Skip to main content

Advertisement

Log in

The impact of habitat fragmentation on trophic interactions of the monophagous butterfly Polyommatus coridon

  • ORIGINAL PAPER
  • Published:
Journal of Insect Conservation Aims and scope Submit manuscript

Abstract

Theory predicts that habitat fragmentation, including reduced area and connectivity of suitable habitat, changes multitrophic interactions. Species at the bottom of trophic cascades (host plants) are expected to be less negatively affected than higher trophic levels, such as herbivores and their parasitoids or predators. Here we test this hypothesis regarding the effects of habitat area and connectivity in a trophic system with three levels: first with the population size of the larval food plant Hippocrepis comosa, next with the population density of the monophagous butterfly species Polyommatus coridon and finally with its larval parasitism rate. Our results show no evidence for negative effects of habitat fragmentation on the food plant or on parasitism rates, but population density of adult P. coridon was reduced with decreasing connectivity. We conclude that the highly specialized butterfly species is more affected by habitat fragmentation than its larval food plant because of its higher trophic position. However, the butterfly host species was also more affected than its parasitoids, presumably because of lower resource specialization of local parasitoids which also frequently occur in alternative hosts. Therefore, conservation efforts should focus first on the most specialized species of interaction networks and second on higher trophic levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Anton C, Zeisset I, Musche M, Durka W, Boomsma JJ, Settele J (2007) Population structure of a large blue butterfly and its specialist parasitoid in a fragmented landscape. Mol Ecol 16:3828–3838

    Article  PubMed  Google Scholar 

  • Asher J, Warren M, Fox R, Harding P, Jeffcoate G, Jeffcoate S, Greatorex-Davies N, Roberts E (2001) The millenium atlas of butterflies in Britain and Ireland. Oxford University Press, Oxford

    Google Scholar 

  • Baguette M, Petit S, Quéva F (2000) Population spatial structure of three butterfly species within the same habitat network: consequences for conservation. J Appl Ecol 37:100–108

    Article  Google Scholar 

  • Balmer O, Erhardt A (2000) Consequences of succession on extensively grazed grasslands for central European butterfly communities: rethinking conservation practices. Conserv Biol 14:746–757

    Article  Google Scholar 

  • Baumgarten HT, Fiedler K (1998) Parasitoids of lycaenid butterfly caterpillars: different patterns in resource use and their impact on the hosts’ symbiosis with ants. Zoologischer Anzeiger 236:167–180

    Google Scholar 

  • Belshaw R (1993) Tachinid flies: Diptera: Tachinidae. Royal Entomological Society, London

    Google Scholar 

  • Böhmer HJ (1994) Die Halbtrockenrasen der Fränkischen Alb–Strukturen, Prozesse, Erhaltung. Mitteilungen der Fränkischen Geographischen Gesellschaft 41:323–343

    Google Scholar 

  • Brereton TM, Warren MS, Roy DB, Stewart K (2008) The changing status of the Chalkhill Blue butterfly Polyommatus coridon in the UK: the impacts of conservation policies and environmental factors. J Insect Conserv 12:629–638

    Article  Google Scholar 

  • Brückmann SV, Krauss J, Steffan-Dewenter I (2010) Butterfly and plant specialists suffer from reduced connectivity in fragmented landscapes. J Appl Ecol 47:799–809

    Article  Google Scholar 

  • Cowley MJR, Thomas CD, Roy DB, Wilson RJ, León-Cortés JL, Gutiérrez D, Bulman CR, Quinn RM, Moss D, Gaston KJ (2001) Density-distribution relationships in British butterflies. I. The effect of mobility and spatial scale. J Anim Ecol 70:410–425

    Article  Google Scholar 

  • Cronin JT (2003) Patch structure, oviposition behaviour, and the distribution of parasitism risk. Ecol Monogr 73:283–300

    Article  Google Scholar 

  • Dauber J, Bengtsson J, Lenoir L (2006) Evaluating effects of habitat loss and land-use continuity on ant species Richness in seminatural grassland remnants. Conserv Biol 20:1150–1160

