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Summary

This supplement provides full derivations of the results from the main text. The results are, as in

the main text, presented for an epidemic occurring in continuous time, although some additional

results on discrete epidemics are given in the final note of this supplement. The supplement is

structured as follows.

• The first note, “Modelling”, provides a precise definition of the branching process model used
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throughout the paper.

• The second note, “Probability generating functions” derives probability generating functions

(pgfs) for prevalence and cumulative incidence. It also discusses their efficient solution,

including some special cases in which one can speed up the solution process

• The third note, “Properties of the prevalence variance”, derives the equation for the variance

(via the previously derived equations for the pgf) and explores its properties, providing

explanations for the various terms and proving that the prevalence of new infections is (under

a mild condition on the possible spread of the epidemic) overdispersed.

• The fourth note, “Likelihood functions” contains the derivations of the pgf of the infection

event times and the likelihood function presented in the main text.

• The fifth note, “Assessing future variance during an epidemic” derives the equation for vari-

ance of future cases when the cumulative incidence is known at some point in time.

• Finally, the sixth note, “Discrete epidemics” provides a range of similar results in the discrete

setting, and shows the convergence of the pgf to its continuous equivalent as the step-size

tends to zero.

Supplementary Note: 1 Background literature on renewal

equations

A common approach to modelling infectious diseases is to use the renewal equation. The early

theory on the properties of the renewal equation can be found here [8]. Epidemiologically derived

descriptions can be found here [5, 9] where the renewal equation is framed in an epidemiological

framework with reference to infection processes. The link between the renewal equation and the

popular susceptible-infected-recovered models can be found here [4]. The basics of branching

processes can be found here [10]. In what follows, we will arrive at a renewal equation from first

principles by first starting with the probability generating function of a general branching process.
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Supplementary Note: 2 Modelling

2.1 Branching process framework

We present a general time-varying age-dependent branching process that is most similar to the

general branching process initially proposed by Crump, Mode and Jagers [6, 7]. Following [14], in

our process, we begin with a single individual infected at some time l whose infectious period is

a random variable distributed by cumulative distribution function G(·, l), admitting a probability

density g(·, l). During this individual’s life length, the individual gives rise to an integer-valued

random number of secondary infections according to a counting processes {N(t, l)}t≥l ({N(t, l)} is

the number of secondary infections) where t is a global “calendar” time. The amount of time for

which the individual has been infected before time t is therefore t− l.

For each infection event time - that is, for each v such that

v ∈
{
u ≤ t : lim

s→u−
(N(s, l)) 6= lim

s→u+

(N(s, l))

}
(S.1)

we then define a random variable

Y (v, l) := lim
s→v+

(N(s, l))− lim
s→v−

(N(s, l)) (S.2)

to be the size of the infection event at time v; that is, this is the number of individuals that are

infected (by the initial individual) at time v. Throughout this paper, it will be assumed that

Y = Y (v), so that Y does not depend on the length of time for which an individual has been

infected. However, this assumption could be removed from the model if desired.

Each newly infected individual then proceeds, independently, in the same way as the initial in-

dividual. The only change is that the time at which they are infected will be different (but, for

example, the infection tree rooted at an individual infected at time s > l is equal in distribution to

the full infection tree if one started an epidemic with l = s). This self-similarity property underpins

the derivations in the subsequent notes, as it allows an epidemic to be characterised purely by the

“first generation” of infected individuals (and hence, the equations are derived using the “first

generation principle”).
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2.2 The counting process, N(t, l)

Our framework relies on the assumption that the counting processes N(t, l) has independent in-

crements and is continuous in probability:

lim
δ→0

[
P
(
N(t+ δ, l)−N(t, l)

)]
= 0 ∀t ≥ l ≥ 0 (S.3)

This condition excludes any discrete formulations of the epidemic process. It will be shown later in

the supplement that discrete epidemics (which are not continuous in probability), are structurally

different as extra terms appear in the equations for the pgf. However, the equations in the contin-

uous case are recovered as the step-size of the discrete process tends to zero.

A further assumption on N(t, l) is that it can be constructed from a Lévy Process - that is,

there is some non-negative rate function r(t, l) and some Lévy Process N (t) such that

N(t, l) = N
(∫ t

l

r(s, l)ds

)
(S.4)

Note that the counting processes relating to different individuals are independent, and hence will

come from different independent copies of the base process N .

This assumption is important because it means that the counting process of “infection events“

(that is, points in time such that the value of N(t, l) changes) is an inhomogeneous Poisson Pro-

cess, which can be shown as follows. Consider a counting process, JN (t, l) that counts the increases

in N . That is,

JN (t) :=

∣∣∣∣{u ≤ t : lim
s→u−

(N (s)) 6= lim
s→u+

(N (s))

}∣∣∣∣ (S.5)

where here | · | denotes the number of elements in a set. Then, as N is a Lévy Process, JN (t)

has iid (independent and identically distributed) increments and is non-decreasing in t with jumps

of size 1 and thus follows a Poisson Process with some rate κ [1]. Thus, if J(t, l) is the counting

process of infection events in N (t, l), then

J(t, l) = JN

(∫ t

l

r(s, l)ds

)
(S.6)
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and hence, J(t, l) is an inhomogeneous Poisson Process with rate κr(t, l) as required. In particular,

defining

λ(t, l) :=

∫ t

l

r(s, l)ds, (S.7)

J(t, l) has a generating function of

J(t,l)(s) = eκλ(t,l)(s−1) (S.8)

2.3 The rate function, r(t, l)

Throughout the examples in this paper, the rate function r(t, l) will be given as

r(t, l) = ρ(t)ν(t− l) (S.9)

Here, ρ(t) is a population-level infection event rate. Note that, because the number of infections

caused at each infection rate may be greater than 1 (that is one may have J(t, l) < N(t, l)), ρ(t)

cannot necessarily be interpreted in direct analogue to the reproduction number. ν(t− l) gives the

infectiousness of an individual after it has been infected for time (t − l). It will be assumed that∫∞
0
ν(s)ds = 1 so that it ρ can be interpreted as the infection event rate.

2.4 Smoothness assumptions

Note that, throughout the derivations of this paper, the smoothness of ρ, ν and g will not be

explicitly considered when taking limits - it will be assumed that they are sufficiently smooth for

“natural” results to hold. The authors believe that the results of this paper will hold for any

piecewise continuous choices for these functions, although more detailed analysis would be needed

to provide a rigorous proof of this. It is possible that they hold for much wider classes of functions,

but this seems to the authors to be outside the realm of epidemiological interest, as it appears

implausible that any of these functions would not be piecewise continuous in a realistic setting.

Moreover, it will be assumed that unique solutions to the equations for the pgf, mean and variance

exist. Again, a proof of this property is beyond the scope of this work, although the classes of
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equations presented in this paper are common across the literature, and it is likely that interested

readers with a pure mathematical background could find applicable results to address this issue.

2.5 Special cases for N(t, l)

Throughout this paper, two special cases for N(t, l) are considered - the case where N(t, l) is itself

an inhomogeneous Poisson Process, and the case where N(t, l) is a Negative Binomial process.

These were used to construct the figures in the paper and explanations as to how they can be used

will be presented throughout this supplement.

Supplementary Note: 3 Probability generating functions

3.1 General case

Define F (t, l; s) := E

(
sZ(t,l)

)
to be the generating function of Z(t, l). For simplicity of notation

the dependence of F on s will be suppressed.

To derive the generating function F (t, l), we condition on the infection period (lifetime) of the

initial case, L.

E

(
sZ(t,l)

)
=

∫ ∞
0

E

(
sZ(t,l)

∣∣∣∣L = u

)
g(u, l)du (S.10)

=

∫ ∞
t−l

E

(
sZ(t,l)

∣∣∣∣L = u

)
g(u, l)du+

∫ t−l

0

E

(
sZ(t,l)

∣∣∣∣L = u

)
g(u, l)du (S.11)

The counting process of the first individual, N(t, l) is independent of this first individual’s infection

period L. If L > t − l then this individual is still infectious and able to infect others at time t.

Therefore, conditional on L > t − l, the number of people they have infected before time t is

independent of L (as all infections from N(s, l)l≤s≤t are counted, irrespectively of the value of L).

That is (the first term in Equation 11)∫ ∞
t−l

E

(
sZ(t,l)

∣∣∣∣L = u

)
g(u, l)du =

∫ ∞
t−l

E

(
sZ(t,l)

∣∣∣∣L ≥ t− l)g(u, l)du (S.12)
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and hence, the first integral in Supplementary Equation S.11 can be simplified to give

E

(
sZ(t,l)

)
=

(
1−G(t− l, l)

)
E

(
sZ(t,l)

∣∣∣∣L ≥ t− l)+

∫ t−l

0

E

(
sZ(t,l)

∣∣∣∣L = u

)
g(u, l)du (S.13)

Let us consider the second part of Supplementary Equation S.11. Suppose first that L = u for

some u < t − l so that the index case is no longer alive at time t. Thus, the number of infection

events caused by the index case is given by J(l + u, l).

Define the set of times at which these infected events occurred to be {K1, ...,KJ(l+u,l)} where

here, importantly, the Ki are labelled in a random order (so it is not necessarily the case that

K1 < ... < KJ(l+u,l)). As J is an homogeneous Poisson Process and N(t, l) is continuous in

probability, the Ki are therefore iid with pdf (probability density function)

fK(k) =
r(l + k, l)∫ u

0
r(l + s, l)ds

(S.14)

It is perhaps helpful to note that this is the step which relies on N being continuous in probability.

If this were not the case and N(t, l) had non-zero probability of increasing at some time s, then

the knowledge that K1 = s would give some information about K2, as the fact that K2 6= s would

change its probability distribution, meaning K1 and K2 would not be independent. Conversely, in

the continuous case, K1 = s removes an event of zero measure from the probability space of K2,

and hence K1 and K2 are still independent.

Now, by the self-similarity property ([10, 11]) we have

Z(t, l) =

J(l+u,l)∑
i=1

Y (l+Ki(l+u,l))∑
j=1

Zij(t, l +Ki(l + u, l)) (S.15)

where each Zij is an independent copy of Z that is equal in distribution. Zij denotes the jth

individual corresponding to infection event time i. The two summations, from all previous infec-

tions, sum over all the infection events and their sizes. This summation is valid as each individual

behaves independently once it has been infected.

Recall that if Xi are iid random variables (with a generating function, GX(s)) and if Y is a

non-negative integer-valued random variable (again with a generating function, GY (s)), then,

E

(
s
∑Y

i=1Xi

)
= GY (GX(s)) (S.16)
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By defining J(t,l) to be the generating function of J(t, l), this relationship allows us to write

E(sZ(t,l)|L = u) as

E(sZ(t,l)|L = u) = J(l+u,l)
(
E

[
s
∑Y (l+K(l+u,l))

j=1 Zj(t,l+K(l+u,l))

])
(S.17)

where here, K is equal in distribution to the Ki. Conditioning on the value of K,

E

[
s
∑Y (l+K)

j=1 Zj(t,l+K)

]
=

∫ u

0

E

[
s
∑Y (l+k)

j=1 Zj(t,l+k)

]
r(l + k, l)

λ(l + u, l)
dk (S.18)

Thus, defining Y(l+k) to be the generating function of Y (l + k)

E

[
s
∑Y (l+K)

j=1 Zj(t,l+K)

]
=

∫ u

0

Y(l+k)(F (t, l + k))
r(l + k, l)

λ(l + u, l)
dk (S.19)

We can equivalently write this as an exponential, using the fact that J(t, l) is Poisson distributed:

E(sZ(t,l)|L = u) = J(l+u,l)
(∫ u

0

Y(l+k)(F (t, l + k))
r(l + k, l)

λ(l + u, l)
dk

)
(S.20)

= exp

[
κλ(l + u, l)

(∫ u

0

Y(l+k)(F (t, l + k))
r(l + k, l)

λ(l + u, l)
dk − 1

)]
(S.21)

An identical derivation can be performed on the first integral in Supplementary Equation S.11

(swapping t− l for u and multiplying by s to account for the initial case, which is counted in the

prevalence at t when L > t− l), resulting in

E(sZ(t,l)|L ≥ t− l) = sJ(t,l)
(∫ t−l

0

Y(l+k)(F (t, l + k))
r(l + k, l)

λ(t, l)
dk

)
(S.22)

= s exp

[
κλ(t, l)

(∫ t−l

0

Y(l+k)(F (t, l + k))
r(l + k, l)

λ(t, l)
dk − 1

)]
(S.23)

and therefore, this yields an overall pgf

F (t, l) = s

(
1−G(t− l, l)

)
J(t,l)

(∫ t−l

0

Y(l+u)(F (t, l + u))
r(l + u, l)

λ(t, l)
du

)
...

