Skip to main content
Log in

Enhancement of phototoxicity of curcumin in human oral cancer cells using silica nanoparticles as delivery vehicle

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

We report results on the use of organically modified silica nanoparticles (SiNp) as a vehicle for the delivery of curcumin in human oral cancer cells for improvement of uptake and phototoxicity. Nanoformulated drug (curcumin–SiNp complex) was prepared by postloading curcumin in SiNp, and the complex was soluble in aqueous solution. Cellular uptake studied by fluorescence microscopy and spectroscopy showed that curcumin accumulation was higher when cells were incubated with curcumin–SiNp complex as against free curcumin. Studies carried out on incubation time-dependent cytotoxicity, inhibition of NF-κB activity, suppression of NF-κB-regulated proteins involved in invasion (MMP-9), angiogenesis (VEGF), and inflammation (TNF-α) showed that curcumin–SiNp leads to significant improvement over free curcumin in dark as well as on exposure to light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Joe B, Vijaykumar M, Lokesh BR (2004) Biological properties of curcumin-cellular and molecular mechanisms of action. Crit Rev Food Sci Nutr 44:97–111

    Article  CAS  PubMed  Google Scholar 

  2. Xu YX, Pindolia KR, Janakiraman N, Noth CJ, Chapman RA, Gautam SC (1997) Curcumin a compound with anti-inflammatory and anti-oxidant properties, down regulates chemokine expression in bone marrow stromal cell. Exp Hematol 25:413–422

    CAS  PubMed  Google Scholar 

  3. Yang F, Lim GP, Begum AN, Ubeda OJ, Simmons MR et al (2005) Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J Biol Chem 280:5892–5901

    Article  CAS  PubMed  Google Scholar 

  4. Scharstuhl A, Mutsaers HA, Pennings SW, Szarek WA, Russel FG, Wagener FA (2009) Curcumin-induced fibroblast apoptosis and in vitro wound contraction are regulated by antioxidants and heme oxygenase: implications for scar formation. J Cell Mol Med 13:712–725

    Article  CAS  PubMed  Google Scholar 

  5. Atsumi T, Tonosaki K, Fujisawa S (2007) Comparative cytotoxicity and ROS generation by curcumin and tetrahydrocurcumin following visible-light irradiation or treatment with horseradish peroxidase. Anticancer Res 27:363–371

    CAS  PubMed  Google Scholar 

  6. Bruzell EM, Morisbak E, Tønnesen HH (2005) Studies on curcumin and curcuminoids. XXIX. Photoinduced cytotoxicity of curcumin in selected aqueous preparations. Photochem Photobiol Sci 4:523–530

    Article  CAS  PubMed  Google Scholar 

  7. Koon H, Leung AW, Yue KK, Mak NK (2006) Photodynamic effect of curcumin on NPC/CNE2 cells. J Environ Pathol Toxicol Oncol 125:205–215

    Article  Google Scholar 

  8. Araújo NC, Fontana CR, Bagnato VS, Gerbi ME (2012) Photodynamic effects of curcumin against cariogenic pathogens. Photomed Laser Surg 30:393–399

    Article  PubMed  Google Scholar 

  9. Ribeiro AP, Pavarina AC, Dovigo LN, Brunetti IL, Bagnato VS et al (2013) Phototoxic effect of curcumin on methicillin-resistant Staphylococcus aureus and L929 fibroblasts. Lasers Med Sci 28:391–398

    Article  PubMed  Google Scholar 

  10. Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB (2007) Bioavailability of curcumin: problems and promises. Mol Pharm 4:807–818

    Article  CAS  PubMed  Google Scholar 

  11. Priyadarsini KI (2009) Photophysics, photochemistry and photobiology of curcumin: Studies from organic solutions, bio-mimetics and living cells. J Photochem Photobiol C 10:81–95

    Article  CAS  Google Scholar 

  12. Kunwar A, Barik A, Pandey R, Priyadarsini KI (2006) Transport of liposomal and albumin loaded curcumin to living cells; an absorption and fluorescence spectroscopic study. Biochim Biophys Acta 1760:1513–1520

