},\\ M_{22}&=A_{27}m^3-A_{29}m,\\ M_{23}&=-A_{22}m^3-A_{24}m-m^5,\\ M_{24}&=-A_{21}m^4+A_{23}m^2. \end{aligned}$$

Also, we obtain, Re\([d\lambda /d\tau _2]^{-1}_{\lambda =im_{20}}\ne 0\) if \(\left. \varUpsilon _2^{'}(t)=\frac{d\varUpsilon _2(t)}{dt}\right| _{t=t_{20}}\ne 0\) holds, where \(\varUpsilon _2(t)=t^5+P_{61}t^4+P_{62}t^3+P_{63}t^2+P_{64}t+P_{65}.\) Thus according to the Hopf bifurcation theorem in [45], the system undergoes Hopf bifurcation whenever the above transversality condition holds. \(\hfill\square\)

Proof of Theorem 3(d)

When \(\tau _1=\tau _2=\tau >0\), the Eq. (11) becomes

$$\begin{aligned}&\lambda ^5+\alpha _{11}\lambda ^4+\alpha _{12}\lambda ^3+\alpha _{13}\lambda ^2+\alpha _{14}\lambda +\alpha _{15}\nonumber \\&-e^{-\lambda \tau }\left( A_{31}\lambda ^4+A_{32}\lambda ^3+A_{33}\lambda ^2+A_{34}\lambda +A_{35}\right) \nonumber \\&-e^{-2\lambda \tau }\left( f_{11}\lambda ^3+f_{12}\lambda ^2+f_{13}\lambda +f_{14}\right) =0. \end{aligned}$$
(22)

where

$$\begin{aligned}&A_{31}=b_{11}+c_{11},\quad A_{32}=b_{12}+c_{12},\quad A_{33}=b_{13}+c_{13},\\&A_{34}=b_{14}+c_{14},\quad A_{35}=b_{15}+c_{15}.\quad \end{aligned}$$

Multipliying \(e^{\lambda \tau }\) on both sides of Eq. (22), we get the following

$$\begin{aligned}&e^{\lambda \tau }\left( \lambda ^5+\alpha _{11}\lambda ^4+\alpha _{12}\lambda ^3+\alpha _{13}\lambda ^2+\alpha _{14}\lambda +\alpha _{15}\right) \nonumber \\&-(A_{31}\lambda ^4+A_{32}\lambda ^3+A_{33}\lambda ^2+A_{34}\lambda +A_{35})\nonumber \\&-e^{-\lambda \tau }(f_{11}\lambda ^3+f_{12}\lambda ^2+f_{13}\lambda +f_{14})=0. \end{aligned}$$
(23)

Let \(\lambda =im\) is a root of the Eq. (23), then we get the following equations

$$\begin{aligned} M_{31}\cos (m\tau )+M_{32}\sin (m\tau )&=M_{33},\\ M_{34}\cos (m\tau )+M_{35}\sin (m\tau )&=M_{36}. \end{aligned}$$

Where,

$$\begin{aligned} M_{31}&=m^5-\alpha _{12}m^3+\alpha _{14}m+f_{11}m^3-f_{13}m,\\ M_{32}&=\alpha _{11}m^4-\alpha _{13}m^2+\alpha _{15}-f_{12}m^2+f_{14},\\ M_{33}&=A_{34}m,\\ M_{34}&=\alpha _{11}m^4-\alpha _{13}m^2+\alpha _{15}+f_{12}m^2-f_{14},\\ M_{35}&=-m^5+\alpha _{12}m^3-\alpha _{14}m+f_{11}m^3-f_{13}m,\\ M_{36}&=A_{31}m^4-A_{32}m^3-A_{33}m^2+A_{35}. \end{aligned}$$