...+

∫ t−l

0

J(l+u,l)
(∫ u

0

Y(l+k)(F (t, l + k))
r(l + k, l)

λ(l + u, l)
dk

)
g(u, l)du (S.24)

or, equivalently

F (t, l) = s

(
1−G(t− l, l)

)
exp

[
κλ(t, l)

(∫ t−l

0

Y(l+k)(F (t, l + k))
r(l + k, l)

λ(t, l)
dk − 1

)]
...

...+

∫ t−l

0

exp

[
κλ(l + u, l)

(∫ u

0

Y(l+k)(F (t, l + k))
r(l + k, l)

λ(l + u, l)
dk − 1

)]
g(u, l)du (S.25)

Note that by absorbing κ into the rate function r(l+k, l), it can be assumed that κ = 1. Intuitively

this is simply scaling the probability density by the number of points.
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3.2 Solving the pgf equation

Practically, one will always set l = 0 for an epidemic, and so only the values F (t, 0) are directly

relevant. However, it is still necessary to solve for F (t, l) for 0 ≤ l ≤ t. In the language of PDEs

(partial differential equations) and, specifically, the Cauchy problem, this can be explained by the

fact that the “data curve” is the line t = l (as the values of F (t, t) are known to be equal to s)

and the “characteristics” of the system are the lines t = constant. Thus, to calculate the value of

F (t, 0), it is necessary to follow the characteristic from (t, t) to (t, 0) and hence calculate F (t, l) for

0 ≤ l ≤ t.

Hence, following [14], solving Supplementary Equation S.25 can be greatly facilitated by defining

an auxiliary equation Fc(t) = F (c, c − t) and allows us to write Supplementary Equation S.25 an

equation in one variable. This is

Fc(t) = s

(
1−G(t, l)

)
J(c,c−t)

(∫ t

0

Y(c−t+u)(Fc(t− u))
r(c− t+ u, c− t)

λ(c, c− t)
du

)
...

...+

∫ t

0

J(c−t+u,c−t)
(∫ u

0

Y(c−t+k)(Fc(t− k))
r(c− t+ k, c− t)

λ(u, c− t)
dk

)
g(u, l)du (S.26)

or, equivalently

Fc(t) = s

(
1−G(t, l)

)
exp

[
λ(c, c− t)κ

(∫ t

0

Y(c−t+u)(Fc(t− u))
r(c− t+ u, c− t)

λ(c, c− t)
du− 1

)]
...

...+

∫ t

0

exp

[
λ(u, c− t)κ

(∫ u

0

Y(c−t+k)(Fc(t− k))
r(c− t+ k, c− t)

λ(u, c− t)
dk − 1

)]
g(u, l)du

(S.27)

3.3 Poisson case

If N(t, l) is an inhomogeneous Poisson Process, then, as the infection event size for a Poisson

Process is always 1 [1], one has Y(t)(s) = s. To aid understanding below in the Negative Binomial
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case, it is helpful to note that the Lévy Process, N , can hence be characterised by

P(N (t+ dt)−N (t) = 0) = 1− κdt

P(N (t+ dt)−N (t) = 1) = κdt

P(N (t+ dt)−N (t) > 1) = o(dt)

Setting κ = 1 as discussed above, the generating function equation becomes

F (t, l) = s

(
1−G(t− l, l)

)
exp

[(∫ t−l

0

F (t, l + k)ρ(l + k)ν(k)dk − λ(t, l)

)]
... (S.28)

...+

∫ t−l

0

exp

[(∫ u

0

F (t, l + k)ρ(l + k)ν(k)dk − λ(l + u, l)

)]
g(u, l)du (S.29)

This equation can be further simplified by recalling that

λ(t, l) :=

∫ t

l

r(u, l)du =

∫ t−l

0

r(u+ l, l)du =

∫ t−l

0

ρ(u+ l)ν(u)du (S.30)

therefore

F (t, l) = s

(
1−G(t− l, l)

)
exp

[(∫ t−l

0

F (t, l + k)ρ(l + k)ν(k)dk −
∫ t−l

0

ρ(l + k)ν(k)dk

)]
...

...+

∫ t−l

0

exp

[(∫ u

0

F (t, l + k)ρ(l + k)ν(k)dk −
∫ u

0

ρ(l + k)ν(k)du

)]
g(u, l)du

= s

(
1−G(t− l, l)

)
exp

[(∫ t−l

0

ρ(l + k)ν(k)
(
F (t, l + k)− 1

)
dk

)]
...

...+

∫ t−l

0

exp

[(∫ u

0

ρ(l + k)ν(k)dk
(
F (t, l + k)− 1

))]
g(u, l)du (S.31)

For computational ease the auxiliary function equation is then

Fc(t) = s

(
1−G(t, l)

)
exp

[(∫ t

0

(
Fc(t− u)− 1

)
ρ(c− t+ u)ν(u)du

)]
...

...+

∫ t

0

exp

[(∫ u

0

(
Fc(t− k)− 1

)
ρ(c− t+ k)ν(k)dk

)]
g(u, l)du (S.32)
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3.4 Inhomogeneous Negative Binomial case

Our derivation follows from the well-known relationship that the Negative Binomial distribution

arises from a compound Poisson distribution. For p ∈ (0, 1) and φ ∈ R+, if

X =

N∑
i=1

Yi (S.33)

where

N ∼ Poisson(−φ ln(p)) (S.34)

and each Yi is independent of N , iid, and follows a logarithmic series distribution

Yi ∼ Logarithmic(1− p) (S.35)

then the random variable X is Negative Binomial distributed. This can easily be proven using

pgfs. Therefore we have κ = − ln(p)φ and can calculate the pgf for Y as Y(s) = ln(1−(1−p)s)
ln(p) .

These can then be substituted into our general Supplementary Equation S.25.

For clarity we re-derive this relationship explicitly. We have

N (t) ∼ NB(φt, p) (S.36)

As M(t) has iid increments,

P
(
N (t+dt)−N (t) = k

)
= P

(
N (dt) = k

)
=

(k + φdt− 1)(k + φdt− 2)...φdt

k!
(1−p)kpφdt (S.37)

Thus, to leading order, for k > 0, one has

P
(
N (t+ dt)−N (t) = k

)
=

(1− p)kφdt
k

+ o(dt) (S.38)

while if k = 0,

P
(
N (t+ dt)−N (t) = 0

)
= pφdt = 1 + ln(p)φdt+ o(dt) (S.39)

(noting that ln(p) < 0). This means that the infection event process JN satisfies

P
(
JN (t+ dt)− JN (t) = 0

)
= 1 + ln(p)φdt+ o(dt) (S.40)
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and

P
(
JN (t+ dt)− JN (t) = 1

)
=

∞∑
k=1

(1− p)kφdt
k

+ o(dt) (S.41)

= − ln(p)φdt+ o(dt) (S.42)

and hence, JN is a Poisson Process of rate − ln(p)φ [2] . Thus, one has

κ = − ln(p)φ (S.43)

as expected. Moreover, the pmf (probability mass function) of a infection event size, Y is given by

P(Y = k) =
(1− p)k

−k ln(p)
(S.44)

One can hence find the generating function as

Y(s) =

∞∑
k=1

((1− p)s)kφ
−k ln(p)

(S.45)

Noting that
∞∑
k=1

(1− p)k

−k ln(p)
= 1 (S.46)

one has

Y(s) =
ln(1− (1− p)s)

ln(p)

∞∑
k=1

(1− (1− (1− p)s))k

−k ln(1− (1− p)s)
=

ln(1− (1− p)s)
ln(p)

(S.47)

These results can be substituted into the general formula to give

F (t, l) =s

(
1−G(t− l, l)

)
exp

[
− φ

(∫ t−l

0

ln(1− (1− p)F (t, l + u))ρ(u+ l)ν(u)du+ ln(p)λ(t, l)

)]
...

...+

∫ t−l

0

exp

[
− φ

(∫ u

0

ln(1− (1− p)F (t, l + k))ρ(k + l)ν(k)dk + ln(p)λ(u, l)

)]
g(u, l)du

(S.48)

As in the Poisson case, this equation can be simplified by factoring λ

F (t, l) =s

(
1−G(t− l, l)

)
exp

[
− φ

(∫ t−l

0

(
ln(1− (1− p)F (t, l + u))− ln(p)

)
ρ(u+ l)ν(u)du

)]
...

...+

∫ t−l

0

exp

[
− φ

(∫ u

0

(
ln(1− (1− p)F (t, l + k))− ln(p)

)
ρ(k + l)ν(k)dk

)]
g(u, l)du

(S.49)
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The easier-to-solve auxiliary function is given by

Fc(t) =s

(
1−G(t− l, l)

)
exp

[
− φ

(∫ t

0

(
ln(1− (1− p)Fc(t− u))− ln(p)

)
ρ(c− t+ u)ν(u)du

)]
...

...+

∫ t

0

exp

[
− φ

(∫ u

0

(
ln(1− (1− p)Fc(t− k))− ln(p)

)
ρ(c− t+ k)ν(k)dk

)]
g(u, l)du

(S.50)

If p = φ
1+φ , then the Poisson case (with κ = 1) is recovered in the φ→∞ limit.

Note that E[N(t, l)] = φλ(t,l)(1−p)
p while in our case, we impose that E[N(t, l)] = λ(t, l). Solving

for p we can see p = φ
1+φ and this relation can be substituted into Supplementary Equation S.50.

Note that this agrees with the definition of p in the Poisson limit.

3.5 Cumulative incidence

Similar to prevalence, cumulative incidence can be calculated by counting all previous infections

as well as current ones. Following an identical derivation to prevalence the pgf for cumulative

incidence simply requires multiplying the second integral by s as the initial infection is counted in

the cumulative incidence regardless of the value of L.

F (t, l) = s

(
1−G(t− l, l)

)
J(t,l)

(∫ t−l

0

Y(l+u)(F (t, l + u))
r(l + u, l)

λ(t, l)
du

)
...

...+ s

∫ t−l

0

J(l+u,l)
(∫ u

0

Y(l+k)(F (t, l + k))
r(l + k, l)

λ(t, l)
dk

)
g(u, l)du (S.51)

3.6 A simplified pgf ignoring g

By assuming g(u, l) = 0 ∀ u and therefore G(u, l) = 0 ∀ u, the pgf for prevalence (or, in this

case, equivalently, cumulative incidence) simplifies to

F (t, l) = sJ(t,l)
(∫ t−l

0

Y(l+u,l)(F (t, l + u))
r(l + u, l)

λ(t, l)
du

)
Additional computational savings can be gained in our case r(t, l) = ρ(t)ν(t−l) if the infectiousness

ν decays to zero quickly. This means that the auxiliary equation used for computation can be
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truncated to some time min(t, T ). For example, in the Poisson case this becomes,

Fc(t) = exp

[(∫ min(t,T )

0

(
Fc(t− u)− 1

)
ρ(c− t+ u)ν(u)du

)]
s (S.52)

and in the Negative Binomial case this becomes,

Fc(t) = exp

[
− φ

(∫ min(t,T )

0

(
ln(1− (1− p)Fc(t− u))− ln(p)

)
ρ(c− t+ u)ν(u)du

)]
s (S.53)

These computational savings allow computation of the pgf for millions of iterations in minutes.

3.7 Calculating the probability mass function via the pgf

Following [13] and [3] (originally from [12]), by the properties of pgfs, the probability mass function

p can be recovered through a pgf F ’s derivatives at s = 0

P(n) =
1

n!

(
d

ds

)n
F (s; t, τ)|s=0

This is generally computationally intractable. A well-known result from complex analysis [12]

holds that

f (n)(a) =
n!

2πi

∮
f(z)

(z − a)
n+1 dz. (S.54)

Therefore

P(n) =
1

2πi

∮
F (z; t, τ)

zn+1
dz (S.55)

This integral can be done on a closed circle around the origin such that z = reiθ and dz = izdθ -

i.e.

P(n) =
1

2π

∫ 2π

0

F (reiθ; t, τ)

(reiθ)n
dθ (S.56)

Finally through substitution θ = 2πu such that dθ = 2πdu, where u ∈ [0, 1] we find

P(n) =

∫ 1

0

F (re2πiu; t, τ)

rne2πiun
du (S.57)

Since trapezoidal sums are known to converge geometrically for periodic analytic functions (Davis

1959) a simple approximation becomes

P(n) =
1

Mrn

M−1∑
m=0

F (re2πim/M ; t, τ)e−2πinm/M (S.58)
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Bornemann[3] suggest using r = 1.