    Article  CAS  PubMed  Google Scholar 

  13. Bisht S, Feldmann G, Soni S, Ravi R, Karikar C, Maitra A et al (2007) Polymeric nanoparticle-encapsulated curcumin (“nanocurcumin”): a novel strategy for human cancer therapy. J Nanobiotechnol 5:3

    Article  Google Scholar 

  14. Sou K, Inenaga S, Takeoka S, Tsuchida E (2008) Loading of curcumin into macrophages using lipid-based nanoparticles. Int J Pharm 352:287–293

    Article  CAS  PubMed  Google Scholar 

  15. Shaikh J, Ankola DD, Beniwal V, Singh D, Kumar MN (2009) Nanoparticle encapsulation improves oral bioavailability of curcumin by at least 9-fold when compared to curcumin administered with piperine as absorption enhancer. Eur J Pharm Sci 37:223–230

    Article  CAS  PubMed  Google Scholar 

  16. Isele U, Schieweck K, Kessler R, van Hoogevest P, Capraro HG (1995) Pharmacokinetics and body distribution of liposomal zinc phthalocyanine in tumor-bearing mice: influence of aggregation state, particle size, and composition. J Pharm Sci 84:166–173

    Article  CAS  PubMed  Google Scholar 

  17. Damoiseau X, Schuitmaker HJ, Lagerberg JW, Hoebeke M (2001) Increase of the photosensitizing efficiency of the Bacteriochlorin a by liposome-incorporation. J Photochem Photobiol B 60:50–60

    Article  CAS  PubMed  Google Scholar 

  18. Qian J, Wang D, Cai F, Zhan Q, Wang Y, He S (2012) Photosensitizer encapsulated organically modified silica nanoparticles for direct two-photon photodynamic therapy and in vivo functional imaging. Biomaterials 19:4851–4860

    Article  Google Scholar 

  19. Qian J, Li X, Wei M, Gao X, Xu Z et al (2008) Bio-molecule-conjugated fluorescent organically modified silica nanoparticles as optical probes for cancer cell imaging. Opt Express 16:19568–19578

    Article  CAS  PubMed  Google Scholar 

  20. Barandeh F, Nguyen PL, Kumar R, Iacobucci GJ, Kuznicki ML et al (2012) Organically modified silica nanoparticles are biocompatible and can be targeted to neurons in vivo. PLoS One 7:e29424

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Roy I, Ohulchanskyy TY, Pudavar HE, Bergey EJ, Oseroff AR et al (2003) Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: a novel drug-carrier system for photodynamic therapy. J Am Chem Soc 125:7860–7865

    Article  CAS  PubMed  Google Scholar 

  22. Uppal A, Jain B, Gupta PK, Das K (2011) Photodynamic action of Rose Bengal silica nanoparticle complex on breast and oral cancer cell lines. Photochem Photobiol 87:1146–1151

    Article  CAS  PubMed  Google Scholar 

  23. Zölzer F, Hillebrandt S, Streffer C (1995) Radiation induced G1-block and p53 status in six human cell lines. Radiother Oncol 37:20–28

    Article  PubMed  Google Scholar 

  24. Kunwar A, Barik A, Mishra B, Rathinasamy K, Pandey R, Priyadarsini KI (2008) Quantitative cellular uptake, localization and cytotoxicity of curcumin in normal and tumor cells. Biochim Biophys Acta 1780:673–679

    Article  CAS  PubMed  Google Scholar 

  25. Mohanty C, Sahoo SK (2010) The in vitro stability and in vivo pharmacokinetics of curcumin prepared as an aqueous nanoparticulate formulation. Biomaterials 31:6597–6611

    Article  CAS  PubMed  Google Scholar 

  26. Lin C-L, Lin J-K (2008) Curcumin: a potential cancer chemopreventive agent through suppressing NF-κB signaling. J Cancer Mol 4:11–16

