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Abstract

A graph is aper if there is a vertex whose deletion makes the graph planar, and doublecross if it can
be drawn in the plane with only two crossings, both incident with the infinite region in the natural
sense. In 1966, Tutte [9] conjectured that every two-edge-connected cubic graph with no Petersen
graph minor is three-edge-colourable. With Neil Robertson, two of us showed that this is true in
general if it is true for apex graphs and doublecross graphs [6, 7]. In another paper [8], two of us
solved the apex case, but the doublecross case remained open. Here we solve the doublecross case;
that is, we prove that every two-edge-connected doublecross cubic graph is three-edge-colourable.
The proof method is a variant on the proof of the four-colour theorem given in [4].



1 Introduction

In this paper, all graphs are finite and simple. The four-colour theorem (4CT), that every planar
graph is four-colourable, was proved by Appel and Haken [1, 2] in 1977, and a simplified proof was
given in 1997 by three of us, with Neil Robertson [4]. The 4CT is equivalent to the statement
that every two-edge-connected cubic planar graph is three-edge-colourable, and a strengthening was
proposed as a conjecture by Tutte in 1966 [9]; that every two-edge-connected cubic graph with no
Petersen graph minor is three-edge-colourable. This paper is a step in the proof of Tutte’s conjecture.

A graph G is apex if G \ v is planar for some vertex v (we use \ to denote deletion); and a graph
G is doublecross if it can be drawn in the plane with only two crossings, both on the infinite region
in the natural sense.

It is easy to check that apex and doublecross graphs do not contain the Petersen graph as a
minor; but there is also a converse. Let us say a graph G is theta-connected if G is cubic and has
girth at least five, and |dg(X)| > 6 for all X C V(G) with | X|,|V(G) \ X| > 6. (0g(X) denotes the
set of edges of G with one end in X and one end in V(G) \ X.) Two of us (with Robertson) proved
in [6] that every theta-connected graph with no Petersen graph minor is either apex or doublecross
(with one exception, that is three-edge-colourable); and in [7] that every minimal counterexample to
Tutte’s conjecture was either apex or theta-connected. It follows that every minimal counterexample
to Tutte’s conjecture is either apex or doublecross, and so to prove the conjecture in general, it
suffices to prove it for apex graphs and for doublecross graphs. Two of us proved in [8] that every
two-edge-connected apex cubic graph is three-edge-colourable, so all that remains is the doublecross
case, which is the objective of this paper. Our main theorem is:

1.1 Every two-edge-connected doublecross cubic graph is three-edge-colourable.

The proof method is by modifying the proof of the 4CT given in [4]. Again we give a list of
reducible configurations (the definition of “reducible” has to be modified to accommodate the two
pairs of crossing edges), and a discharging procedure to prove that one of these configurations must
appear in every minimal counterexample (and indeed in every non-apex theta-connected doublecross
graph). This will prove that there is no minimal counterexample, and so the theorem holds. Happily,
the discharging rules given in [4] still work without any modification.

2 Crossings

We are only concerned with graphs that can be drawn in the plane with two crossings, and one
might think that these are not much different from planar graphs, and perhaps one could just use
the 4CT rather than going to all the trouble of repeating and modifying its proof. For graphs with
one crossing this is true: here is a pretty theorem of Jaeger [3] (we include a proof because we think
it is of interest):

2.1 Let G be a two-edge-connected cubic graph, drawn in the plane with one crossing. Then G is
three-edge-colourable.

Proof. Let e, f be the two edges that cross one another, and let e = 2123 and f = 2924 say. Let
H be obtained from G by deleting e, f, adding four new vertices y1,...,ys4, and edges g; = y;2;
for 1 < i < 4. Thus every vertex of H has degree three, except for yi,...,ys which have degree



one; and H can be drawn in a closed disc with yi,...,y4 drawn in the boundary of the disc in
order. By adding four edges y1y2, 23, y3y4 and y4y1, we obtain a two-edge-connected cubic planar
graph, which therefore is three-edge-colourable, by the 4CT. Consequently H is also three-edge-
colourable; let ¢ : E(H) — {1,2,3} be a three-edge-colouring of H. Since each colour appears
at every vertex of H different from y1,...,y4, and there are an even number of such vertices, it
follows that each of the three colours appears on an even number of gi,...,94. In particular, if
?(g1) = ¢(g3) then ¢(g2) = ¢(g4), giving a three-edge-colouring of G as required. We may assume
then that ¢(g1) # ¢(g3), and similarly ¢(g2) # ¢(g4). From the symmetry we may therefore assume
that ¢(g;) = 1 for i = 1,2, and ¢(g;) = 2 for i = 3,4. Let J be the subgraph of H with vertex set
V(H) and edge set all edges e of H with ¢(e) € {1,2}. Every vertex of H different from yi,...,ys
therefore has degree two in J, and y1, ..., ys have degree one; and so two components of J are paths
with ends in {y1,...,vy4}, and all other components are cycles. Let the two components which are
paths be P;, P»; and we may assume that y; is an end of P;. The second end of P; cannot be ys,
since then P» would have ends ys2,y4, which is impossible by planarity. So the second end of P is
one of ys,y4; and in either case, if we exchange colours 1 and 2 on the edges of P;, and otherwise
leave ¢ unchanged, we obtain a new three-edge-colouring ¢’ of H, in which ¢'(¢1) = ¢'(g3) and
@' (g2) = ¢'(g4), which therefore gives a three-edge-colouring of G. This proves 2.1. |

We have tried (hard!) to do something similar to handle the doublecross case, but failed; it seems
necessary to do it the long way, modifying the proof of the 4CT. Fortunately that is not as difficult
as it was for the apex case in [8].