The probability mass function for any time and n can be determined numerically. One needs

M ≥ n, which requires solving n renewal equations for the generating function and performing a

fast Fourier transform. This is generally computationally fast, but may become slightly burdensome

for epidemics with very large numbers of infected individuals.

Supplementary Note: 4 Properties of the prevalence vari-

ance

4.1 Derivation of equation for mean prevalence

Before deriving the equation for the prevalence variance, it is important to derive the equation

governing the mean prevalence. This has been previously derived in [14], although here, we re-

derive it from our new pgfs. First note that

∂

∂s

(
J(t,l)

(∫ t−l

0

Y(l+u,l)(F (t, l + u))
r(l + u, l)

λ(t, l)
du

))
...

=

[ ∫ t−l

0

Fs(t, l + u)
r(l + u, l)

λ(t, l)
Y ′(l+u,l)(F (t, l + u))du

][
J ′(t,l)

(∫ t−l

0

Y(l+u,l)(F (t, l + u))
r(l + u, l)

λ(t, l)
du

))]
(S.59)

Now, setting s = 1 so that F (·, ·) = 1 and Fs(·, ·) = M(·, ·), one has[ ∫ t−l

0

M(t, l + u)
r(l + u, l)

λ(t, l)
Y ′(l+u,l)(1)du

][
J ′(t,l)

(∫ t−l

0

Y(l+u,l)(1)
r(l + u, l)

λ(t, l)
du

))]
(S.60)

Now, define B(t) = E(Y (t)) so that Y ′(l+u)(1) = B(l+u). Moreover, Y(l+u)(1) = 1 so the equation

becomes [ ∫ t−l

0

M(t, l + u)
r(l + u, l)

λ(t, l)
B(l + u)du

][
J ′(t,l)

(∫ t−l

0

r(l + u, l)

λ(t, l)
du

))]
(S.61)

Now, necessarily∫ t−l

0

r(l + u, l)

λ(t, l)
du = 1⇒ J ′(t,l)

(∫ t−l

0

r(l + u, l)

λ(t, l)
du

)
= E(J(t, l)) = κλ(t, l) (S.62)
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and so, this results in ∫ t−l

0

M(t, l + u)
r(l + u, l)

λ(t, l)
B(l + u)κλ(t, l)du (S.63)

Moreover, evaluating

J(t,l)
(∫ t−l

0

Y(l+u)(F (t, l + u))
r(l + u, l)

λ(t, l)
du

)
(S.64)

at s = 1 gives

J(t,l)
(∫ t−l

0

Y(l+u)(1)
r(l + u, l)

λ(t, l)
du

)
= J(t,l)

(∫ t−l

0

1× r(l + u, l)

λ(t, l)
du

)
(S.65)

= J(t,l)(1) (S.66)

= 1 (S.67)

Thus, the derivative of the full generating function equation gives

M(t, l) = (1−G(t− l, l))
[
1 +

∫ t−l

0

M(t, l + u)
r(l + u, l)

λ(t, l)
B(l + u)κλ(t, l)du

]
... (S.68)

...+

∫ t−l

0

∫ u

0

M(t, l + k)
r(l + k, l)

λ(l + u, l)
B(l + k)κλ(l + u, l)g(u, l)dkdu (S.69)

This can be simplified significantly. Note that,∫ t−l

0

∫ u

0

M(t, l + k)
r(l + k, l)

λ(l + u, l)
B(l + k)κλ(l + u, l)g(u, l)dkdu =∫ t−l

0

∫ u

0

M(t, l + k)r(l + k, k)B(l + k)κg(u, l)dkdu (S.70)

Moreover, one can change the order of integration to get∫ t−l

0

∫ t−l

k

M(t, l+k)r(l+k, k)B(l+k)κg(u, l)dudk =

∫ t−l

0

M(t, l+k)r(l+k, k)B(l+k)κ(G(t−l, l)−G(k, l))

(S.71)

and hence, one can write the equation for M(t, l) as

M(t, l) = (1−G(t− l, l)) +

∫ t−l

0

M(t, l + u)r(l + u, l)
(
B(l + u)κ

)
(1−G(u, l))du (S.72)

Note that, for the Poisson special case, B(l+ u, l) = 1 and for the Negative Binomial special case,

B(l+ u, l) = p−1
p ln(p) = − 1

ln(p)φ . In both cases, it may improve the epidemiological interpretation of

ρ to absorb the B(l+u, l)κ term into ρ (so that ρ becomes a measure of the rate of new infections).

This gives the simpler equation

M(t, l) = (1−G(t− l, l)) +

∫ t−l

0

M(t, l + u)ρ(l + u)ν(u)(1−G(u, l))du (S.73)

which agrees with [14].
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4.2 Derivation of equation for prevalence variance

The equation for variance can now be found by taking the second derivative of the pgf. De-

fine W (t, l) := E(Z(t, l)(Z(t, l) − 1)). Note that this then gives the variance, V (t, l) as V (t, l) =

W (t, l) +M(t, l)−M(t, l)2.

Consider first the term

s

(
1−G(t− l, l)

)
J(t,l)

(∫ t−l

0

Y(l+u)(F (t, l + u))
r(l + u, l)

λ(t, l)
du

)
(S.74)

The first derivative of this term is equal to

Ḡ(t− l, l)J(t,l)
(∫ t−l

0

Y(l+u)(F (t, l + u))
r(l + u, l)

λ(t, l)
du

)
+ ...

sḠ(t− l, l)
[ ∫ t−l

0

Fs(t, l + u)Y ′(l+u)(F (t, l + u))
r(l + u, l)

λ(t, l)
du

]
J ′(t,l)

(∫ t−l

0

Y(l+u)(F (t, l + u))
r(l + u, l)

λ(t, l)
du

)
(S.75)

Then, the second derivative is equal to

2Ḡ(t− l, l)
[ ∫ t−l

0

Fs(t, l + u)Y ′(l+u)(F (t, l + u))
r(l + u, l)

λ(t, l)
du

]
J ′(t,l)

(∫ t−l

0

Y(l+u)(F (t, l + u))
r(l + u, l)

λ(t, l)
du

)
+

+ sḠ(t− l, l)
[ ∫ t−l

0

Fs(t, l + u)Y ′(l+u)(F (t, l + u))
r(l + u, l)

λ(t, l)
du

]2
J ′′(t,l)

(∫ t−l

0

Y(l+u)(F (t, l + u))
r(l + u, l)

λ(t, l)
du

)
+ sḠ(t− l, l)

[ ∫ t−l

0

Fss(t, l + u)Y ′(l+u)(F (t, l + u))
r(l + u, l)

λ(t, l)
du

]
J ′(t,l)

(∫ t−l

0

Y(l+u)(F (t, l + u))
r(l + u, l)

λ(t, l)
du

)
+ sḠ(t− l, l)

[ ∫ t−l

0

F 2
s (t, l + u)Y ′′(l+u)(F (t, l + u))

r(l + u, l)

λ(t, l)
du

]
J ′(t,l)

(∫ t−l

0

Y(l+u)(F (t, l + u))
r(l + u, l)

λ(t, l)
du

)
(S.76)

Now, one can evaluate this as s = 1. Note that∫ t−l

0

Y(l+u)(F (t, l + u))
r(l + u, l)

λ(t, l)
du =

∫ t−l

0

Y(l+u)(1)
r(l + u, l)

λ(t, l)
du

=

∫ t−l

0

1× r(l + u, l)

λ(t, l)
du

= 1 (S.77)
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Moreover, define BW (t) := E(Y (t)(Y (t) − 1)) and CW (t, l) := E(J(t, l)(J(t, l) − 1)). Note also

E(J(t, l)) = λ(t, l). Thus, the second derivative evaluated at s = 1 is

2Ḡ(t− l, l)
[ ∫ t−l

0

M(t, l + u)B(l + u)
r(l + u, l)

λ(t, l)
du

]
κλ(t, l)

+ Ḡ(t− l, l)
[ ∫ t−l

0

M(t, l + u)B(l + u)
r(l + u, l)

λ(t, l)
du

]2
CW (t, l)

+ Ḡ(t− l, l)
[ ∫ t−l

0

W (t, l + u)B(l + u)
r(l + u, l)

λ(t, l)
du

]
κλ(t, l)

+ Ḡ(t− l, l)
[ ∫ t−l

0

M(t, l + u)2BW (l + u)
r(l + u, l)

λ(t, l)
du

]
κλ(t, l) (S.78)

Noting that J(t, l) is Poisson, one has

CW (t, l) + E(J(t, l))− E(J(t, l)2) = var(J(t, l)) = E(J(t, l)) (S.79)

and hence

CW (t, l) = E(J(t, l))2 (S.80)

Define

χ(t, l, k) := κ

[
W (t, l + k)B(l + k)r(l + k, l) +M(t, l + k)2BW (l + k)r(l + k, l)

]
(S.81)

Then, the same process can be carried out for the second part of the equation to give

W (t, l) =2Ḡ(t− l, l)
[ ∫ t−l

0

M(t, l + u)B(l + u)r(l + u, l)du

]
+ Ḡ(t− l, l)

∫ t−l

0

χ(t, l, k)dk...

...+ Ḡ(t− l, l)
[ ∫ t−l

0

M(t, l + u)B(l + u)κr(l + u, l)du

]2
...

...+

∫ t−l

0

[ ∫ u

0

M(t, l + u)B(l + u)κr(l + u, l)du

]2
g(u, l)du...

...+

∫ t−l

0

∫ u

0

χ(t, l, k)dkg(u, l)du (S.82)

For ease of notation, define

S(t, l, u) :=

[ ∫ u

0

M(t, l + k)B(l + k)κr(l + k, l)dk

]2
(S.83)

so that

W (t, l) =2Ḡ(t− l, l)
[ ∫ t−l

0

M(t, l + u)B(l + u)r(l + u, l)du

]
+ Ḡ(t− l, l)

∫ t−l

0

χ(t, l, k)dk...

...+ Ḡ(t− l, l)S(t, l, t− l) +

∫ t−l

0

S(t, l, u)g(u, l)du+

∫ t−l

0

∫ u

0

χ(t, l, k)dkg(u, l)du (S.84)
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Now, changing the order of integration in the final term (as was done in the derivation of the mean

prevalence), this can be rewritten as

W (t, l) = 2Ḡ(t− l, l)
[ ∫ t−l

0

κM(t, l + u)B(l + u)r(l + u, l)du

]
+ Ḡ(t− l, l)S(t, l, t− l)...

...+

∫ t−l

0

S(t, l, u)g(u, l)du+

∫ t−l

0

χ(t, l, k)Ḡ(k, l)dk (S.85)

From this, we can create an equation for E(Z(t, l)2) := X(t, l) = W (t, l) +M(t, l) by defining

χX(t, l, k) = κ

[
X(t, l + k)B(l + k, l)r(l + k, l) +M(t, l + k)2BW (l + k, l)r(l + k, l)

]
(S.86)

and then simply adding the equation for M to give

X(t, l) = Ḡ(t− l, l) + 2Ḡ(t− l, l)
[ ∫ t−l

0

κM(t, l + u)B(l + u)r(l + u, l)du

]
+ Ḡ(t− l, l)S(t, l, t− l)...

...+

∫ t−l

0

S(t, l, u)g(u, l)du+

∫ t−l

0

χX(t, l, k)Ḡ(k, l)dk (S.87)

Finally, to form the equation for the variance V (t, l) = X(t, l)−M(t, l)2, note that

χX(t, l, k) = κ

[
X(t, l + k)B(l + k)r(l + k, l) +M(t, l + k)2(E(Y (l + k)2)−B(l + k))r(l + k, l)

]
(S.88)

= κ

[
V (t, l + k)B(l + k)r(l + k, l) +M(t, l + k)2E(Y (l + k)2)r(l + k, l)

]
(S.89)

:= χV (t, l, k) (S.90)

and hence, subtracting M(t, l)2 from both sides of the equation for X(t, l) gives

V (t, l) = Ḡ(t− l, l) + 2Ḡ(t− l, l)
[ ∫ t−l

0

κM(t, l + u)B(l + u)r(l + u, l)du

]
+ Ḡ(t− l, l)S(t, l, t− l)...