From the above set of equations, we obtain,

$$\begin{aligned} \sin (m\tau )=\frac{\widehat{M_1}}{\widehat{M_3}},\qquad \cos (m\tau )=\frac{\widehat{M_2}}{\widehat{M_3}} \end{aligned}$$
(24)

with,

$$\begin{aligned} \widehat{M_1}&=M_{31}M_{36}-M_{33}M_{34},\\ \widehat{M_2}&=-M_{32}M_{36}+M_{33}M_{35},\\ \widehat{M_3}&=M_{31}M_{35}-M_{32}M_{34}. \end{aligned}$$

Where we obtain the following equation,

$$\begin{aligned} \widehat{M_3}^2=\widehat{M_1}^2+\widehat{M_2}^2. \end{aligned}$$
(25)

We consider the Hypothesis 3: \(m_{0}\) is a positive root of Eq. (25). If the Hypothesis 3 holds, then, we arrive at the following

$$\begin{aligned} \tau _{0}=\frac{1}{m_{0}}\arcsin \left( \frac{M_{31}M_{36}-M_{33}M_{34}}{M_{31}M_{35}-M_{32}M_{34}}\right) . \end{aligned}$$

Following in similar manner as in the above cases, we see that Re\([d\lambda /d\tau ]^{-1}_{\lambda =im_{30}}\ne 0\) if \(\left. \varUpsilon _3^{'}(t)=\frac{d\varUpsilon _3(t)}{dt}\right| _{t=t_{0}}\ne 0\) holds, where \(\varUpsilon _3(t)=t^5+P_{71}t^4+P_{72}t^3+P_{73}t^2+P_{74}t+P_{75}.\) with \(P_{71}=-{A_{{31}}}^{2}+2\,{\alpha _{{11}}}^{2}-4\,\alpha _{{12}}\), \(P_{72}=2M_{{33}} \left( \alpha _{{15}}-f_{{14}} \right) \left( \alpha _{{14} }-f_{{13}} \right) A_{{35}}+2\, \left( \alpha _{{15}}+f_{{14}} \right) A_{{35}}M_{{33}} \left( -\alpha _{{14}}-f_{{13}} \right)\), \(P_{73}=- \left( \alpha _{{14}}-f_{{13}} \right) A_{{33}}+ \left( -\alpha _{{12} }+f_{{11}} \right) A_{{35}}\), \(P_{74}=- \left( \alpha _{{15}}+f_{{14}} \right) A_{{31}}+ \left( -\alpha _{{13} }-f_{{12}} \right) A_{{33}}-\alpha _{{11}}A_{{35}}\) and \(P_{75}=2\,\alpha _{{11}} \left( -\alpha _{{13}}+f_{{12}} \right)\). Thus according to the Hopf bifurcation theorem in [45], we determine the existence of Hopf bifurcation whenever the Hypothesis 3 and the above transversality condition holds. \(\hfill\square\)

Proof of Theorem 3(e)

When \(\tau _1\ge 0\) and \(\tau _2\in (0,\tau _{20})\). Letting \(\lambda =im\) in Eq. (11) and simplifying further we obtain

$$\begin{aligned} M_{41}\cos (m\tau _1)+M_{42}\sin (m\tau _1)=M_{43},\\ -M_{42}\cos (m\tau _1)+M_{41}\sin (m\tau _1)=M_{44}. \end{aligned}$$