3 A sketch of the proof

Our proof is a modification of the proof of the 4CT, so let us begin with that. We can work in terms
of planar cubic graphs or in terms of planar triangulations, but we found it most convenient to use
triangulations (because for instance, it is much easier to present long lists of reducible configurations
as subgraphs of triangulations than as subgraphs of cubic graphs). Thus we need to show that every
planar triangulation is 4-colourable. If there is a counterexample, the smallest one is “internally
6-connected”; that is, every vertex-cutset of order at most five separates at most one vertex from the
rest of the graph. Now the average degree of vertices is just less than six, and so there are vertices
of degree five; but we need to show that there is a small clump of vertices with small degrees. (We
listed explicitly exactly what counts as a “clump”; there were 633 of them in that paper. They
have somewhere between four and twelve vertices all with small degree). To show this we use a
“discharging procedure”; we initially assign “charges” (integers) to the vertices, depending on their
degrees and with positive total; and then move small amounts among neighbouring vertices according
to some carefully chosen rules; and prove a theorem that any vertex that ends up with positive charge
(and there must be such a vertex) belongs to or neighbours one of the clumps we are hoping for.

Next we show that for any counterexample to the 4CT, there must be a smaller counterexample.
We just showed that it would contain one of the 633 clumps, and the clumps were carefully chosen
with a special property: for every clump C' in a internally 6-connected triangulation 7', we can excise
C from T and replace it by something smaller, so that T is changed into a smaller triangulation that
is no easier to 4-colour. This would show that the 4CT is true.



How can we show that for each of the 633 clumps, if it occurs in a triangulation, it can be replaced
by something smaller without making the triangulation easier to colour? The idea is, we show this
clump by clump, using a computer. Let C' be one of our clumps, in an internally 6-connected
triangulation T' that is not 4-colourable. (Since we are working through the clumps one at a time,
at this stage we know C completely, but have no knowledge of the remainder of T, which is some
hypothetical triangulation.) Let R be the cycle of T' (the “ring” of C) that bounds the region that
we obtain when C' is deleted. (It might not actually be a cycle, but ignore that. We do know its
length, because it is determined by the degrees in T' of the vertices in V(C), and we know these
numbers.) Some 4-colourings of the ring can be extended to the part of T outside of R, and some
extend inwards to C, but none of them extends in both directions because T' is not 4-colourable.
Since we know C', we can compute exactly which 4-colourings of R extend inwards to C; so we know
that the set of ring-colourings that extend outwards is a subset of the complement of this. Also, the
set that extend outwards has to be closed under Kempe chain recolouring (we call this “consistent” );
and sometimes we find that this is impossible, that there is no such consistent set (except the null
set, which is consistent but cannot be the right answer). In this case, deleting C still gives a planar
graph that cannot be 4-coloured; we don’t need to substitute anything for it (unless we want to make
a triangulation, when we had better put something in, just to make all the regions triangles). For
other clumps, we find that there is a nonempty consistent set of 4-colourings of R none of which
extends inwards, and we figure out the maximal such set S, which is unique (fortunately); and S
is still very restricted, so much so that we can replace C' by some smaller gadget, with the crucial
property that no colourings in S extend inwards to the gadget.

That is roughly the idea of the proof of the 4CT. How can we adapt it to handle doublecross
graphs? The first issue is that we can’t take the planar dual any more to make a triangulation. But
we could if we modify the four crossing edges somehow to make the graph planar first; eg subdivide
all four of them and identify their midpoints. So we have something that is “almost” a planar dual of
the cubic graph that we want to three-edge-colour. It is a planar triangulation except for one region
of length eight. This is worth doing, because it is easier to work with triangulations than with cubic
graphs.

Now we have T', which is almost a triangulation. If it really were a triangulation, it would have
to contain one of the 633 clumps that we used for the 4CT, but

e it isn’t really a triangulation;

e if it did contain one of those clumps, we need to make sure that the region of length eight is
not involved;

e even if we find a clump far away from the big region, it will not necessarily do what we want.

The third problem above arises because we have to work with Kempe chains in the original cubic
graph, which is not planar; now Kempe chains might use the four crossing edges, and so we can’t
prove that the set of colourings of the ring that extend outwards is consistent in the old planar
sense. All we know is, it must be consistent in a slightly weaker sense that allows for a little bit
of crossing between the various Kempe chains. Call this new sense “XX-consistent”. The maximal
XX-consistent subset of ring-colourings disjoint from those that extend inwards gets bigger than in
the planar case; and it might now contain a colouring that extends inwards to the gadget we were
planning to replace the clump by. We need to search for another set of clumps to replace the 633,



that work with this weaker definition of consistent. We did this; so the third problem goes away,
if we replace the 633 with the 756 clumps described at the end of the paper. And one really nice
feature; the same discharging procedure as for the 4CT still proves that one of these clumps must
always be present. But we still have the first and second problems to handle.

Here is a way to handle them. At the moment our “almost”-triangulation 7" has one special
region of length eight, inside which the four crossing edges were drawn. Fill in this region with a
dense triangulation, so that 7' is extended to something that really is a triangulation, 7”; and do it
in such a way that all the new vertices close to the eight boundary vertices have big degree (at least
12). We know that 7" must contain one of the 756 clumps; but we want to get one of them inside of
T. The idea is, the discharging argument tells us a little more; that every vertex that ends up with
positive charge belongs to or neighbours one of the 756 clumps. So if only we can prove that some
vertex of T itself ends up with positive charge, we would have one of the 756 at least neighbouring
a vertex of T'; and it cannot be part in T and part sticking out, because all the new vertices close to
the boundary have big degree. So it would be completely in T, which is what we want.