...+

∫ t−l

0

S(t, l, u)g(u, l)du+

∫ t−l

0

χV (t, l, k)Ḡ(k, l)dk −M(t, l)2 (S.91)

4.3 An explanation of the variance equation

There are two main sources of uncertainty in the infection process - the infectious period of an

individual, and the number and timing of infections that occur during this infectious period. One
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can show that the variance splits into three terms - one for each of these two sources of uncertainty

from the initial individual, and one which propagates the uncertainty through the descendants of

the initial individual.

Each term will be derived by assuming that all other parts of the model are deterministic. To

begin, suppose that the infectious period of the initial individual is random but all other parts of

the model are deterministic, so that, given that the initial individual is infectious at time l+ u, it

will infect B(l + u)r(l + u, l)dt people in the interval [u, u + dt] (note that this is an abstraction

to illustrate the source of this variance, as it is impossible for non-integer numbers of infections to

occur). Moreover, it is assumed that each of these individuals have given rise to exactly M(t, l+u)

infections at time t. Then, note that

var(Z(t, l)) = E(Z(t, l)2)− E(Z(t, l))2 (S.92)

=

∫ ∞
0

E(Z(t, l)2|L = u)g(u, l)du−M(t, l)2 (S.93)

=

∫ t−l

0

[ ∫ u

0

M(t, l + k)B(l + k)r(l + k, l)dk

]2
g(u, l)du... (S.94)

...+ Ḡ(t− l, l)
(

1 +

∫ t−l

0

M(t, l + k)B(l + k)r(l + k, l)dk

)2

−M(t, l)2

= Ḡ(t− l, l) + 2Ḡ(t− l, l)
∫ t−l

0

M(t, l + k)B(l + k)r(l + k, l)dk + ... (S.95)

...+ Ḡ(t− l, l)S(t, l, t− l) +

∫ t−l

0

S(t, l, u)g(u, l)du−M(t, l)2

which recovers all the terms of the variance equation except for
∫ t−l
0

χV (t, l, k)Ḡ(k, l)dk.

Now, suppose that the infectious period of the initial individual is deterministic in the sense

that they infect others at a rate of r(l + k, l)Ḡ(k, l), i.e. the expected rate at time l + k. Thus,

the number of infection events in the interval [l + (k − 1)dt, l + kdt] is (to leading order in dt)

a Poisson variable, Ak, with mean r(l + k, l)Ḡ(k, l)dt and hence the number of infections is that

Poisson variable multiplied by Y (l + k, l). Finally, note that, as before, any individuals born at
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time l+ k will be assumed to deterministically cause M(t, l+ k) active infections at time t. Thus,

var(Z(t, l)) =

∫ k=t−l

k=0

var(M(t, l + k)Y (l + k)Ak) (S.96)

=

∫ t−l

0

E((M(t, l + k)Y (l + k)Ak)2)−
∫ k=t−l

k=0

E((M(t, l + k)Y (l + k)Ak))2 (S.97)

=

∫ k=t−l

k=0

M(t, l + k)2E(Y (l + k)2)E(A2
k)−

∫ k=t−l

k=0

B(l + k)2r(l + k, l)2Ḡ(k, l)2dt2M(t, l + k)2

(S.98)

Ignoring the dt2 term as it has zero measure, and noting that Y and Ak are independent

var(Z(t, l)) =

∫ t−l

0

M(t, l + k)2E(Y (l + k, l)2)r(l + k, l)Ḡ(k, l)dt (S.99)

which is again a term from the variance equation.

The final term,
∫ t−l
0

V (t, l + k)B(l + k)Ḡ(k, l)r(l + k, l)dk denotes the propagation of uncertainty

through future generations. Indeed, if the infection process of the initial individual (and its infec-

tious period) are assumed to be fully deterministic, then one simply has

var(Z(t, l)) =

∫ t−l

0

var(Z(t, l + k))E(number of individuals born at l + k) (S.100)

which can easily be seen to give the correct term.

4.4 Overdispersion

For the purposes of this note, it is helpful to create the following definition

Expanded: An epidemic is called “expanded” at time t, if there is a non-zero probability that the

prevalence, not counting the initial individual or its secondary infections, is non-zero.

In this note, it will be shown that, if Z̃(t, l) is the prevalence of new infections (that is, the

prevalence without counting the initial case) then if the epidemic is expanded at time t, Z̃(t, l) is

strictly overdispersed. That is

var(Z̃(t, l)) > E(Z̃(t, l)) or E(Z̃(t, l + k))ρ(l + k, l)ν(k)Ḡ(k, l) = 0 ∀k ∈ (0, t− l) (S.101)
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The second condition ensures that, at each k, either the likelihood of a new infection being caused

at time l+k, or the probability of an individual who was infected at time l+k causing subsequent

infections whose infection tree has non-zero prevalence at time t, is zero. Hence, it is equivalent to

the epidemic not being expanded at time t.

It is crucial to use Z̃(t, l) rather than Z(t, l), as otherwise the deterministic initial case means that,

for early times, the prevalence is underdispersed (as, for example E(Z(l, l)) = 1 and var(Z(l, l)) =

0). Moreover, the condition on the tertiary infections is necessary as, otherwise, if N(t, l) is Pois-

sonian, then Z̃(t, l) is also Poissonian (and therefore not strictly overdispersed).

It is helpful to derive equations for the quantities for the mean M̃(t, l) and the variance Ṽ (t, l) of

the new infection prevalence. This can be done by following the methods of the previous note.

The derivations are mostly identical, and so will not be covered in detail. However, the key point

is to note that the equation for the pgf, F̃ , becomes

F̃ (t, l) =

(
1−G(t− l, l)

)
J(t,l)

(∫ t−l

0

Y(l+u)(F̃ (t, l + u))
r(l + u, l)

λ(t, l)
du

)
...

...+

∫ t−l

0

J(l+u,l)
(∫ u

0

Y(l+k)(F̃ (t, l + k))
r(l + k, l)

λ(l + u, l)
dk

)
g(u, l)du (S.102)

as the factor of s in the first term is discarded. This equation can then be differentiated as before

to show that

M̃(t, l) = (1−G(t− l, l))
[ ∫ t−l

0

M̃(t, l + u)
r(l + u, l)

λ(t, l)
B(l + u)κλ(t, l)du

]
...

...+

∫ t−l

0

∫ u

0

M̃(t, l + k)
r(l + k, l)

λ(l + u, l)
B(l + k)κλ(l + u, l)g(u, l)dkdu (S.103)

and then rearranged to

M̃(t, l) =

∫ t−l

0

M̃(t, l + u)r(l + u, l)B(l + u)κ(1−G(u, l))du (S.104)

Defining S̃ as the analogue to S, by

S̃(t, l, u) =

[ ∫ u

0

M̃(t, l + k)B(l + k)κr(l + k, l)dk

]2
(S.105)

and using Ḡ = 1−G, the first of these equations can be written more succinctly as

M̃(t, l) = Ḡ(t− l, l)S̃(t, l, t− l)0.5 +

∫ t−l

0

S̃(t, l, u)0.5g(u, l)du (S.106)
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The equation for Ṽ (t, l) can be calculated in a similar way. The only changes to the derivation are

that the first term in Supplementary Equation S.78 is discarded to account for the discarded s in

the pgf, and that when adding the mean to move from W to X (in analogue to Supplementary

Equation S.87), one no longer needs to add the Ḡ(t− l, l) term. Thus,

Ṽ (t, l) = Ḡ(t− l, l)S̃(t, l, t− l) +

∫ t−l

0

S̃(t, l, u)g(u, l)du+

∫ t−l

0

χṼ (t, l, k)Ḡ(k, l)dk − M̃(t, l)2

(S.107)

Now, the proof of overdispersion can begin. Firstly, it is helpful to bound M̃(t, l) above, which can

be done as follows. Squaring Supplementary Equation S.106 shows that

M̃(t, l)2 = Ḡ(t− l, l)2S̃(t, l, t− l) + 2Ḡ(t− l, l)S̃(t, l, t− l)0.5
∫ t−l

0

S̃(t, l, u)0.5g(u, l)du+

[ ∫ t−l

0

S̃(t, l, u)0.5g(u, l)du

]2
(S.108)

Now, using the Cauchy-Schwarz inequality, we see that[ ∫ t−l

0

S̃(t, l, u)0.5g(u, l)du

]2
=

[ ∫ t−l

0

(S̃(t, l, u)g(u, l))0.5(g(u, l))0.5du

]2
(S.109)

≤
[ ∫ t−l

0

S̃(t, l, u)g(u, l)du

][ ∫ t−l

0

g(u)du

]
(S.110)

≤ (1− Ḡ(t− l, l))
[ ∫ t−l

0

S̃(t, l, u)g(u, l)du

]
(S.111)

Suppose that Ḡ(t− l, l) 6= 1. Then, using

1 =
1

1− Ḡ(t− l, l)
− Ḡ(t− l, l)

1− Ḡ(t− l, l)
(S.112)

to split the final term in Supplementary Equation S.108, we find

M̃(t, l)2 ≤ Ḡ(t− l, l)2S̃(t, l, t− l) + 2Ḡ(t− l, l)S̃(t, l, t− l)0.5
∫ t−l

0

S̃(t, l, u)0.5g(u, l)du...

− Ḡ(t− l, l)
1− Ḡ(t− l, l)

[ ∫ t−l

0

S̃(t, l, u)0.5g(u, l)du

]2
+

[ ∫ t−l

0

S̃(t, l, u)g(u, l)du

]
(S.113)

To facilitate the remainder of this proof, it is helpful to define

Q(t, l) :=

∫ t−l

0

S̃(t, l, u)0.5g(u, l)du (S.114)

Note that Q(t, l) ≥ 0 as S̃ and g are non-negative. Moreover, for fixed t and l, the function

S̃(t, l, u)0.5 is non-decreasing in u and hence

Q(t, l) ≤
∫ t−l

0

S̃(t, l, t− l)0.5g(u, l)du = S̃(t, l, t− l)0.5(1− Ḡ(t− l, l)) (S.115)
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Consider the function

f(Q) = 2Ḡ(t− l, l)S̃(t, l, t− l)0.5Q− Ḡ(t− l, l)
1− Ḡ(t− l, l)

Q2 (S.116)

for Q ∈ [0, S̃(t, l, t− l)0.5(1− Ḡ(t− l, l))]. f is a quadratic, and has a single turning point at

f ′(Q) = 0⇒ Q = S̃(t, l, t− l)0.5(1− Ḡ(t− l, l)) (S.117)

This is an endpoint of the domain of Q and hence the maximum value of f(Q) must occur one of

the endpoints. f(0) = 0 and

f

(
S̃(t, l, t− l)0.5(1− Ḡ(t− l, l))

)
= Ḡ(t− l, l)(1− Ḡ(t− l, l))S̃(t, l, t− l) (S.118)

This is non-negative, and hence the maximal value of f(Q).

This can be put into the equation for M̃(t, l)2 to give

M̃(t, l)2 ≤ Ḡ(t− l, l)2S̃(t, l, t− l) + Ḡ(t− l, l)(1− Ḡ(t− l, l))S̃(t, l, t− l) +

[ ∫ t−l

0

S(t, l, u)g(u, l)du

]
= Ḡ(t− l, l)S̃(t, l, t− l) +

[ ∫ t−l

0

S(t, l, u)g(u, l)du

]
(S.119)

Both the terms on the right hand side appear in the equation for Ṽ , and hence, substituting this

result in shows that

Ṽ (t, l) ≥
∫ t−l

0

χṼ (t, l, k)Ḡ(k, l)dk (S.120)

As this holds for all Ḡ(t − l, l) < 1, it must also (under relevant continuity assumptions) hold for

Ḡ(t− l, l) = 1, and hence in all cases. Now,

χṼ (t, l, k) = Ṽ (t, l + k)B(l + k)r(l + k, l) + M̃(t, l + k)2E(Y (l + k, l)2)r(l + k, l) (S.121)

As Y ≥ 1 by definition, one has

B(l + k) = E(Y (l + k, l)) ≤ E(Y (l + k, l)2) (S.122)

and hence

χṼ (t, l, k) ≤
[
Ṽ (t, l+k)+M̃(t, l+k)2

]
B(l+k)r(l+k, l) = E(Z̃(t, l+k)2)B(l+k)r(l+k, l) (S.123)
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Finally, as Z̃(t, l + k) ≥ 0 and is integer-valued, one has Z̃(t, l + k)2 ≥ Z̃(t, l + k) and hence

χṼ (t, l, k) ≤ M̃(t, l + k)B(l + k)r(l + k, l) (S.124)

Thus,

Ṽ (t, l) ≥
∫ t−l

0

M̃(t, l + k)B(l + k)r(l + k, l)Ḡ(k, l)dk = M̃(t, l + k) (S.125)

which proves weak overdispersion.