    Article  PubMed  Google Scholar 

  • Debinski DM, Holt RD (2000) A survey and overview of habitat fragmentation experiments. Conserv Biol 14:342–355

    Article  Google Scholar 

  • Dennis RLH, Eales HT (1997) Probability of site occupancy in the large heath butterfly Coenonympha tullia determined from geographical and ecological data. Biol Conserv 87:295–301

    Article  Google Scholar 

  • Didham RK, Ghazoul J, Stork N, Davis AJ (1996) Insects in fragmented forests: a functional approach. Trends Ecol Evol 11:255–260

    Article  PubMed  CAS  Google Scholar 

  • Doak P (2000) The effects of plant dispersion and prey density on parasitism rates in a naturally patchy habitat. Oecologia 122:556–567

    Article  Google Scholar 

  • Dobson A, Lodge D, Alder J, Cumming GS, Keymer J, McGlade J, Mooney H, Rusak JA, Sala O, Wolters V, Wall D, Winfree R, Xenopoulos M (2006) Habitat loss, trophic collapse, and the decline of ecosystem services. Ecology 87:1915–1924

    Article  PubMed  Google Scholar 

  • Dupont YL, Nielsen BO (2006) Species composition, feeding specificity and larval trophic level of flower-visiting insects in fragmented versus continuous heathlands in Denmark. Biol Conserv 131:475–485

    Article  Google Scholar 

  • Ebert G, Rennwald E (1991) Die Schmetterlinge Baden-Württembergs. Band 2, Tagfalter II. Ulmer, Stuttgart

    Google Scholar 

  • ESRI (1995) ArcView GIS for Windows, version 3.2. ESRI, Redlands

    Google Scholar 

  • Ewers RM, Didham RK (2006) Confounding factors in the detection of species responses to habitat fragmentation. Biol Rev 81:117–142

    Article  PubMed  Google Scholar 

  • Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34:487–515

    Article  Google Scholar 

  • Fiedler K, Seufert P, Pierce NE, Pearson JG, Baumgarten H-T (1992) Exploitation of lycaenid-ant mutualism by braconid parasitoids. J Res Lepidoptera 31:153–168

    Google Scholar 

  • Golden DM, Christ TO (1999) Experimental effects of habitat fragmentation on old-field canopy insects: community, guild and species responses. Oecologia 118:371–380

    Article  Google Scholar 

  • Hance T, Baaren J, van Vernon P, Boivin G (2007) Impact of extreme temperatures on parasitoids in a climate change perspective. Annu Rev Entomol 52:107–126

    Article  PubMed  CAS  Google Scholar 

  • Hanski I (1994) A practical model of metapopulation dynamics. J Anim Ecol 63:151–162

    Article  Google Scholar 

  • Hanski I, Moilanen A, Gyllenberg M (1996) Minimum viable metapopulation size. Am Nat 147:527–541

    Article  Google Scholar 

  • Hinz R, Horstmann K (2007) On the host relationships of European species of Ichneumon Linnaeus (Insecta, Hymenoptera, Ichneumonidae, Ichneumoninae). Spixiana 30:39–63

    Google Scholar 

  • Holt RD (2002) Food webs in space: on the interplay of dynamic instability and spatial processes. Ecol Res 17:261–273

    Article  Google Scholar 

  • Horstmann K, Fiedler K, Baumgarten HT (1997) Zur Taxonomie und Bionomie einiger Ichneumonidae (Hymenoptera) als Parasitoide westpaläarktischer Lycaenidae (Lepidoptera). Nachrichtenblatt der Bayerischen Entomologen 46(1/2):2–7

    Google Scholar 

  • Hunter MD (2001) Multiple approaches to estimating the relative importance of top-down and bottom-up forces on insect populations: experiments, life tables, and time-series analysis. Basic Appl Ecol 2:295–309

    Article  Google Scholar 

  • Komonen A, Penttilä R, Lindgren M, Hanski I (2000) Forest fragmentation truncates a food chain based on an old-growth forest bracket fungus. Oikos 90:119–126