How can we show that some vertex in 7" ends up with positive charge? We need to show that
the total initial charge assigned to the interior of T is big, and not too much gets shipped over the
border out of T'. This boils down to something easy. Take the initial doublecross cubic graph that we
want to three-edge-colour, delete the four crossing edges, and look at the length of the cycle Z that
bounds the region in which the four crossing edges were drawn. Provided Z has length at least 21,
the discharging argument will give us what we want, one of the 756 clumps in the right place where
it can be used. (We are back-and-forth between the cubic graph and its “dual” here, unfortunately.)

What do we do if Z has length less than 217 In this case we need a completely different approach;
we look for a “clump” in the cubic graph (perhaps we should call this a dual clump) containing the
four crossing edges and some edges of Z. We prove that there must always be one that can be replaced
by something smaller without making the graph 3-edge-colourable. Again, it is an argument using
consistency under Kempe chains, but here consistency is back to its old sense from the proof of the
4CT, because all the nonplanarity is inside the clump itself, and the Kempe chains are out in the
planar part of the graph. And it works, just — we could do this up to length 20, but not for length
21, which is exactly the cutoff for the discharging procedure to work.

4 XX-good configurations and a discharging argument

It is most convenient to present the reducible configurations as subgraphs of triangulations, even
though most of the argument is done in terms of cubic graphs. A drawing is defined as in [4],
and therefore has no “crossings”. (Sometimes we need to allow crossings, but then we say so.) A
triangulation T' means a non-null drawing in a 2-sphere such that every region is bounded by a cycle
of length three (briefly, “is a triangle”), and a near-triangulation is a non-null connected drawing in
the plane such that every finite region is a triangle. If T' is a near-triangulation, its infinite region
is bounded by a cycle if and only if T is two-connected; and if so, we denote this cycle by Ty.
A configuration K consists of a near-triangulation Gg together with a map v : V(Gg) — Z (Z
denotes the set of all integers) with the following properties, where d(v) is the degree of v in Gk:

o |V(Gg)| >2;

e for every vertex v, Gx \ v has at most two components, and if there are two, then v (v) =



d(v) + 2;

e for every vertex v, if v is not incident with the infinite region then yx (v) = d(v); and otherwise
vk (v) > d(v), and in either case yx(v) > 5;

e K has ring-size at least two, where the ring-size of K is defined to be ) (yx(v) — d(v) — 1),
summed over all vertices v incident with the infinite region such that Gk \ v is connected. (In
fact, all configurations used in this paper have ring-size at least six.)

We use the same conventions as in [4] to describe configurations, and in particular, we use the same
vertex shapes in drawings to represent the numbers vx(v). Thus, a vertex v with yx(v) = 5 is
represented by a solid circle; 7 by a hollow circle; 8 by a square; 9 by a triangle; 10 by a pentagon;
and 6 and 11 by a point (there is only one instance of 11, in the last configuration of the list). Two
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configurations K, L are isomorphic if there is a homeomorphism of the plane mapping G to G, and
mapping vx to yr. In the appendix to this paper there are 756 configurations. Any configuration
isomorphic to one of these is called an XX-good configuration. Note that every XX-good configuration
K has the property that yx(v) < 11 for every v € V(Gk).

A triangulation 7' (in a 2-sphere ¥) or a near-triangulation (in a plane X) is internally siz-
connected if for every cycle C of T with length at most five, either some open disc in X, bounded by
C, contains no vertex of T', or C has length five and some such open disc contains a unique vertex
of T.

We say a configuration K appears in a triangulation T if

e (GG is an induced subgraph of T’; and
e for each v € V(Gk), vk (v) equals the degree of v in T

Let T be a two-connected near-triangulation. We say a configuration K appears internally in T
if

e G is an induced subgraph of T'\ V(Tx);

e for each v € V(Gk), vk (v) equals the degree of v in T'; and

e every vertex or edge of 1" that does not belong to G is drawn within the infinite region of
Gk.



The main result of this section is the following.

4.1 Let J be a two-connected, internally siz-connected near-triangulation. Suppose that Js is an
induced subgraph of J, and there are at least 4|V (Jx)| — 11 edges in J between V(Jx) and V(J) \
V(Jso). Then some XX-good configuration appears internally in J.

To prove this, we use the discharging procedure from [4], so now we turn to that. A discharging
function in a triangulation T' means a map ¢ from the set of all ordered pairs of adjacent vertices of T’
into Z, such that ¢(u,v) + ¢(v,u) = 0 for all adjacent u,v. In [4], we defined an explicit discharging
function, for every internally six-connected triangulation. Since it is rather complicated, we refer the
reader to [4] for the details of its definition. We need the following two properties; the first can be
verified by hand, but the second needs a computer.

4.2 Let T be an internally siz-connected triangulation, and let ¢ be the discharging function defined
in [4]. Then

e for every edge wv, if ¢p(u,v) > 5 then some XX-good configuration appears in T and contains u

o for every vertex u of G, if 10(6 — dr(u)) > >, ¢(u,v) (where the sum is over all vertices v
adjacent to u) then some XX-good configuration K appears in T, and moreover either u or
some neighbour of u is a verter of Gk .

Both of these statements are minor variants of theorems proved in [4] (theorems 4.7 and 4.4 of
that paper, respectively) and the methods of proof are unchanged. The proof of the first statement
is virtually identical with the proof of theorem 4.7 of [4], because all the “good configurations” used
in that proof are also XX-good, except for one, the configuration called conf(2,10,6) in that paper,
which is not XX-good. This is only needed at one step of the proof, and at that step we can use a
different configuration instead, which is XX-good, the second on line 5 of page 3 of the Appendix.
In the proof in [4] of theorem 4.7 of that paper, we did not include in the statement of the theorem
that the good configuration we find contains u, as we are claiming now; but in fact the proof shows
that.