To prove strict overdispersion, note that, for Supplementary Equation S.125 to hold to equal-

ity, it is necessary that all the inequalities used hold to equality. Thus, in particular, it is necessary

that∫ t−l

0

M̃(t, l+k)B(l+k)r(l+k, l)Ḡ(k, l)dk =

∫ t−l

0

E(Z̃(t, l+k)2)B(l+k)r(l+k, l)Ḡ(k, l)dk (S.126)

and hence, as B(l + k) ≥ 1,

r(l + k, l)Ḡ(k, l) ≥ 0⇒ E(Z̃(t, l + k)2) = M̃(t, l + k) (S.127)

This means that

r(l + k, l)Ḡ(k, l) ≥ 0⇒ E(Z̃(t, l + k)(Z̃(t, l + k)− 1)) = 0 (S.128)

and hence, as Z̃(t, l + k)(Z̃(t, l + k)− 1) is a non-negative integer, this means that

r(l + k, l)Ḡ(k, l) ≥ 0⇒ Z̃(t, l + k)(Z̃(t, l + k)− 1) = 0 (S.129)

almost surely. We now show that if P(Z̃(t, l) = 1) > 0, then P(Z̃(t, l) > 1) > 0. This can be done

as follows.

Define the set S to be the possible times at which the initial individual can cause a secondary

infection which in turn starts an epidemic that can have non-zero prevalence at time t. Then,

S =

{
u ∈ (l, t− l) : r(l + u, l) > 0, Ḡ(u, l) > 0 and P(Z(t, l + u) > 0) > 0

}
(S.130)

Note the use of Z rather than Z̃. The first two conditions ensures that the likelihood of the initial

individual causing an infection at time u is non-zero (as it must have non-zero rate here, and also
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a non-zero probability of still being infectious). The third condition ensures that the probability

of this secondary infection’s infection tree still containing at least one infectious individual at time

t is non-zero. It is necessary that∫
S
r(l + u, l)Ḡ(u, l)P(Z(t, l + u) > 0)du > 0 (S.131)

as otherwise, Z̃(t, l) = 0 (as this integral sums over all possible epidemics that lead to Z̃(t, l) > 0).

Define

S(x) := S ∩ (l, x) (S.132)

and the function

f(x) =

∫
S(x)

r(l + u, l)Ḡ(u, l)P(Z(t, l + u) > 0)du (S.133)

Then, f must be continuous, and so there exists some y ∈ (0, t− l) such that

0 < f(y) < f(t− l) =

∫
S
r(l + u, l)Ḡ(u, l)P(Z(t, l + u) > 0)du (S.134)

Thus, there is a non-zero probability of an individual being infected in (l, l+y) causing an epidemic

that has non-zero prevalence at time t and, similarly, a non-zero probability of an individual being

infected in (l + y, t) causing an epidemic that has non-zero prevalence at time t. Thus, as the

infections processes have independent increments and as the initial individual causing an infection

in (l + y, t) implies that it must have been infectious for the whole interval (l, l + y), there is a

non-zero probability of two such individuals being infected: one in (l, l + y) and one in (l + y, t).

Hence

P(Z̃(t, l) = 1) > 0⇒ P(Z̃(t, l) > 1) > 0 (S.135)

as required. Thus,

r(l + k, l)Ḡ(k, l) ≥ 0⇒ Z̃(t, l + k) = 0 (S.136)

and so

E(Z̃(t, l + k))r(l + k, l)Ḡ(k, l) = 0 ∀k (S.137)

Thus, we have strict overdispersion, Ṽ (t, l) > M̃(t, l), provided that the epidemic is expanded at

time t, as required.
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4.5 Comparison to a Poisson case

Consider comparing the variance Supplementary Equation S.91 with the variance of an epidemic

where infection events are always of size 1 (that is, where the counting process of infections, N∗(t, l)

is a Poisson case, meaning B∗(t) = 1). Asterisks will be used to denote the quantities relating to

this Poisson epidemic.

Suppose that the infectious period is the same in both cases (so G = G∗ and ν = ν∗). To ensure a

fair comparison, it is also assumed that the mean number of cases is the same in both cases with

M(t, l) = M∗(t, l). By examining the Supplementary Equation S.72 for the mean, and absorbing

κ into ρ in both cases, one can see

B(l + u)ρ(l + u) = ρ∗(l + u). (S.138)

The variance Supplementary Equation S.91 can now be examined. Firstly, note that∫ t−l

0

M(t, l + u)B(l + u)r(l + u, l)du =

∫ t−l

0

M∗(t, l + u)r∗(l + u, l)du, (S.139)

using the result above and the fact that M(t, l + u) = M∗(t, l + u). Similarly,

S(t, l, u) = S∗(t, l, u). (S.140)

Thus,

V (t, l)− V ∗(t, l) =

∫ t−l

0

(χV (t, l, k)− χV
∗
(t, l, k))Ḡ(k, l)dk (S.141)

=

∫ t−l

0

(
V (t, l + k)− V ∗(t, l + k)

)
B(l + k)r(l + k, l)Ḡ(k, l)dk... (S.142)

+

∫ t−l

0

(
E(Y (l + k)2)− 1

)
M(t, l + k)2r(l + k, l)Ḡ(k, l)dk (S.143)

By defining ∆V (t, l) := V (t, l)− V ∗(t, l), one can see that this is a renewal equation

∆V (t, l) =

∫ t−l

0

(
E(Y (l+k)2)−1

)
M(t, l+k)2r(l+k, l)Ḡ(k, l)dk+

∫ t−l

0

∆V (t, l+k)B(l+k)r(l+k, l)Ḡ(k, l)dk.

(S.144)

An important property of this renewal equation is that the part that is independent of ∆V on the

right hand side grows. That is,

∆V (t, l) ≥
∫ t−l

0

(
E(Y (l + k)2)− 1

)
M(t, l + k)2r(l + k, l)Ḡ(k, l)dk. (S.145)
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Thus, even though these two epidemics give the same mean, the difference in their variances is

proportional to the square of this mean. This means that models fitted to a Poisson process frame-

work, even without exponential infectious periods, will substantially underestimate the variance of

the number of cases (recalling that E(Y (l + k)2) > 1 in the non-Poisson case).

4.6 Large time solutions to the variance equation

To further understand the variance, we consider large time approximate solutions to the variance

equation. Note that the level of rigour in this note is lower than the rest of our derivations as the

results are derived for illustrative purposes.

It shall be assumed throughout this note that κ has been absorbed into ρ. Moreover, to enable

explicit asymptotic solutions to be found, it shall be assumed that ρ, B and E(Y 2) are constants

and that g = g(t). Therefore all individuals behave identically (in distribution), irrespective of

the time at which they were infected. Moreover, it means that r(l + k, l) = r(k), as the rate of

infection depends only on the time since the individual has been infected

Under these assumptions, the mean M(t, l) = M(t − l) and the variance V (t, l) = V (t − l) are

functions of t− l only. This property will be used when forming the heuristics used in this note.

The final assumption is that Ḡ(t) has a finite support - that is, Ḡ(t) = 0 for sufficiently large t.

This is not strictly necessary, but simplifies the analysis.

Then, for t >> l, the mean and variance equations become

M(t, l) =

∫ t−l

0

M(t, l + u)Bρν(u)Ḡ(u)du (S.146)

and

V (t, l) =

∫ t−l

0

S(t, l, u)g(u, l) +

∫ t−l

0

χV (t, l, k)Ḡ(k)dk −M(t, l)2. (S.147)

Motivated by the exponential growth of epidemics without susceptible depletion, consider the

heuristic

M(t, l) = eγ(t−l) (S.148)
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for some growth rate γ (note that in Supplementary Equation S.146, scaling M by a constant does

not affect the solution). Then, Supplementary Equation S.146 becomes

eγ(t−l) = eγ(t−l)
∫ t−l

0

e−γuBρν(u)Ḡ(u)du. (S.149)

Now, assuming that t− l >> 1, as the integrand has finite support,

eγ(t−l) = eγ(t−l)
∫ ∞
0

e−γuBρν(u)Ḡ(u)du = eγ(t−l)H(γ), (S.150)

where H(γ) is a monotonically decreasing function such that H(−∞) = ∞ and H(∞) = 0. It is

necessary that

H(γ) = 1 (S.151)

and, by the above notes on H, there is a unique value for γ (independent of l) such that this holds.

We shall henceforth assume that γ is equal to this value.

Note that (by considering the case γ = 0)

γ > 0⇔
∫ ∞
0

Bρν(u)Ḡ(u)du > 1 (S.152)

and so the epidemic grows if and only if the expected number of cases caused by an individual is

greater than 1, as expected.

The variance equation can now be considered. Note that

S(t, l, u) =

[ ∫ u

0

M(t, l + k)Br(k)dk

]2
= e2γ(t−l)

[ ∫ u

0

e−γkBr(k)dk

]2
. (S.153)

Hence, the equation for the variance becomes

V (t, l) = e2γ(t−l)
∫ t−l

0

[ ∫ u

0

e−γkBr(k)dk

]2
g(u)du+

∫ t−l

0

V (t, l + k)Br(k)Ḡ(k)dk...

+ e2γ(t−l)
∫ t−l

0

e−2γkE(Y 2)r(k)Ḡ(k)dk − e2γ(t−l). (S.154)

Note the χV term has been split into the two single integrals with integration variable k. This

equation motivates a heuristic

V (t, l) = Ce2γ(t−l), (S.155)
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which, again using the fact that the integrands have finite support, results in

C =

∫∞
0

[ ∫ u
0
e−γkBr(k)dk

]2
g(u)du+

∫∞
0
e−2γkE(Y 2)r(k)Ḡ(k)dk − 1

1−
∫∞
0
e−2γkBr(k)Ḡ(k)dk

. (S.156)

Note that∫ ∞
0

[ ∫ u

0

e−γkBr(k)dk

]2
g(u)du >

∫ ∞
0

[ ∫ u

0

e−γkBr(k)Ḡ(k)dk

]2
g(u)du (S.157)

=

∫ ∞
0

g(u)du (S.158)

= 1. (S.159)

and hence the numerator is strictly positive.

Moreover, suppose that γ > 0. Then, note that∫ ∞
0

e−2γkBr(k)Ḡ(k)dk <

∫ ∞
0

e−γkBr(k)Ḡ(k)dk = 1 (S.160)

which means that the denominator (and hence C) is strictly positive.

Note that if γ ≤ 0, this variance approximation is not well-defined (as C is either infinite if

γ = 0 or negative if γ < 0) and so it is necessary to find another solution. In the γ < 0 case,

eγ(t−l) >> e2γ(t−l) and a leading-order solution can be found simply from

V = eγ(t−l). (S.161)

Thus, according to these approximations, the variance grows with the square of the mean in the

γ > 0 (i.e. growing epidemic) case, while it decreases proportionally to the mean in the γ < 0 (i.e.

shrinking epidemic) case. The γ = 0 case is the bifurcation point between these two solutions and

would require further analysis.

In the growing epidemic case, the equation for C is also informative in characterising the effect of the

different model parameters on the variance. In particular, it shows that there is a linear relationship

between E(Y (t)2) and the variance, re-emphasising the point made in the previous subnote that

ignoring this parameter can have significant effects on the variance estimate. Moreover, it shows

that variance grows rapidly throughout a growing epidemic, remaining proportional to the square

of the mean.
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4.7 Mean and variance for cumulative incidence

The equations for the mean and prevalence of the cumulative incidence of the epidemic can be

derived almost identically, as the two generating functions are very similar. The mean equation

gains an term from the additional s being differentiated, which is∫ t−l

0

J(l+u)
(∫ u

0

Y(l+k,l)(1)
r(l + k, l)

λ(l + u, l)
dk

)
g(u, l)du = G(t− l, l) (S.162)

and hence, the mean equation becomes (using *s to denote cumulative incidence quantities)

M∗(t, l) = 1 +

∫ t−l

0

M∗(t, l + u)ρ(l + u)ν(u)Ḡ(u, l)du (S.163)

Now, the only difference in the equation for W in the case of cumulative incidence is that the term

Supplementary Equation S.78 appears in both parts (again due to the extra s term). This can be

treated in the same way as χ in the original derivation and so

W ∗(t, l) = 2

∫ t−l

0

κM∗(t, l + u)B(l + u)r(l + u, l)Ḡ(u, l)du+ Ḡ(t− l, l)S̃(t, l, t− l)...