    Article  Google Scholar 

  • Krauss J, Steffan-Dewenter I, Tscharntke T (2003) How does landscape context contribute to effects of habitat fragmentation on diversity and population density of butterflies? J Biogeor 30:889–900

    Google Scholar 

  • Krauss J, Schmitt T, Seitz A, Steffan-Dewenter I, Tscharntke T (2004) Effects of habitat fragmentation on the genetic structure of the monophagous butterfly Polyommatus coridon along its northern range margin. Mol Ecol 13:311–320

    Article  PubMed  Google Scholar 

  • Krauss J, Steffan-Dewenter I, Müller CB, Tscharntke T (2005) Relative importance of resource quantity, isolation and habitat quality for landscape distribution of a monophagous butterfly. Ecography 28:465–474

    Article  Google Scholar 

  • Krauss J, Bommarco R, Guardiola M, Heikkinen RK, Helm A, Kuussaari M, Lindborg R, Öckinger E, Pärtel M, Pino J, Pöyry J, Raatikainen KM, Sang A, Stefanescu C, Teder T, Zobel M, Steffan-Dewenter I (2010) Habitat fragmentation causes immediate and time-delayed biodiversity loss at different trophic levels. Ecol Lett 13:597–605

    Article  PubMed  Google Scholar 

  • Kruess A, Tscharntke T (1994) Habitat fragmentation, species loss, and biological control. Science 264:1581–1584

    Article  PubMed  CAS  Google Scholar 

  • Kudrna O (2002) The distribution atlas of European butterflies. Oedippus 20:1–342

    Google Scholar 

  • Kuussaari M, Heliölä J, Luoto M, Pöyry J (2007) Determinants of local species richness of diurnal Lepidoptera in boreal agricultural landscapes. Agric Ecosyst Environ 122:366–376

    Article  Google Scholar 

  • Menéndez R, González-Megías A, Lewis OT, Shaw MR, Thomas CD (2008) Escape from natural enemies during climate-driven range expansion: a case study. Ecol Entomol 33:413–421

    Article  Google Scholar 

  • Moilanen A, Nieminen M (2002) Simple connectivity measures in spatial ecology. Ecology 83:1131–1145

    Article  Google Scholar 

  • Nouhuys van S (2005) Effects of habitat fragmentation at different trophic levels in insect communities. Ann Zool Fenn 42:433–447

    Google Scholar 

  • Pärtel M, Mändla R, Zobel M (1999) Landscape history of a calcareous (alvar) grassland in Hanila, western Estonia, during the last three hundred years. Landsc Ecol 14:187–196

    Article  Google Scholar 

  • Pierce NE, Kitching RL, Buckley RC, Taylor MFJ, Benbow KF (1987) The costs and benefits of cooperation between the Australian lycaenid butterfly, Jalmenus evagoras, and its attendant ants. Behav Ecol Sociobiol 21:237–248

    Article  Google Scholar 

  • Poschlod P, WallisDeVries MF (2002) The historical and socioeconomic perspective of calcareous grasslands—lessons from the distant and recent past. Biol Conserv 104:361–376

    Article  Google Scholar 

  • R Development Core Team (2009) R: a language and environment for statistical computing. Foundation for statistical computing Vienna. URL: http://www.r-project.org

  • Roland J, Taylor PD (1997) Insect parasitoid species respond to forest structure at different spatial scales. Nature 386:710–713

    Article  CAS  Google Scholar 

  • Saccheri I, Kuussaari M, Kankare M, Vikman P, Fortelius W, Hanski I (1998) Inbreeding and extinction in a butterfly metapopulation. Nature 392:491–494

    Article  CAS  Google Scholar 

  • Saunders DA, Hobbs RJ, Margules CR (1991) Biological consequences of ecosystem fragmentation: a review. Conserv Biol 5:18–32