The proof of the second needs analogues of theorems 4.5, 4.6, 4.8, 4.9 of the same paper. Again,
in [4] we did not include in the statement of the theorem that the good configuration we find contains
u or one of its neighbours; but this is implied by the fact that the configuration is always found within
a “cartwheel” centred on u. The proofs of the analogues of 4.5, 4.6 and 4.8 are unchanged, because
all the good configurations used for those proofs in [4] are also XX-good. The analogue of 4.9 is
proved by computer. The computer program just checks a machine-readable proof of unavoidability,
and is the same as was used in [4]; we just changed its two inputs, the list of configurations we
want to prove unavoidable, and the files containing the machine-readable proofs. We are making the
program and the computer-readable proofs available on the arXiv [5].

Proof of 4.1. Let C = J, and take a drawing of J in a 2-sphere such that C' bounds some region
ro. Thus one region of J has a boundary of length [V(C)|, and all others have length three. Let J
have r regions; then by Euler’s formula, |V (J)| — |E(J)| 4+ r = 2, and so

S 6 dy(v) = 6V()] — 2B = 6(|E(J)| + 2 — ) — 2|E(J)| = 4|E(J)| - 61 + 12.
veV (J)
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The sum of the lengths of the regions of J is |V(C)| + 3(r — 1), and so 2|E(J)| = |V(C)| + 3(r — 1).
We deduce that

S° 6 —dy(v) = 4|E(J)]| — 6r + 12 = 2(V(C)| + 3(r — 1)) — 6r + 12 = 2|V(C)| +6.
veV(J)

Let there be k edges between V (J)\V(C) and V/(C). It follows that > () ds(v) = k+2[V(C)|.

Consequently
Y 6-ds(v) =6|V(O) - (k+2|V(C)]) =4[V (O) - k
veV(C)
and so
Yo 6—dy(u)=QV(C)+6) - (4V(C)| - k) =k+6—2[V(C)|.
ueV(J)\V(C)

Now extend the drawing of J to a drawing of an internally six-connected triangulation 7', by
adding more vertices and edges drawn within 79, in such a way that every vertex in V(C') has degree
in T at least 12. (It is easy to see that this is possible, since J is internally six-connected.)

(1) If there is an XX-good configuration K that appears in T such that some vertex in V(J) \ V(C)
either belongs to Gx or has a neighbour in Gg, then K appears internally in J.

No vertex in V(C) belongs to V(G ), since v (v) < 11 for every vertex v of K, and dp(v) > 12 for
every v € V(C). From the hypothesis, it follows that some vertex of Gg belongs to V(J) \ V(C),
and hence V(Gg) C V(J) \ V(C) since Gk is connected. Moreover, every finite region of G is a
finite region of J, since J is internally six-connected. But every vertex in V' (J) \ V(C') has the same
degrees in T and in J, and so K appears internally in J. This proves (1).

Let ¢ be the discharging function on T' defined in [4]. Suppose first that ¢(u,v) > 5 for some
edge uv of T with uw € V(J) \ V(C) and v € V(C). By the first statement of 4.2, some XX-good
configuration K appears in 7" and contains u, and the result follows from (1).

Thus we may assume that there is no such edge uv. Let there be k edges wv in J with u € V(J)\
V(C) and v € V(C). Consequently the sum of ¢(u,v), over all edges uv of T with uw € V(J) \ V(C)
and v € V(C), is at most 5k. But this equals the sum over all u € V(J) \ V(C), of the sum of
¢(u,v) over all neighbours v of u, since ¢(u,v) = —¢(v,u) for all u,v. Therefore the sum over all
ueV(J)\V(C) of

1006 —dy(uw) = > ¢(u,v)
uwveE(J)
is at least 10(k + 6 — 2|V (C)|) — 5k. Since k > 4|V (C)| — 11 by hypothesis, the last is positive, and
so there exists u € V(J) \ V(C) such that

For such a vertex u, its degrees in J and T are the same; and so by the second assertion of 4.2,
there is an XX-good configuration K that appears in 7', such that either u or some neighbour of u
is a vertex of Gx. But then again, the result follows from (1). This proves 4.1. |



5 The doublecross edges

By a minimal counterexample, we mean a cubic two-edge-connected doublecross graph G which is
not three-edge-colourable, and such that every cubic two-edge-connected minor of G is three-edge-
colourable except G itself.

5.1 Let G be a minimal counterexample. Then
e (G is theta-connected;

e there are four edges gi,...,g4 of G, and the graph G\ {g1, 92,93, ga} can be drawn in the plane
such that its infinite region is bounded by a cycle Z;

e there are eight vertices z1,...,zs of Z, distinct and in order, such that g1 = z123, go = 2924,
93 = z527 and g4 = 2623.