...+

∫ t−l

0

S̃(t, l, u)g(u, l)du+

∫ t−l

0

χ∗(t, l, k)Ḡ(k, l)dk (S.164)

Again, following the previous derivation, one can then arrive at

V ∗(t, l) = 1 + 2

∫ t−l

0

κM∗(t, l + u)B(l + u)r(l + u, l)Ḡ(u, l)du+ Ḡ(t− l, l)S̃(t, l, t− l)...

...+

∫ t−l

0

S̃(t, l, u)g(u, l)du+

∫ t−l

0

χV
∗
(t, l, k)Ḡ(k, l)dk −M∗(t, l)2 (S.165)

Supplementary Note: 5 Likelihood functions

5.1 Continuous case

If only the cumulative incidence, Z(t, l), is known at some time t, the full epidemic history - in

particular, the times at which each individual was infected, and the times at which they stopped

being infectious - are unknown. Thus, it is helpful to derive a likelihood function for each possible
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sequence of these times.

Perhaps the most intuitive approach would be to treat the times at which each individual was

infected as continuous random variables. However, the resultant pdf is complicated by the fact

that multiple infections are likely to happen simultaneously if E(Y ) > 1, and will have a significant

number of Kronecker delta functions to accommodate this, making it complicated both mathemat-

ically and practically.

To remedy this, we instead consider three sets of random variables - a vector T of unknown size

n+1, which contains the times of all the infection events up to time t; a vector Y also of size n+1,

which contains the size of each of these infection events (that is, ym is the number of individuals that

are infected at time τm); and a vector D containing the times at which each individual stops being

infected. To make the subsequent notation clearer, we shall use a non-rectangular array X in place

ofD, where Xij will be the time at which the jth individual infected at time Ti stops being infected.

We will suppose that for each s > u and positive integer k

P(N(s+ dt, u)−N(s, u) = k) = pk(s, u)dt+ o(dt) (S.166)

and that

P(N(s+ dt, u)−N(s, u) = 0) = 1−
∑
k≥1

pk(s, u)dt+ o(dt) = 1− r(s, u)dt+ o(dt) (S.167)

as the counting process of jumps in N(s, u) is an inhomogeneous Poisson Process of rate r(s, u)

(absorbing the κ into r). We can hence create a likelihood function. Define 1 to be a vector of 1’s,

and choose any vectors τ and d such that each τi, dj ∈ (0, t). Define dt to be small enough so that

τi − τj > dt for all i > j and so that |τi − dj | > dt for all i, j (note that, the set where τi = dj has

zero measure and can be ignored). Moreover, choose a positive-integer-valued vector y. Then,

P(T ∈ [τ , τ + dt1],D ∈ [d,d+ dt1],Y = y) = P

[( n⋂
k=1

{yk infections in [τk, τk + dt]}
)
...

... ∩
( n⋂
k=0

{no infections in [τk + dt, τk+1]

)
∩
( n⋂
i=0

yi⋂
j=1

{L ∈ [xij − τi, xij − τi + dt]}
)]

(S.168)
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where τn+1 := t to reduce notation, xij is the value of Xij in the case D = d and L is a random

variable equal in distribution to the infectious period of an individual. Each of the infection events

in the above equation occur on disjoint subintervals of [0, t] and so, as all of the processes N(t, l)

have independent increments, and each individual behaves independently of each other and their

infectious periods, they can be considered separately. We have

P(yk infections in [τk, τk + dt]) =

k−1∑
i=0

yi∑
j=0

1{xij<τk}pyk(τk, τi)dt+ o(dt) (S.169)

Here, the o(dt) term contains three components that can be linearised out of the model - the proba-

bility that multiple different individuals contribute to the yk cases (this is O(dt2)); the probabilities

of individuals infecting no one in this interval (these are independently 1 − O(dt) and hence the

O(dt) contribution can be ignored when these probabilities are multiplied together); and the o(dt)

terms from the equations defining pk.

As the counting process of jumps in N(s, u) is an inhomogeneous Poisson Process, and it is only

“active” for individual ij up to time xij ,

P(no infections in [τk + dt, τk+1]) =

k∏
i=0

yi∏
j=1

exp

(
−
∫ min(xij ,τk+1)

min(xij ,τk)

r(u, τi)du

)
+O(dt) (S.170)

where here, the O(dt) term contains the integral between τk and τk + dt of each of the integrands.

Taking the products inside the exponential as sums, the various “no infection” terms can be

combined together to give

P

( n⋂
k=0

{no infections in [τk + dt, τk+1]}
)

= exp

(
−

n∑
i=0

yi∑
j=0

∫ min(t,xij)

τi

r(u, τi)du

)
(S.171)

Finally, the infectious period terms can be simply calculated from the pdf, g, of L as

P(L ∈ [xij − τi, xij − τi + dt]) = g(xij − τi, τi)dt+ o(dt) (S.172)

Hence, combining all the relevant terms,

P(T ∈ [τ , τ + dt1],D ∈ [d,d+ dt1],Y = y) = o(dtn+Z(t,l))+

n∏
k=1

[( yk∏
j=1

g(xkj − τk, τk)

)( k−1∑
i=0

yi∑
j=0

1{Xij<τk}pyk(τk, τi)

)]
exp

(
−

n∑
i=0

yi∑
j=0

∫ min(t,Xij)

τi

r(u, τi)du

)
(dt)n+Z(t,l)

(S.173)
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and thus, taking dt→ 0 gives a likelihood function of

L(τ ,y,d) =

n∏
k=1

[( yk∏
j=1

g(xkj−τk, τk)

)( k−1∑
i=0

yi∑
j=0

1{xij<τk}pyk(τk, τi)

)]
exp

(
−

n∑
i=0

yi∑
j=0

∫ min(t,xij)

τi

r(u, τi)du

)
(S.174)

It is simple to substitute in the two examples that have been previously considered. In both cases,

r(a, b) = ρ(a)ν(a − b). In the Poisson case, one has p1(a, b) = ρ(a)ν(a − b) and pk(a, b) = 0 for

k > 1. In the Negative Binomial case, the values of pk are given by

pk(a, b)dt = lim
t→0

(
P(T ∈ [τ , τ + dt1],D ∈ [d,d+ dt1],Y = y)

dtn+Z(t,l)

)
(S.175)

= P(JM (a+ dt, b)− JM (a, b) = 1)P(Y = k) (S.176)

= ρ(a)ν(b− a)

(
(1− p)k

−k ln(p)

)
(S.177)

5.2 Special case (Poisson)

In the Poisson case, Ak,i is Poisson distributed with mean ρ(k)ν(k − i). Hence,

Ak(b,y,d) ∼ Poi

(
ρ(k)

k−1∑
i=0

ν(k − i)
yi∑
j=1

1{xij≤k}

)
:= Poi(µk) (S.178)

and so, the more computationally useful log-likelihood is

`(τ ,y,D) =

n∑
k=1

(µk log(yk)− µk − log(yk!)) +

n∑
i=1

yi∑
j=1

log(g(xij − τi, τi)) (S.179)

5.3 Special case (Negative Binomial)

In the Negative Binomial case,

Ak,i =D

N∑
j=1

Yj (S.180)

where the Yj are iid logarithmic random variables with a pmf given by Supplementary Equation

S.44 that is independent of the properties of the individual, and N is Poisson distributed with

mean ρ(k)ν(k − i). Thus,

A ∼ NB(φµk, p) (S.181)
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where, as before, p = φ
1+φ and µk is defined in the previous note. Hence, as

log

[
P

(
NB(a, p) = k

)]
=

k−1∑
j=0

log(a+ j) + k log(1− p) + a log(p)− log(k!) (S.182)

we have

`(τ ,y,D) =

n∑
k=0

[
log(φµk + j) + yk log

(
1

1 + φ

)
+ φµk log

(
φ

1 + φ

)
− log(yk!)

]
+

n∑
i=1

yi∑
j=1

log(g(xij − τi, τi))

(S.183)

5.4 Approximating the likelihood

It is difficult to simulate from the likelihoods when the infectious periods of the individuals are

unknown because often, Z(t, l) >> t (whereas the other unknowns, τ and y have only n ∼ t

parameters). To remedy this, we use an approximation - given an estimate of the function g, we

simulate

Di = Li + τi where Li ∼ g (S.184)

For some D, the observed epidemic may be impossible (e.g. if, D0 < b1, where b1 is the time that

the first infection event occurs). Thus, it necessary to impose a feasibility condition. Many such

conditions are possible, but we use a simple condition by defining

L∗i := max(Li, τi+1 − τi) (S.185)

and then define

D∗i := τi + L∗i (S.186)

Given these values, we can then create an approximation, `∗ to be

`∗(τ ,y) ∼ `(τ ,y,D∗) (S.187)

This clearly creates a non-deterministic likelihood as it is dependent on a set of random variables.

However, from our simulations, it appears that `∗ has a small variance, and so this extra randomness

does not significantly affect our calculations.
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Supplementary Note: 6 Assessing future variance during an

epidemic

Many of the equations presented thus far have been concerned with properties of an epidemic

started from a single case at a fixed deterministic time. However, it is crucial to be able to

calculate the risk from any time during the epidemic, and such a derivation is presented in this

note. This derivation is more algebraically involved than the other work in this paper, and so

to reduce its length, it will be assumed that N(t, l) is an inhomogeneous Poisson Process, and

that L = ∞ for each individual. This means that y and D can be ignored when considering the

likelihood.

6.1 Derivation

Suppose that the prevalence (or, equivalently in this case, cumulative incidence), Z(t, l) = n + 1,

is known at some point in an epidemic, but that the times at which these infections happened, Bi,

are unknown. Note that the notation Bi rather than Ti is used in this note, because these times

are now an exact analogue of birth times in a birth-death process. The condition of n + 1 rather

than n has been chosen as this means that there have been n new infections and will make the

following derivation notationally simpler.

Note that the infection time of the initial individual, B0 is known to be equal to l, but it will

be treated identically to the other times to reduce notation. Its marginal pdf is fB0
(b) = δ(b− l).

Following the previous note, the pdf fB(b) of the infection times is

fB(b) =
1

P(Z(t, l) = n)

n∏
i=1

(
ρ(bi)

i−1∑
j=0

ν(bi − bj)
)

exp

[
−

n∑
i=0

∫ t−bi

0

ρ(s+ l)ν(s)ds

]
(S.188)

Now, one can write

Z(t+ s, l) =

n∑
i=0

Z∗i (t+ s,Bi) (S.189)

where Z∗i (t + s,Bi) counts the infection tree started at the individual infection at bi, considering

only those infections that occurred after time t (that is, if this individual infects someone at time
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a < t, the infections of this second individual will not be counted, even if they occur after time t).

This can be rewritten as

Z(t+ s, l) =

∫ t

b=0

n∑
i=0

Z∗i (t+ s, b)1{Bi=b} (S.190)

where here, 1 is the indicator function. Hence,

var(Z(t+ s, l)) = var

(∫ t

b=0

n∑
i=0

Z∗i (t+ s, b)1{Bi=b}

)
(S.191)

=

∫ t

b=0

n∑
i=0

var(Z∗i (t+ s, b)1{Bi=b})...

...+

∫ t

b=0

∫ t

c=0

n∑
i=0

n∑
j=0

cov

(
Z∗i (t+ s, b)1{Bi=b}, Z

∗
j (t+ s, b)1{Bj=c}

)
(1{(b,i) 6=(c,j)})

(S.192)

The first term in this equation can be expanded as

var(Z∗i (t+ s, b)1{Bi=b}) = E(Z∗i (t+ s, b)212{Bi=b})− E(Z∗i (t+ s, b)1{Bi=b})
2 (S.193)

= E(Z∗i (t+ s, b)2)E(1{Bi=b})− E(Z∗i (t+ s, b))2E(1{Bi=b})
2 (S.194)

Note that E(1{Bi=b})
2 = O(db2) and hence this term has zero measure (as it is only integrated

over one dimension). This leaves

var(Z∗i (t+ s, b)1{Bi=b}) = E(Z∗i (t+ s, b)2)fBi
(b)db (S.195)

where fBi(b) is the marginal pdf of Bi.