Where,

$$\begin{aligned} M_{41}&=\sin (m\tau _{2}) \left( -{m}^{2}f_{{12}}+f_{{14}} \right) +b_{{12}}{m}^{3}-b_{{ 14}}m\\&~~~-\cos (m\tau _2) \left( -{m}^{3}f_{{11}}+mf_{{13}} \right) ,\\ M_{42}&=b_{{11}}{m}^{4}-b_{{13}}{m}^{2}+b_{{15}}+\cos (m\tau _{2}) \left( -{m}^{2}f_{{12 }}+f_{{14}} \right) \\&~~~+\sin (m\tau _2) \left( -{m}^{3}f_{{11}}+mf_{{13}} \right) ,\\ M_{43}&={m}^{4}c_{{11}}\sin (m\tau _2)+{m}^{5}+{m}^{3}\cos (m\tau _2)c_{{12}}\\&~~~-{m}^{3}\alpha _{{ 12}}-{m}^{2}c_{{13}}\sin (m\tau _2)-m\cos (m\tau _2)c_{{14}}\\&~~~+m\alpha _{{14}}+c_{{15}}\sin (m\tau _2),\\ M_{44}&=\left( -\cos (m\tau _2)c_{{11}}+\alpha _{{11}} \right) {m}^{4}+\sin (m\tau _{2})c_{{12}} {m}^{3}\\&~~~+ \left( \cos (m\tau _2)c_{{13}}-\alpha _{{13}} \right) {m}^{2}-\sin (m\tau _{2})c _{{14}}m\\&~~~-\cos (m\tau _2)c_{{15}}+\alpha _{{15}}. \end{aligned}$$

By simple calculation, we obtain the following characteristic equation

$$\begin{aligned} m^{10}+P_{81}t^4+P_{82}t^3+P_{83}t^2+P_{84}t+P_{85}=0, \end{aligned}$$
(26)

where,

$$\begin{aligned} P_{81}&=2c_{11}\sin (m\tau _2),\\ P_{82}&={c_{{11}}}^{2}-2\,\alpha _{{11 }}c_{{2}}c_{{11}}+{\alpha _{{11}}}^{2}-{b_{{11}}}^{2}\\&~~~+2\,\cos (m\tau _2)c_{{12} }-2\,\alpha _{{12}}, \\ P_{83}&=-2\,\sin (m\tau _2) \left( \alpha _{{11}}c_{{14}}-\alpha _{{12}}c_{{13}}+\alpha _ {{13}}c_{{12}}-\alpha _{{14}}c_{{11}}\right. \\&~~~\left. +b_{{11}}f_{{13}}-b_{{12}}f_{{12}} +b_{{13}}f_{{11}}-c_{{15}} \right) , \\ P_{84}&=2\,\sin (m\tau _2) \left( \alpha _{{14}}c_{{15}}-\alpha _{{15}}c_{{14}}+b_{{14}} f_{{14}}-b_{{15}}f_{{13}} \right) , \\ P_{85}&=2\,\sin (m\tau _2) \left( \alpha _{{11}}c_{{12}}-\alpha _{{12}}c_{{11}}+b_{{11}} f_{{11}}-c_{{13}}. \right) \end{aligned}$$

We consider the Hypothesis 4: \(m_{100}\) is a positive root of Eq. (30). If the Hypothesis 4 holds, then, we arrive at the following

$$\begin{aligned} \tau _{100}=\frac{1}{m_{100}}\arcsin \left( \frac{M_{41}M_{43}+M_{42}M_{44}}{M_{41}^2+M_{42}^2}\right) . \end{aligned}$$

Following in similar manner as in the above cases, we see that Re\([d\lambda /d\tau ]^{-1}_{\lambda =im_{100}}\ne 0\) if \(\left. \varUpsilon _4^{'}(t)=\frac{d\varUpsilon _4(t)}{dt}\right| _{t=t_{0}}\ne 0\) holds, where \(\varUpsilon _4(t)=t^5+P_{81}t^4+P_{82}t^3+P_{83}t^2+P_{84}t+P_{85}\). Thus according to the Hopf bifurcation theorem in [45], we determine the existence of Hopf bifurcation whenever the Hypothesis 4 and the above transversality condition holds. \(\hfill\square\)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krithika, B., Tamilalagan, P. Unveiling the spread of epidemics involving partial immunity and reinfection: insights from a time-delayed mathematical model. Eur. Phys. J. Spec. Top. 232, 2657–2673 (2023). https://doi.org/10.1140/epjs/s11734-023-00995-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-023-00995-2

Navigation