Proof. By the result of [8], G is not apex since it is not three-edge-colourable. Since G is also a
minimal counterexample to Tutte’s conjecture, the result of [7] implies that G is theta-connected.
Now G can be drawn in the plane with only two crossings both on the infinite region. Let the
crossing pairs of edges be (g1,92) and (g3,94). Since G is not apex, it follows that g1, g2 # g3, 94,
and indeed g1, go are disjoint from g3, g4. If g1 shares an end with gs, then the drawings of g1, g2 can
be rearranged to eliminate their crossing, and again G is apex, which is again impossible (indeed, in
this case G has crossing number at most one, and so we could use 2.1 instead of the result of [8]). So
g1, 92, g3, g4 are disjoint. The graph obtained by deleting the edges g1, ..., g4 is two-edge-connected
since G is theta-connected, and it is drawn in the plane such that g1, g2, g3, g4 are all drawn within
its infinite region. Since it is two-edge-connected, its infinite region is bounded by a cycle. This
proves 5.1. |

To prove 1.1, we use the same approach as the proof of the four-colour theorem, proving the
existence of an unavoidable set of reducible subgraphs. Some of these reducible subgraphs use all
four of the edges ¢1,...,94, and the others use none of them. The length of the cycle Z of 5.1 is
the deciding factor here; if |E(Z)| < 20 we will show the existence of a reducible subgraph using
91,94, while if |E(Z)| > 21 we will show the presence of one of the other kind. In this section we
handle the case when |E(Z)| < 20.

5.2 If G is a minimal counterexample and Z is the cycle as in 5.1, then |E(Z)| > 21.

Proof. Let z1,...,23 be asin 5.1, and for 1 <+ < 8 let Z; be the path of Z with ends z;, z;1+1 that
contains no other member of {z1,..., 23} (where zg means z;). For 1 <1i <8, let L; denote |E(Z;)|.
We observe:

e L1,...,Lg > 1, because z1,...,z2s are all distinct;

e [.; + Ly > 4 since every cycle of G has length at least five; and for the same reason Lo +
Ls,Ls+ Lg,Lg+ L7y >4 and Ly + Ly, Ls + L7 > 3;

e L + Lo+ L3 > 7 since there are at least six edges with exactly one end in V(21 U Zy U Z3)
(because G is theta-connected); and similarly Ls + Lg + L7 > 7;



e L;+ Lg > 3, because if Z1, Zg both have length one then G is apex (deleting the end of Zg not
in Z; makes the graph planar); and similarly Ls + L4, Ly + Ls, L7 + Lg > 3.

A choice of the 8-tuple (Lq,...,Lg) is called plausible if it satisfies the conditions just listed.
Suppose that |E(Z)| < 20; then there are only finitely many plausible choices for (L1, ..., Lg), and
we handle them one at a time. Now, therefore, we assume that we are dealing with some such
plausible choice, and so we know the lengths Lq,...,Ls. Let G~ be the graph obtained from G by
deleting the four crossing edges g1 = 2123, g2 = 2224, g3 = 2527 and g4 = zgzg. Then Z is a cycle

of G, bounding a region in a planar drawing of G~. Every vertex of Z different from zi,...,z2g
is incident with an edge of G~ that does not belong to E(Z). Let the vertices of Z different from
Z1,...,28 be v1,..., v say, numbered in circular order (starting from some arbitrary first vertex),

and for 1 < i < k let f; be the edge of G incident with v; and not in E(Z). Note that fi,..., fx
might not all be distinct (because for instance some f; might be incident with a vertex of the interior
of Z, and incident with a vertex of the interior of Zg). Let F' = {f1,..., fx}, and let D be the set of
all maps from F to {1,2,3}.

A subset C C D is said to be consistent if it has the following property. For all distinct =,y €
{1,2,3}, and each ¢ € C, let F,, be the set of all f € F' with ¢(f) € {z,y}; then there is a partition
IT of F, , into sets of size one and two, with the following properties:

e for f € I, ,, the member of II containing f has size one if and only if both ends of f belong to
V(Z);

o for 1 <a<b<c<d<k, not both {fa, fe}. {fp, fa} € II; and

o ¢ € C for every subset F’ C F,, which is expressible as a union of members of II, where ¢’ is
defined by

o(f) HfeF\F
¢'(f) =1y if f € F' and ¢(f)
x if f € F" and ¢(f)

X

Y.

For any graph H with ' C E(H), we denote by Cy the set of all members of D that can be
extended to a three-edge-colouring of H. Let J = G~ \ E(Z), and let K be the subgraph of G formed
by the edges in F' U E(Z) U{g1, 92,93, 94} and their incident vertices. Since |E(Z)| < 20, it follows
that |F| < 12.

For each plausible choice of (L1,..., Lg) (except one, that we handle separately), there are three
steps to be carried out on a computer, which we explain now. All three involve computation with
subsets of D, but since |F| < 12 all three steps are easily implemented.

Step 1: Compute Ck.

Step 2: Compute the maximal consistent subset C of D\ Cx. (The union of any two consistent
sets is consistent, and so there is a unique maximal consistent subset of any set.)

Step 3: Verify that there is a graph K’, obtained from K by deleting one or two of the edges
g1, - - -, 94, and suppressing the vertices of degree two that arise, such that C N Cyxs = 0. (This
involves looking at the handful of possibilities for K’ and computing Cx+ for each of them.)



The exception is the 8-tuple (4,1,4,1,4,1,4,1), which is plausible but for which there is no K’
as in step 3 above. For this 8-tuple let K’ be obtained from K by deleting the unique edge in Z
and suppressing the vertices of degree two that arise. Again we check that C N Cg = 0.

In all cases, since G is not three-edge-colourable, and J U K = G, it follows that C; and Cx
are disjoint. The planarity of J implies that C; is consistent (this is easy to see, and is a standard
argument in proving the four-colour theorem — see [4]). Consequently C; C C, and so C; N Cgr = 0.
It follows that J U K’ is not three-edge-colourable. But J U K’ can be obtained from G by deleting
either one or two disjoint edges, and suppressing the vertices of degree two that arise; and so J U K’
is two-edge-connected (since G is theta-connected), doublecross, and smaller than our supposedly
minimal counterexample, which is impossible. This proves 5.2. |

We have omitted the details of the computer checking; this is all straightforward. (The program is
available on the arXiv.) There are 2957 plausible 8-tuples to check, up to symmetry, but the program
only takes about a minute to do them all, so we were content with that. If desired, running through
all possible choices of (L1, ..., Lg) could be made more efficient at the cost of complicating the proof.
For instance, we could quickly dispose of the case when min(Ly, Lo, L3) = min(Ls, Lg, L7) = 1,
because in this case G contains a “C-reducible” subgraph (of a different kind), no matter what the
other six lengths are. But we are aiming for simplicity rather than speed here.