The second term can also be expanded - note that, by the independence of the Z∗ terms, for

i 6= j

cov

(
Z∗i (t+s, b)1{Bi=b}, Z

∗
j (t+s, b)1{Bj=c}

)
= E(Z∗i (t+s, b))E(Z∗j (t+s, c))cov(1{Bi=b},1{Bj=c})

(S.196)

Moreover, if i = j, then one has b 6= c and hence

1{Bi=b}1{Bj=c} = 1{Bi=b,Bi=c} = 0 (S.197)
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which means

cov

(
Z∗i (t+ s, b)1{Bi=b}, Z

∗
j (t+ s, b)1{Bj=c}

)
= −E(Z∗i (t+ s, b))E(Z∗j (t+ s, c))E(1{Bi=b})E(1{Bj=c})

(S.198)

= E(Z∗i (t+ s, b))E(Z∗j (t+ s, c))cov(1{Bi=b},1{Bj=c})

(S.199)

and hence the Supplementary Equation S.196 holds in all cases. Now, one has, for i 6= j

cov(1{Bi=b},1{Bj=c}) = E(1{Bi=b}1{Bj=c})− E(1{Bi=b})E(1{Bj=c}) (S.200)

= E(1{Bi=b,Bj=c})− fBi(b)fBj (c)dbdc (S.201)

= (fBi,Bj
(b, c)− fBi

(b)fBj
(c))dbdc (S.202)

while if i = j and b 6= c, this result also holds, following the convention that

fBi,Bi
(b, c) = δ(b− c)fBi

(b) (S.203)

(and hence in this case is zero) where δ is the Kronecker delta.

Thus, in all cases

cov

(
Z∗i (t+s, b)1{Bi=b}, Z

∗
j (t+s, b)1{Bj=c}

)
= E(Z∗i (t+s, b))E(Z∗j (t+s, c))(fBi,Bj

(b, c)−fBi
(b)fBj

(c))dbdc

(S.204)

This gives an equation of

var(Z(t+ s, l)) =

∫ t

b=0

n∑
i=0

E(Z∗i (t+ s, b)2)fBi
(b)db...

...+

∫ t

b=0

∫ t

c=0

n∑
i=0

n∑
j=0

E(Z∗i (t+ s, b))E(Z∗j (t+ s, c))(fBi,Bj
(b, c)− fBi

(b)fBj
(c))1{(b,i)6=(c,j)}dbdc

(S.205)
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It is more informative to remove the 1{(b,i)6=(c,j)} condition. This can be done by calculating∫ t

b=0

∫ t

c=0

n∑
i=0

n∑
j=0

E(Z∗i (t+ s, b))E(Z∗j (t+ s, c))

(
fBi,Bj (b, c)− fBi(b)fBj (c)

)
1{(b,i)=(c,j)}dbdc

(S.206)

=

∫ t

b=0

∫ t

c=0

n∑
i=0

E(Z∗i (t+ s, b)E(Z∗i (t+ s, c))

(
δ(b− c)fBi(b)− fBi(b)fBi(c)

)
1{b=c}dbdc (S.207)

=

∫ t

b=0

∫ t

c=0

n∑
i=0

E(Z∗i (t+ s, b)E(Z∗i (t+ s, c))

(
δ(b− c)fBi

(b)− fBi
(b)fBi

(c)1{b=c}

)
dbdc (S.208)

=

∫ t

b=0

n∑
i=0

E(Z∗i (t+ s, b))2fBi
(b)db (S.209)

noting that the second term is bounded and contains 1{b=c} which is non-zero only on a null set

of the domain of integration (and hence the integral is zero). Thus, absorbing this correction term

into the first term in Supplementary Equation S.205,

var(Z(t+ s, l)) =

∫ t

b=0

n∑
i=0

var(Z∗i (t+ s, b))fBi
(b)db...

...+

∫ t

b=0

∫ t

c=0

n∑
i=0

n∑
j=0

E(Z∗i (t+ s, b))E(Z∗j (t+ s, c))(fBi,Bj (b, c)− fBi(b)fBj (c))dbdc (S.210)

The advantage of this formulation is that it allows the contributions to the variance from the

infection times Bi before time t and from further infections between times t and t + s to be

separated. Indeed, note that if the infection times are known (so that fBi
(b) = δ(b− bi)), one has∫ t

b=0

∫ t

c=0

n∑
i=0

n∑
j=0

E(Z∗i (t+ s, b))E(Z∗j (t+ s, c))(fBi,Bj
(b, c)− fBi

(b)fBj
(c))dbdc

... =

∫ t

b=0

∫ t

c=0

n∑
i=0

n∑
j=0

E(Z∗i (t+ s, b))E(Z∗j (t+ s, c))(δ(b− bi)δ(c− bj)− δ(b− bi)δ(c− bj))dbdc

(S.211)

= 0 (S.212)

noting that the definition of

fBi,Bi
(b, c) = fBi

(b)δ(b− c) = fBi,Bi
(b, c) = δ(b− bi)δ(b− c) = δ(b− bi)δ(c− bi) (S.213)

is consistent in this case. Thus, the second term in Supplementary Equation S.210 is only non-zero

when there is uncertainty in the infection times (while, moreover, the first term is only non-
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zero when there is uncertainty in the infections that occur in the interval (t, t + s), as otherwise

var(Z∗i (t+ s, bi)) = 0).

To complete the derivation of the variance equation, it is necessary to derive formulae to calculate

the quantities var(Z∗i ). To enable this, define M∗(t+ s, bi) := E(Z∗i (t+ s, bi)) and X∗(t+ s, bi) :=

E(Z∗i (t+ s, bi)
2) to be the mean and squared mean of the infection tree started from time t by the

ith individual.

These quantities can be calculated directly from the mean and variance, M and V , of the “stan-

dard case” (where a single initial individual is infected at some time l), considered in previous

notes in this appendix. This is possible as, in the context of renewal processes, the quantities Z∗i

are renewal processes where all but the first individuals are identical, and hence are amenable to

similar methodology. Indeed, if one supposes that {Z(t + s, t + u)}u≤s are a set of independent

realisations of different “standard” epidemics, one has

Z∗i (t+ s, t+ u) =

∫ s

u=0

Z(t+ s, t+ u)1{individual i infects another individual at time t+ u} (S.214)

as the newly infected individuals start new, independent and “standard” epidemics. Define

Iu := 1{individual i infects another individual at time t+ u} (S.215)

Hence,

M∗(t+ s, bi) = E

(∫ s

u=0

Z(t+ s, t+ u)Iu
)

(S.216)

=

∫ s

u=0

M(t+ s, t+ u)ρ(t+ u)ν(t− bi + u)du (S.217)

Moreover,

X∗(t+ s, bi) = E

([∫ s

u=0

Z(t+ s, t+ u)Iu
]2)

(S.218)

= E

(∫ s

u=0

∫ s

k=0

Z(t+ s, t+ u)IuZ(t+ s, t+ k)Ik
)

(S.219)

Note that, for k 6= u, the quantities Z(t+ s, t+ u) and Z(t+ s, t+ k) are independent. Moreover,

these quantities are all independent from the indicator terms. Thus, it is helpful to split the
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integral, giving

W ∗(t+ s, bi) =

∫ s

u=0

E

(
Z(t+ s, t+ u)2Iu

)
+

∫ s

u=0

∫ s

k=0

E

[
Z(t+ s, t+ u)IuZ(t+ s, t+ k)Ik

]
1{u6=k}

(S.220)

=

∫ s

u=0

E

(
Z(t+ s, t+ u)2Iu

)
+

∫ s

u=0

∫ s

k=0

M(t+ s, t+ u)E(Iu)M(t+ s, t+ k)E(Ik)1{u6=k}

(S.221)

Now,∫ s

u=0

∫ s

k=0

M(t+s, t+u)E(Iu)M(t+s, t+k)E(Ik) =

[ ∫ s

u=0

M(t+s, t+u)E(Iu)

]2
= M∗(t+s, bi)

2

(S.222)

while ∫ s

u=0

∫ s

k=0

M(t+ s, t+ u)E(Iu)M(t+ s, t+ k)E(Ik)1{u=k} = 0 (S.223)

as the integrand is bounded and is non-zero only on a null set of the domain of integration. Hence,

one has ∫ s

u=0

∫ s

k=0

M(t+ s, t+ u)E(Iu)M(t+ s, t+ k)E(Ik)1{u6=k = M∗(t+ s, bi)
2 (S.224)

Thus,

X∗(t+ s, bi) =

∫ s

u=0

E

(
Z(t+ s, t+ u)2Iu

)
+M∗(t+ s, bi)

2 (S.225)

=

∫ s

u=0

E

(
Z(t+ s, t+ u)2

)
E(Iu) +M∗(t+ s, bi)

2 (S.226)

=

∫ s

u=0

(V (t+ s, t+ u) +M(t+ s, t+ u)2)ρ(t+ u)ν(t− bi + u)du+M∗(t+ s, bi)
2

(S.227)

Hence, defining V ∗(t+ s, bi) := var(Z∗(t+ s, bi)) = X∗(t+ s, bi)−M∗(t+ s, bi)
2, one has

V ∗(t+ s, bi) =

∫ s

u=0

(V (t+ s, t+ u) +M(t+ s, t+ u)2)ρ(t+ u)ν(t− bi + u)du (S.228)

Hence, one has the final form of the variance equation

var(Z(t+ s, l)) =

∫ t

b=0

n∑
i=0

V ∗(t+ s, b)fBi
(b)db...

...+

∫ t

b=0

∫ t

c=0

n∑
i=0

n∑
j=0

M∗(t+ s, b)M∗(t+ s, c)(fBi,Bj (b, c)− fBi(b)fBj (c))dbdc (S.229)
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6.2 Bounding the equation

Unlike previous formulae, this is an explicit equation and no recursion is required to get the desired

results (although recursion is necessary to calculate the V term in V ∗). However, the infection

time pdf makes this a difficult equation to evaluate.

However, one can give a simpler upper bound on the variance. Define

νbound(u) := max
bi∈[l,t]

(ν(t− bi + u)) (S.230)

so that

M∗(t+ s, bi) ≤
∫ s

0

M(t+ s, t+ u)ρ(t+ u)νbound(t− bi + u)du :=M∗(t+ s) (S.231)

and

V ∗(t+ s, bi) ≤
∫ s

u=0

(V (t+ s, t+ u) +M(t+ s, t+ u)2)ρ(t+ u)νbound(u)du := V∗(t+ s) (S.232)

so that this is now independent of bi. Note that the construction of νbound(u) means that it will

still decay for large u. Under the assumption that the infection times are roughly deterministic so

the second term is zero,

var (Z(t+ s, l)) ≤ Z(t, l)V∗(t+ s) (S.233)

The covariance term can be added in by noting that∫ t

b=0

∫ t

c=0

n∑
i=0

n∑
j=0

M∗(t+ s, b)M∗(t+ s, c)(fBi,Bj (b, c)− fBi(b)fBj (c))dbdc...

... ≤
∫ t

b=0

∫ t

c=0

n∑
i=0

n∑
j=0

M∗(t+ s)2fBi,Bj (b, c)dbdc (S.234)

≤
n∑
i=0

n∑
j=0

∫ t

b=0

∫ t

c=0

M∗(t+ s)2(fBi,Bj (b, c) + fBi(b)fBj (c))dbdc (S.235)

≤ Z(t, l)2M∗(t+ s)2 (S.236)

which gives an overall bound of

var (Z(t+ s, l)) ≤ Z(t, l)V∗(t+ s) + Z(t, l)2M∗(t+ s)2 (S.237)
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6.3 Special cases

To finish, it is helpful to consider a couple of special cases which may arise when the epidemic is

large. If the infection times are mostly independent, then

i 6= j ⇒ fBi,Bj (b, c) ∼ fBi(b)fBj (c) (S.238)

while for i = j, note that∫ t

b=0

∫ t

c=0

n∑
i=0

M∗(t+ s, b)M∗(t+ s, c)(fBi,Bi(b, c)− fBi(b)fBi(c))dbdc...

... =

∫ t

b=0

∫ t

c=0

n∑
i=0

M∗(t+ s, b)M∗(t+ s, c)(δ(b− c)fBi
(b)− fBi

(b)fBi
(c))dbdc (S.239)

=

∫ t

b=0

n∑
i=0

M∗(t+ s, b)2fBi
(b)db−

n∑
i=0

[ ∫
b

M∗(t+ s, b)fBi
(b)db

]2
(S.240)

and hence

var(Z(t+s, l)) ∼
∫ t

b=0

n∑
i=0

V ∗(t+s, b)fBi
(b)db+

∫
b

n∑
i=0

M∗(t+s, b)2fBi
(b)db−

n∑
i=0

[ ∫
b

M∗(t+s, b)fBi
(b)db

]2
(S.241)

This is still a complicated equation to compute, although the advantage is that one only needs

one-dimensional marginal distributions of the infection times, and hence it is significantly more

tractable. Moreover, the upper bound on the variance can be improved to

var(Z(t+ s, l)) ≤ Z(t, l)V(t, l) + Z(t, l)M(t, l)2 (S.242)

so that it is proportional to Z(t, l), rather than Z(t, l)2.