    CAS  Google Scholar 

  27. Besic Gyenge E, Darphin X, Wirth A, Pieles U, Walt H et al (2011) Uptake and fate of surface modified silica nanoparticles in head and neck squamous cell carcinoma. J Nanobiotechnology 9:32

    Article  PubMed Central  PubMed  Google Scholar 

  28. Chaudhary LR, Hruska KA (2003) Inhibition of cell survival signal protein kinase B/Akt by curcumin in human prostate cancer cells. J Cell Biochem 89:1–5

    Article  CAS  PubMed  Google Scholar 

  29. Squires MS, Hudson EA, Howells L, Sale S, Houghton CE et al (2003) Relevance of mitogen activated protein kinase (MAPK) and phosphotidylinositol-3-kinase/protein kinase B (PI3K/PKB) pathways to induction of apoptosis by curcumin in breast cells. Biochem Pharmacol 65:361–376

    Article  CAS  PubMed  Google Scholar 

  30. Korutla L, Kumar R (1994) Inhibitory effect of curcumin on epidermal growth factor receptor kinase activity in A431 cells. Biochim Biophys Acta 1224:597–600

    Article  PubMed  Google Scholar 

  31. Chignell CF, Bilski P, Reszka KJ, Motten AG, Sik RH et al (1994) Spectral and photochemical properties of curcumin. Photochem Photobiol 59:295–302

    Article  CAS  PubMed  Google Scholar 

  32. Das KC, Das CK (2002) Curcumin (diferuloylmethane), a singlet oxygen 1O2 quencher. Biochem Biophys Res Commun 295:62–66

    Article  CAS  PubMed  Google Scholar 

  33. Dujic J, Kippenberger S, Ramirez-Bosca A, Diaz-Alperi J, Bereiter-Hahn J, Kaufmann R, Bernd A, Hofmann M (2009) Curcumin in combination with visible light inhibits tumor growth in a xenograft tumor model. Int J Cancer 124:1422–1428

    Article  CAS  PubMed  Google Scholar 

  34. Began G, Sudharshan E, Udaya Sankar K, Appu Rao AG (1999) Interaction of curcumin with phosphatidylcholine: a spectrofluorimetric study. J Agric Food Chem 47:4992–4997

    Article  CAS  PubMed  Google Scholar 

  35. Aggarwal S, Takada Y, Singh S, Myers JN, Aggarwal BB (2004) Inhibition of growth and survival of human head and neck squamous cell carcinoma cells by curcumin via modulation of nuclear factor-κB signaling. Int J Cancer 111:679–692

    Article  CAS  PubMed  Google Scholar 

  36. Kunnumakkara AB, Anand P, Aggarwal BB (2008) Curcumin inhibits proliferation, invasion, angiogenesis and metastasis of different cancers through interaction with multiple cell signaling proteins. Cancer Lett 269:199–225

    Article  CAS  PubMed  Google Scholar 

  37. Philip M, Rowley DA, Schreiber H (2004) Inflammation as a tumor promoter in cancer induction. Semin Cancer Biol 14:433–439

    Article  CAS  PubMed  Google Scholar 

  38. Dujic J, Kippenberger S, Hoffmann S, Ramirez-Bosca A, Miquel J, Diaz-Alperi J, Bereiter-Hahn J, Kaufmann R, Bernd A (2007) Low concentrations of curcumin induce growth arrest and apoptosis in skin keratinocytes only in combination with UVA or visible light. J Invest Dermatol 127:1992–2000

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. K. Das of the Laser Biomedical Applications and Instrumentation Division, RRCAT, Indore, India for helping in the preparation and characterization of silica nanoparticles.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mrinalini Sharma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, S.P., Sharma, M. & Gupta, P.K. Enhancement of phototoxicity of curcumin in human oral cancer cells using silica nanoparticles as delivery vehicle. Lasers Med Sci 29, 645–652 (2014). https://doi.org/10.1007/s10103-013-1357-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-013-1357-7

Keywords

Navigation