6 Islands

An island means a graph I drawn in the plane, with the following properties:

e [ is two-connected;
e every vertex has degree two or three; and

e every vertex of degree two is incident with the infinite region.

Let I be an island, and J be a geometric dual, where j € V(J) corresponds to the infinite region
of I. For each v € V(J)\{j}, let v(v) be the length of the region of I that corresponds to v. Then the
pair (J\ {j},7) might or might not be a configuration; but more important, for every configuration
K, there is an island that gives rise to it in this way, unique up to homeomorphism of the plane.
(We leave checking this to the reader. One way is to go to the “free completion” of K defined in [4],
take a dual, and delete the vertex corresponding to the infinite region.) We call this the island of K,
and denote it by I(K).

We need to work mostly with the islands of the XX-good configurations, but it is more compact
to draw the configurations themselves. Sometimes we need to refer to an edge e of one of the islands,
say of I(K). Now e corresponds to some edge f of J under the duality (where J is as before), and
if f € E(Gk) then we can refer to e by defining it as the edge dual to f. But sometimes the edge
f is not an edge of Gx. For this reason, in the list of XX-good configurations, some vertices are
drawn with extra “half-edges”. These indicate some of the edges of J that are not edges of G, for
convenience in referring to certain edges of I(K).

6.1 Let G be a minimal counterexample, and let Z, g1, ...,g4 be as in 5.1. Then there is a cycle of
G\ {g1,-..,94}, bounding a closed disc A, such that the subgraph of G formed by the vertices and
edges drawn in A is an island of some XX-good configuration.
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Proof. Let G~ =G\ {g1,...,94}; and let us extend the drawing of G~ by adding one new vertex
Zoo (drawn within the infinite region of G7) and eight new edges, joining 2z, to the eight ends of
gi,--.,94, forming GT say. Thus in G, every vertex has degree three except for z.,, which has
degree eight. (We can think of GT as obtained from G by subdividing the four edges g1, ..., g4 and
identifying the four new vertices.)

Now take a geometric dual T of G, such that z,, belongs to the infinite region of T'. It follows
that:

e T is a near-triangulation;

the cycle T is an induced subgraph of T’

T is internally six-connected (since G is theta-connected); and

e the number of edges of T' between V(T ) and V(T') \ V(T ) is at least 21, since |E(Z)| > 21
by 5.2, and for each e € E(Z), the corresponding edge of 7' has one end in V(T4) and the
other in V(T') \ V(T).

Since |V (T )| = 8 and so 4|V (T)| — 11 = 21, 4.1 implies that some XX-good configuration K
appears internally in 7T". Consequently the union of the closures of the regions of G~ that correspond
to vertices in G is a closed disc that defines an island satisfying the theorem. This proves 6.1. |

7 Reducibility

It remains to show that the outcome of 6.1 is impossible, but for that we need to discuss reducibility
further.

If a,b,c,d are integers and 1 < a < b < ¢ < d, we call {{a,c},{b,d}} a cross. Let II be a finite
set of finite sets of positive integers, each of cardinality two and pairwise disjoint. We say that II is
doublecross if the following conditions hold:

e at most two subsets of II are crosses

o if A, B,C,D € II are distinct, and {A, B},{C, D} are crosses, let X = AUBUCUD (so
|X| = 8). Then for all P € II with PN X = () there do not exist z1,22 € X such that
{P,{z1,22}} is a cross.

This is equivalent to the following geometric condition, which may be easier to grasp: choose k > 3
such that A C {1,...,k} for each A € II. Take a regular k-vertex polygon in the plane, with vertices
v1,...,v; in order. For each A € II draw a line segment L4 between v;,vj, where A = {7, j}. Then
we ask that

e 1no point of the plane belongs to more than two of L4 (A € II);
e at most two points of the plane belong to more than one of these lines;

e if there are two points z,y each belonging to two of the lines L4 (A € II) say, then either some
L 4 contains them both, or no L4 intersects the interior of the line segment between x, y.

11



We leave the equivalence to the reader.

Let k£ > 1, and let D be the set of all maps ¢ : {1,...,k} — {1,2,3}. We say a subset C of D
is XX-consistent if it has the following property. For all distinct x,y € {1,2,3}, and each ¢ € C, let
R, be the set of all i € {1,...,k} with ¢(i) € {z,y}; then there is a doublecross partition II of
Ry, such that ¢’ € C for every subset I’ C R, , which is expressible as a union of members of II,
where ¢’ is defined by

o) it f e (L. k}\ F
¢(f)=<y ffeF and¢(f) ==z
z it feF and ¢(f) =y.

Let I be the island of a configuration K. We say F' C E(I) is a matching if no two edges in
F have a common end, and V(F') denotes the set of vertices incident with an edge in F'. A three-
edge-colouring modulo F of I means a map ¢ : E(I)\ F — {1,2,3}, such that for all distinct edges
e,f € E(I)\ F with a common end v say, ¢(e) = ¢(f) if and only if v € V(F).