The simplest case is when the infection times are known - something which may be approxi-

mately true if the epidemic is large (and hence has been approximately deterministic in the recent

past). In this case, the equation simply reduces to

var(Z(t+ s, l)) ∼
n∑
i=0

V ∗(t+ s, bi) (S.243)

where bi are the infection times. In this case, the variance can be simply calculated from the

quantities M and V .
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Supplementary Note: 7 Discrete epidemics

7.1 Discrete pgf

Suppose now that the branching process is entirely discrete (and, for convenience, occurs on integer

times). For the lifetime, L, of an individual infected at l, define

g(u, l) := P(L = u) and G(u, l) := P(L ≥ u) (S.244)

In this discrete setting, it is important to specify exactly inequalities whose strictness is unimpor-

tant in the continuous case. In particular, if an individual is infected at time a and has a lifetime

of b, it will be considered to be infectious at time a + b, and will be counted when calculating

prevalence at this time. That is, it can infect others at time a + b (and these individuals will be

given infection time a+ b) but will not be able to infect individuals at time a+ b+ 1.

For the counting process of infections, one can in this case work without a separate infection event

process and instead simply use the quantities

qu(t, l) := P
(
N(t, l)−N(t− 1, l) = u

)
and Q(t,l)(s) := E

(
sQ(t,l)

)
(S.245)

where Q(t, l) has pmf given by qu(t, l). Hence, each Q(t, l) (which may be zero, unlike Y in the

continuous case) gives the number of new infections at time t caused by an individual that was

infected at time l. Now, note that for u < t− l, one has

E

(
sZ(t,l)

∣∣∣∣L = u

)
= E

(
s
∑u

k=1

∑Q(l+k,l)
i=1 Zik(l+u,l)

)
(S.246)

where the variables Zik are iid copies of Z. Note that the variables Q(l + k, l) are independent as

N(t, l) has indepedent increments, meaning that

E

(
sZ(t,l)

∣∣∣∣L = u

)
=

u∏
k=1

E

(
s
∑q(l+k,l)

i=1 Zik(l+u,l+k)

)
(S.247)

=

u∏
k=1

Q(l+k,l)

(
F (l + u, l + k)

)
(S.248)

Thus, the generating function equation for prevalence can be written as

F (t, l) = sG(t− l, l)
t−l∏
k=1

Q(l+k,l)

(
F (t, l + k)

)
+

t∑
u=0

gu

u∏
k=1

Q(l+k,l)

(
F (t, l + k)

)
(S.249)
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where

G(t− l, l) = P(L ≥ t− l) (S.250)

The form of the generating function for the discrete case is simpler than the continuous one and

might be more amenable to computation.

7.2 Recovery of the continuous case

Suppose that each step corresponds to a time interval of dt << 1. Suppose further that

ĝ(udt, ldt)dt ∼ gu,l, t̂ ∼ tdt, and l̂ ∼ ldt (S.251)

where the quantities with a hat are constant. To ensure continuity in probability, it will be assumed

that

q̂u(t̂, l̂)dt ∼ qu(t, l) ∀u ≥ 1 and q0(t, l) ∼ 1−
∞∑
u=1

dtq̂u(t̂, l̂) (S.252)

where again, q̂ is independent of dt. Now, one has

G(t− l, l) =

t−l∑
u=0

gu,l ∼

t̂−l̂
dt∑
u=0

ĝu,l(udt)dt ∼
∫ t̂−l̂

0

ĝ(u, l̂)du := Ĝ(t̂− l̂, l) (S.253)

Moreover, one has

Q(t,l)(s) ∼
(

1−
∞∑
u=1

q̂u(t̂, l̂)dt

)
+

∞∑
u=1

suq̂u(t̂, l̂)dt = 1 +

∞∑
u=1

(su − 1)q̂u(t̂, l̂)dt (S.254)

Using this relation, setting k̂ := kdt and Taylor expanding gives

log

( t−l∏
k=1

Q(l+k,l)(s)

)
∼

t−l∑
k=1

log

(
1 +

∞∑
u=1

(su − 1)q̂u(l̂ + k̂, l̂)dt

)
(S.255)

∼
t−l∑
k=1

∞∑
u=1

(su − 1)q̂u(l̂ + k̂, l̂)dt (S.256)

∼
∫ t̂−l̂

0

∞∑
u=1

(su − 1)q̂u(l̂ + k̂, l̂)dk̂ (S.257)

Hence,

F (t, l) ∼ (1−Ĝ(t̂−l̂)) exp

[ ∫ t̂−l̂

0

∞∑
u=1

(su−1)q̂u(l̂+k̂, l̂)dk̂

]
+

∫ t−l

0

exp

[ ∫ û

0

∞∑
w=1

(sw−1)q̂w(l̂+k̂, l̂)dk̂

]
ĝ(û, l̂)dû

(S.258)
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It is now possible to define the limiting continuous process. Consider a counting process N(t̂, l̂)

in continuous time with independent increments where infection events occur according to a rate

function given by

r(t̂, l̂) =

∞∑
u=1

q̂u(t̂, l̂) (S.259)

and where, given that a infection event occurs at t from a particle born at l, the infection event is

of size k ≥ 0 with probability

q̂k(t̂, l̂)∑∞
u=1 q̂u(t̂, l̂)

. (S.260)

Suppose that J(t̂, l̂) counts the infection events of this process (and hence is an inhomogeneous

Poisson Process of rate r(t̂, l̂)) and that Y(t̂,l̂) is the generating function of infection event size given

that a infection event occurs at (t̂, l̂). Note that∫ t̂−l̂

0

∞∑
u=1

q̂u(l̂ + k, l̂)dk =

∫ t̂−l̂

0

r(l̂ + k, l̂)dk = E(J(t̂, l̂)) (S.261)

and that

∞∑
u=1

suq̂u(l̂ + k̂, l̂) =

∞∑
u=1

(
suŷu(l̂ + k̂, l̂)∑∞
m=1 ŷm(l̂ + k̂, l̂)

) ∞∑
m=1

q̂m(l̂ + k̂, l̂) (S.262)

= Y(l̂+k̂,l̂)(s)
( ∞∑
u=1

q̂u(l̂ + k̂, l̂)

)
(S.263)

= Y(l̂+k̂,l̂)(s)r(l̂ + k̂, l̂) (S.264)

Hence,
t−l∏
k=1

Q(l+k,l)(s) ∼ exp

[ ∫ t̂−l̂

0

r(l̂ + k, l̂)Y(l̂+k,l̂)(s)dk − E(J(t̂, l̂))

]
(S.265)

and so, applying this to Supplementary Equation S.258 shows that the continuous generating

function equation is recovered. Note that here, the distribution of Y has been allowed to depend

on l (and this is the generating function equation that arises in this case), but the an equation

with an l-independent Y will arise if the ratio of each qk(t, l) and
∑∞
k=1 qk(t, l) are independent of

l.
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7.3 Distinctness from the continuous case

It is important to note that the relaxation of the assumption that N is continuous in probability

necessary in considering the discrete case means that the pgf becomes materially different.

Indeed, one can characterise the discrete case through the continuous framework by imposing that

r(t, l) =

( ∞∑
u=1

qu(t, l)

)( ∞∑
n=1

δ(l + n− t)
)

(S.266)

as this is gives probability of N increasing (by whatever number) in the discrete case discussed

above. Moreover, again allowing Y to depend on l, Y (t, l) has distribution

P(Y (t, l) = k) =
qk(t, l)∑∞

m=1 qm(t, l)
(S.267)

Now, note that

λ(t, l) =

∫ t

l

r(s, l)ds =

bt−lc∑
n=1

∞∑
u=1

qu(l + n, l) (S.268)

where bmc denotes the largest integer that is smaller than m. Moreover∫ t−l

0

Y(l+k,l)(F (t, l + k))r(l + k, l) =

bt−lc∑
n=1

∞∑
u=1

qu(l + n, l)Y(l+n,l)(F (t, l + n)) (S.269)

We suppose for a contradiction that the pgf in the continuous case is also valid in this discrete

setting. Hence (taking κ = 1)

F (t, l) = s(1−G(t− l, l)) exp

[ bt−lc∑
n=1

∞∑
u=1

qu(l + n, l)Y(l+n,l)(F (t, l + n))−
bt−lc∑
n=1

∞∑
u=1

qu(l + n, l)

]
...

...+

∫ t−l

0

exp

[ bt−l+uc∑
n=1

∞∑
m=1

qm(l + n, l)Y(l+n,l)(F (t, l + n))−
bt−l+uc∑
n=1

∞∑
m=1

qm(l + n, l)

]
g(u, l)du

(S.270)

Now, note that

Y(l+n,l)(s) =

∞∑
m=1

smqm(l + n, l)∑∞
k=1 qk(l + n, l)

(S.271)

=
1∑∞

k=1 qk(l + n, l)

( ∞∑
m=0

smqm(l + n, l)− q0(l + n, l)

)
(S.272)

=
1∑∞

k=1 qk(l + n, l)

(
Q(l+n,l)(s)− (1−

∞∑
k=1

qk(l + n, l))

)
(S.273)
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and hence

bt−l+uc∑
n=1

∞∑
m=1

qm(l + n, l)Y(l+n,l)(F (t, l + n))−
bt−l+uc∑
n=1

∞∑
m=1

qm(l + n, l) (S.274)

=

bt−l+uc∑
n=1

(
Q(l+n,l)(F (t, l + n)) +

∞∑
k=1

qk(l + n, l)

)
(S.275)

which means

F (t, l) = s(1−G(t− l, l)) exp

[ bt−lc∑
n=1

(
Q(l+n,l)(F (t, l + n)) +

∞∑
k=1

qk(l + n, l)

)]
... (S.276)

+

∫ t−l

0

exp

[ bt−l+uc∑
n=1

(
Q(l+n,l)(F (t, l + n)) +

∞∑
k=1

qk(l + n, l)

)]
g(u, l)du (S.277)

Finally, defining Q∗(s) := eQ(s) and turning the integral over g into a discrete sum, we have

F (t, l) = s(1−G(t−l, l))
bt−lc∏
n=1

Q∗(F (t, l+n))e
∑∞

k=1 qk(l+n,l)+

bt−lc∑
u=1

bt−l+uc∏
n=1

Q∗(F (t, l+n))e
∑∞

k=1 qk(l+n,l)g(u, l)

(S.278)

This matches very closely with the pgf in the discrete case, but has some extra terms as expected

for the contradiction - firstly, the Q∗ in place of the Q, and also the extra e
∑∞

k=1 qk terms. When

taking the small dt limit as in the previous subnote, these anomalies disappear, as

eQ(s) ∼ e1+αdt ∼ 1 + αdt ∼ Q(s) (S.279)

and

e
∑∞

k=1 qk(l+n,l) ∼ eβdt ∼ 1 (S.280)

for some α and β. Thus, these dissimilarities only appear in the O(dt2) level (and hence disappear in

the small dt limit). However, they will be non-trivial if dt is not small, underlining the importance

of the assumption that N is continuous in probability - neglecting such an assumption could lead

to materially wrong results in the case of a large step-size.

7.4 Discrete likelihood

If the epidemic happens in discrete time, it is significantly easier to calculate the likelihood. Define

Ak,i to be the number of infections caused at time k by a (still infectious) individual that was
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infected at time i. Then, the number of infections which occur at time k is given by

Ak(y,d) =

k−1∑
i=0

yi∑
j=1

Ajk,iI{xij≤k} (S.281)

where each Ajk,i is an independent copy of Ak,i and, similarly to before, xij is the time at which

the jth individual infected at time i stops being infectious. Note that here, as previously in the

discrete setting but in contrast to the continuous case, yi can be zero.

Then, the likelihood is simply given by

L(y,D) =

( n∏
k=1

P(Ak(y,d) = yk)

)( n∏
i=1

yi∏
j=1

g(xij − i, i)
)

(S.282)

where, as we are in the discrete case, g is now a pmf. This gives a log-likelihood of

`(y,D) =

n∑
k=1

log

(
P(Ak(y,d) = yk)

)
+

n∑
i=1

yi∑
j=1

log(g(xij − i, i)) (S.283)
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