    Article  Google Scholar 

  • Schmitt T, Habel JC, Besold J, Becker T, Johnen L, Knolle M, Rzepecki A, Schultze J, Zapp A (2006) The Chalk-hill Blue Polyommatus coridon (Lycaenidae, Lepidoptera) in a highly fragmented landscape: how sedentary is a sedentary butterfly? J Insect Conserv 10:311–316

    Article  Google Scholar 

  • Settele J, Feldmann R, Reinhardt R (2000) Die Tagfalter Deutschlands. Ulmer, Stuttgart

    Google Scholar 

  • Shaw MR, Stefanescu C, van Nouhuys S (2009) Parasitoids of European butterflies. In: Settele J, Shreeve T, Konvicka M, Van Dyck H (eds) The ecology of butterflies in Europe. Cambridge University Press, New York, pp 130–156

    Google Scholar 

  • Steffan-Dewenter I (2003) Importance of habitat area and landscape context for species richness of bees and wasps in fragmented orchard meadows. Conserv Biol 17:1036–1044

    Article  Google Scholar 

  • Steffan-Dewenter I, Tscharntke T (1999) Effects of habitat isolation on pollinator communities and seed set. Oecologia 121:432–440

    Article  Google Scholar 

  • Tscharntke T, Kruess A (1999) Habitat fragmentation and biological control. In: Hawkins BA, Cornell HV (eds) Theoretical approaches to biological control. Cambridge University Press, Cambridge, pp 190–205

    Chapter  Google Scholar 

  • Tscharntke T, Steffan-Dewenter I, Kruess A, Thies C (2002a) Characteristics of insect populations on habitat fragments: a mini review. Ecol Res 17:229–239

    Article  Google Scholar 

  • Tscharntke T, Steffan-Dewenter I, Kruess A, Thies C (2002b) Contribution of small habitat fragments to conservation of insect communities of grassland-cropland landscapes. Ecol Appl 12:354–363

    Google Scholar 

  • Tylianakis JM, Tscharntke T, Lewis OT (2007) Habitat modification alters the structure of tropical host–parasitoid food webs. Nature 445:202–205

    Article  PubMed  CAS  Google Scholar 

  • Valladares G, Salvo A, Cagnolo L (2006) Habitat fragmentation effects on trophic processes of insect-plant food webs. Conserv Biol 20:212–217

    Article  PubMed  Google Scholar 

  • Van Swaay CAM (2002) The importance of calcareous grasslands for butterflies in Europe. Biol Conserv 104:315–318

    Article  Google Scholar 

  • Vanbergen AJ, Hails RS, Watt AD, Jones TH (2006) Consequences for host-parasitoid interactions of grazing-dependent habitat heterogeneity. J Anim Ecol 75:789–801

    Article  PubMed  CAS  Google Scholar 

  • Weidemann HJ (1995) Tagfalter beobachten, bestimmen. Naturbuch, Augsburg

    Google Scholar 

  • Zabel J, Tscharntke T (1998) Does fragmentation of Urtica habitats affect phytophagous and predatory insects differentially? Oecologia 116:419–425

    Article  Google Scholar 

Download references

Acknowledgments

We thank Kathrin Wagner and two anonymous reviewers for helpful comments on the manuscript, Emily Martin for improvement of English, Hans-Peter Tschorsnig for determination of the tachinid flies, and Linda Seifert and Christoph Brütting for their work assistance in the season 2008. This project was supported by the EU 6FP project COCONUT (Understanding effects of land use changes on ecosystems to halt loss of biodiversity due to habitat destruction, fragmentation and degradation; Contract Number 2006-044346 to ISD and JK; www.coconut-project.net) and in part by the EU FP7 SCALES project (“Securing the conservation of biodiversity across administrative levels and spatial, temporal and ecological scales”; project #226852).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabrina V. Brückmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brückmann, S.V., Krauss, J., van Achterberg, C. et al. The impact of habitat fragmentation on trophic interactions of the monophagous butterfly Polyommatus coridon . J Insect Conserv 15, 707–714 (2011). https://doi.org/10.1007/s10841-010-9370-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10841-010-9370-7

Keywords

Navigation