Let the vertices with degree two in I be vy, ..., v in order on the boundary of the infinite region.
With D as before, let Cx be the set of all v € D such that there is a three-edge-colouring ¢ of I with
¢(e) # (i) for 1 < i < k and for each edge e of I incident with v;. We say that K is XXD-reducible
if there is no non-null XX-consistent subset of D\ Cx. We say that K is XXC-reducible if there is a
matching F' of I with the following properties:

o 1< |F| <4,

e If |[F| = 4, then either some finite region of I is incident with at least three members of F', or
there are two finite regions of I, say r, s, such that some edge of I is incident with both r,s,
and every edge of F is incident with one of them.

e Let Cr be the set of all ¢ € D such that there is a three-edge-colouring modulo F' of I, say ¢,
such that for 1 < ¢ < k and every edge e € E(I) \ F, ¢(e) = ¢(3) if and only if v; € V(F).
Then every XX-consistent subset of D \ Cx is disjoint from Cp.

We call such a set F' a reducer for K. (We will show that if K appears in a minimal counterexample
G, then deleting from G the edges in F' and suppressing the resultant vertices of degree two will
make a smaller counterexample, which is impossible; and so K cannot appear.) We need:

7.1 For every XX-good configuration K, either K is XXD-reducible, or K is XXC-reducible.

Proof. The proof uses a computer. Each XX-good configuration K is drawn in the Appendix, and
in that drawing sometimes some edges are drawn thickened. If no edges are thickened then we claim
K is XXD-reducible, and otherwise we claim it is XXC-reducible, and the corresponding reducer F’
corresponds to the set of thickened edges and half-edges of G under planar duality. To show this,
for each XX-good configuration K in turn, we carry out two steps:

Step 1: Compute Cg.

Step 2: Compute the maximal XX-consistent subset C of D\ Cx. (The union of any two XX-
consistent sets is XX-consistent, and so there is a unique maximal XX-consistent subset of any
set.)

12



If C is empty we have verified that K is XXD-reducible and we stop here. Otherwise, we carry out:

Step 3: Let F be the set of edges of I(K) that correspond under geometric duality to the thickened
edges and half-edges of Gx given in the Appendix, and verify that F' is a reducer for K.

This is just the same process as in the proof of the four-colour theorem [4], and is carried out on
a computer the same way; we omit further details. (Again, we are making the program available on
the arXiv [5].)

8 Assembling the pieces
Now we combine these various lemmas to prove 1.1.

Proof of 1.1. Suppose the result is false; then there is a minimal counterexample G. Let
Z,q1,--.,94 beasin 5.1, and let G= = G\ {g1, 92,93,94}. By 6.1, there is a cycle D of G~, bounding
a closed disc A, such that the subgraph of G formed by the vertices and edges drawn in A is an
island I of some XX-good configuration K say. Let vi,...,v; be the vertices of D that have degree
two in I, numbered in order on D, and for 1 <1 < k, let e¢; be the edge of GG incident with v; and
not in F(I). Note that ey, ..., e need not all be distinct, because some e; might have both ends in
V(D).

Now let D be the set of all maps from {1,...,k} to {1,2,3}. We say amap ¢ : E(G) \ E(I) —
{1,2,3} is a three-edge-colouring of I if ¢(e) # ¢(f) for every two distinct edges e, f € E(G) \ E(I)
with a common end in G. Let C be the set of 1) € D such that there is a three-edge-colouring ¢ of T
with (i) = ¢(e;) for 1 <1i < k. We claim:

(1) C is non-null and XX-consistent.

Clearly it is non-null, from the minimality of G. Let ¢ € C, and choose a three-edge-colouring
¢ of T with (i) = ¢(e;) for 1 <i < k. Let z,y € {1,2,3} be different, and let H be the subgraph
of G formed by the edges e € E(G) \ E(I) with ¢(e) € {z,y} and their ends. It follows that every
component of H is either a cycle, or a path with distinct ends both in V(D). Let II be the set
of all {7,7} such that 1 < i < j < k and some component of H is a path with end-edges e;, e;.
(Possibly e; = e;, and this path has only one edge.) Then we can switch colours z,y on any subset
of {1,...,k} that is expressible as a union of members of II, by exchanging the colours z,y on the
corresponding components of H. It remains to show that II is doublecross. To see this, note first
that if {{a,b},{c,d}} C II is a cross, and P,(Q are the components of H with end-edges e, e, and
ec, eq respectively, then either P contains one of g1, go and @) contains the other, or P contains one of
g3, 94 and @ contains the other. Since G can be drawn with no crossing pairs of edges except g1, go
and g3, g4, and the two crossings they form are on a common region, it follows that II is doublecross.
This proves (1).

Now let Cx be asin 7.1; that is, Cx is the set of all 1) € D such that there is a three-edge-colouring
¢ of I with ¢(e) # (i) for 1 <i < k and for each edge e of I incident with v;.

(2) CkNC =10.
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For suppose that 1 € Cx N C. Choose a three-edge-colouring ¢; of I such that (i) = ¢1(e;)
for 1 <14 < k. Choose a three-edge-colouring ¢ of I such that ¢a(e) # ¢(i) for 1 < i < k and each
edge e of I incident with v;. For each edge e of G, let

_ Joule) ife¢ E(I)
¢(6)_{¢2(e) if e € B(I).

We claim that ¢ is a three-edge-colouring of G. For let e, f € E(G) be distinct with a common
end v say. If e, f € E(I) then

d(e) = pa2(e) # g2(f) = o(f)

since ¢9 is a three-edge-colouring of I; and similarly ¢(i) # ¢(j) if 4,7 ¢ E(I). We may therefore
assume that e € E(I) and f ¢ E(I); and consequently v is one of vy, ..., vk, say v;. From the choice
of ¢1 it follows that (i) = ¢1(e;) = ¢(f); and from the choice of ¢o, P(e) = pa(e) # ¥ (i). It follows
that ¢(e) # ¢(f). This proves (2).

By (1) and (2), it follows that K is not XXD-reducible. Since K is XX-good, it is therefore
XXC-reducible by 7.1. Let F' C E(I) be a reducer. Let Cr be the set of all 1) € D such that there
is a three-edge-colouring modulo F' of I, say ¢, such that for 1 < i < k and every edge e € E(I) \ F
incident with v;, ¢(e) = 9(7) if and only if v; € V(F). From the definition of a reducer, it follows

that every XX-consistent subset of D\ Cx is disjoint from Cpg, and so in particular, C N Cr = (), by
(1) and (2).

(3) The graph G\ F has a cutedge.

Suppose it does not. Then from the minimality of G, there is a map ¢ : E(G) \ F — {1,2,3},
such that for all distinct edges e, f € E(G) \ F with a common end v, ¢(e) = ¢(f) if and only if
v € V(F). (To see this, suppress the vertices of degree two.) For 1 <i <k, let ¢(i) = ¢(e;). Then
1 € CNCp, which is impossible. This proves (3).

(4) |F| =4, and there is a cycle W of G of length five, such that F C ég(V(W)).

Let fo be a cutedge of G\ F'. Consequently there exists Y C V (&), such that fy € d¢(Y) C FU{fo}.
By replacing Y by its complement if necessary, we may assume that |Y| < |V(G) \ Y|. Suppose
first that |0g(Y)| < 4. Since G is theta-connected, it follows that |Y| < 2. Since F Ndg(Y) is a
matching, and G is three-connected, this is impossible. Thus |6g(Y)| > 5, and so |F| = 4, and
sa(Y) = F U {fol.

Since G is theta-connected and |Y| < |V(G)\ Y], it follows that |Y| < 5. Now |Y| > 4 since F' is
a matching; and |Y| is odd since |d¢(Y)| is odd; so |Y'| = 5. Since |d¢(Y)| = 5 and so there are five
edges of G with both ends in Y, it follows that there is a cycle W of G with V(W) C Y; and since
G is theta-connected, W has length five. This proves (4).

We remark that the edges in F' all belong to E(I), but some of the other six edges of G with an
end in the cycle W of (4) might not belong to E(I), and indeed might not belong to E(G~). We
recall that from the choice of F', we have:
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(5) Either there exists a finite region of I incident with three edges in F', or there are two finite
regions v, of I, such that some edge of I is incident with both r,7’, and every edge in F is incident
with one of r,1’.

Let W be as in (4), with vertices wi, ..., ws in order, and for 1 < i <5 let h; be the edge of G
incident with w; and not in E(W), where F' = {hy,..., ha}.

(6) W contains at least one of g1,...,94.

For suppose not; then W is a cycle of G, and consequently bounds a finite region of G~ since
G is theta-connected. For 1 <4 < 5, let ; be the second region of G~ incident with the edge w;w;41,
where wg means wy. Now 74 # 15, since hg is not a cut-edge of G~, and so ry,r9,r3 are the only
regions of G~ incident with two of hy,...,hs. If some finite region of G~ is incident with three of
hi,...,hq, then two of r1,79,73 are equal and finite, contradicting the theta-connectivity of G. By
(5), r1,r3 are finite regions of G~, and there is an edge of G~ incident with r1, 73, again contrary to
the theta-connectivity of G. This proves (6).

Let 2z1,...,28 be as in 5.1, and for 1 <4 < &, let Z; be the path of Z between z;, z;41 containing
no other vertex in {z1,..., 23} (where z9 means z1).

(7) W contains two of gi,...,ga.

For suppose W only contains one. From the symmetry we may assume that g; € E(W). Con-
sequently W\ ¢ is a four-edge path of G~ between z1, z3. Since z1, z3 have degree two in G~, the
first and last edges of this path belong to the cycle Z. If the edge of W\ g1 incident with z; belongs to
Zg, then there is a three-edge path in G~ between Zg \ z1 and z3, contrary to the theta-connectivity
of G; so the first edge of W'\ g1 belong to Z; and similarly the last edge belongs to Zs, respectively.
Since G is theta-connected, it follows that the middle vertex of the path W \ ¢ also belongs to
Z1UZy; and so W\ g1 = Z1UZs. In particular, 2z € V(W), and so g2 € dg(V(W)). Since every edge
in F' belongs to E(G™), it follows that g2 = hs, and so zg = ws. Now since G is theta-connected,
there are five edge-disjoint paths of G between V(W) and Z5 U Zg U Z7. One of them uses g2, but
the other four are paths of G, and start at distinct vertices of W. Their first edges are the four
edges in F'. Let these paths be Py, ..., P; say, numbered so P; has first vertex w; and first edge h;. It
follows that no region of G~ is incident with three of hq, ..., hq, because of the paths Pi, ..., Py; and
similarly no two regions with a common edge are together incident with all of hq, ..., hs, contrary
to (5). This proves (7).

Since g¢1,...,94 are pairwise vertex-disjoint, and W has length five, it follows that W contains
exactly two of g1,...,94. Let W contain g7 and g; say. The other three edges of W are edges of G~
incident with vertices in {z1,..., 23}, and so all three belong to F(Z). Consequently i = 2, and one
of Z1, Z3 has length one, and the other has length two, and from the symmetry we may assume that
Z1 has length one and Z3 length two. From the theta-connectivity of GG, there are five edge-disjoint
paths of G~ from V(W) to Zs U Zg U Z7, and their first edges are the five edges in dg(V (W)). Again
this contradicts (5), and completes the proof of 1.1. |
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