Cookies Notification

We use cookies to improve your website experience. To learn about our use of cookies and how you can manage your cookie settings, please see our Cookie Policy.
×

The therapeutic use of heroin: a review of the pharmacological literature

Publication: Canadian Journal of Physiology and Pharmacology
January 1986

Abstract

Heroin is currently being advocated by some as a superior therapeutic agent for use in terminal illness. However, a review of the literature on heroin presently available does not support this contention. Administered orally, heroin is approximately 1.5 times more potent than morphine in controlling chronic pain in terminal cancer patients. Its effects on mood and the incidence and nature of side effects do not differ from those of morphine except in males where poorer pain control probably accounts for the worse effect on mood. Given parenterally for acute pain, heroin is 2–4 times more potent than morphine and faster in onset of action. When the potency difference is accounted for, the pharmacological effects of heroin do not differ appreciably from those of morphine. Heroin is metabolized to 6-acetylmorphine and morphine. After oral administration of heroin, morphine but not heroin or 6-acetylmorphine is detected in blood. In this case, heroin is a prodrug for the delivery of systemic morphine. Following acute i.v. administration, heroin appears transiently in blood with a half-life of about 3 min. The half-life of heroin exposed to blood or serum in vitro is 9–22 min, indicating that organ metabolism is involved in blood clearance as well. Direct renal clearance of heroin is less than 1% of the administered dose. In animal studies, heroin and 6-acetylmorphine are both more potent and faster acting than morphine as analgesics, effects attributed to their greater lipid solubility and subsequent penetration of the blood-brain barrier. Given centrally, morphine is more potent than heroin and 6-acetylmorphine in producing analgesia. In in vitro receptor binding assays, morphine is slightly more potent than 6-acetylmorphine but considerably more potent than heroin in displacing the radioactive ligand from binding sites. The weak activity of heroin could be accounted for by breakdown to 6-acetylmorphine during the experiment. On the basis of such animal and in vitro data, it has been suggested that heroin could be viewed as a lipid soluble prodrug which determines the distribution of its active metabolites. In addition to its enhanced potency and faster onset of action compared with morphine, heroin is considerably more water soluble than morphine and this property confers a practical advantage when drugs must be injected intramuscularly. There are presently other drugs available which share this property (e.g. hydromorphone, Dilaudid®, about twice as potent and half as soluble as heroin). There is therefore little scientific justification for the support of the legalization of heroin for use in terminal illness. The issue of diversion of heroin into the illicit market is separate from and not relevant to its relative therapeutic effectiveness.

Résumé

L'héroine est couramment prénée par certains comme agent thérapeutique supérieur dans la maladie terminale. Toutefois, une révision de la littérature sur l'héroïne ne supporte pas cette assertion. Administrée oralement, l'héroïne est environ 1,5 fois plus puissante que la morphine dans le contrôle de la douleur chronique chez les patients cancéreux en phase terminale. Ses effets sur l'humeur ainsi que l'incidence et la nature des effets secondaires ne diffèrent pas de ceux de la morphine, sauf chez les hommes où le contrôle moins efficace de la douleur explique l'effet plus négatif sur l'humeur. Administrée par voie parentérale pour la doleur aigué, l'héroïne est 2–4 fois plus puissante que la morphine et d'installation d'action plus rapide. Lorsqu'on tient compte de la différence de puissance, les effets pharmacologiques de l'héroïne ne diffèrent pas nettement de ceux de la morphine. L'héroïne se métabolise en 6-acétylmorphine et en morphine. Après l'administration orale de l'héroïne, on détecte de la morphine, et non pas de l'héroïne ni de la 6-acétylmorphine, dans le sang. Dans ce cas-ci, l'héroïne est une prodrogue pour la libération de morphine systémique. Après une administration i.v. aiguë, l'héroïne apparaît de manière transitoire dans le sang avec une demi-vie d'environ 3 min. La demi-vie de l'héroïne exposée au sang ou au sérum in vitro est de 9–22 min, indiquant que le métabolisme organique est impliqué aussi dans la clairance du sang. La clairance rénale directe de l'héroïne est de moins de 1% de la dose administrée. Dans les études animales, l'héroïne et la 6-acétylmorphine sont des analgésiques plus puissants et d'action plus rapide que la morphine, ces effets étant attribués à leur plus grande solubilité lipidique et à la pénétration subséquente de la barrière hémato-encéphalique. Administrée de manière centrale, la morphine est plus puissante que l'héroïne et la 6-acétylmorphine pour induire une analgésie. Dans des essais de fixation de récepteurs in vitro, la morphine est légèrement plus puissante que la 6-acétylmorphine, mais elle est considérablement plus puissante que l'héroïne pour déplacer le ligand radioactif des sites de fixation. On a pu expliquer la faible activité de l'héroïne par la dégradation en 6-acétylmorphine au cours de l'expérience. D'aprés ces résultats obtenus avec les animaux et in vitro, on a suggéré que l'héroïne pouvait être considérée comme une prodrogue liposoluble qui détermine la distribution de ses métabolites actifs. Outre sa plus grande puissance et son installation d'action plus rapide que la morphine, l'héroïne est considérablement plus hydrosoluble que la morphine, ce qui constitue un avantage pratique lorsque les drogues doivent être injectées intramusculairement. Actuellement, d'autres drogues disponibles ont aussi cette propriété (par ex., hydromorphone, Dilaudid®, environ deux fois plus puissants et moitié moins solubles que l'héroïne). Il y a par conséquent peu de justification scientifique pour le support de la légalisation de l'utilisation de l'héroïne dans la maladie terminale. La question concernant la présence de l'héroïne dans le marché illicite n'a aucun rapport avec son efficacité thérapeutique relative.[Traduit par le journal]

Get full access to this article

View all available purchase options and get full access to this article.

Information & Authors

Information

Published In

cover image Canadian Journal of Physiology and Pharmacology
Canadian Journal of Physiology and Pharmacology
Volume 64Number 1January 1986
Pages: 1 - 6

History

Version of record online: 13 February 2011

Permissions

Request permissions for this article.

Authors

Affiliations

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

1. Advances in animal models of prenatal opioid exposure
2. Molecular and Epigenetic Aspects of Opioid Receptors in Drug Addiction and Pain Management in Sport
3. Transcriptomics and metabolomics together reveal the underlying mechanism of heroin hepatotoxicity
4. Vaping Cannabinoid Acetates Leads to Ketene Formation
5. Co-occurring Disorders
6. Substance abuse and neurotransmission
7. Synthesis of Morphinans through Anodic Aryl‐Aryl Coupling
8. Identification of FDA approved drugs against SARS-CoV-2 RNA dependent RNA polymerase (RdRp) and 3-chymotrypsin-like protease (3CLpro), drug repurposing approach
9. Oral Sensations among Individuals with Illicit Drug Dependence in Rehabilitation Centers: A Cross-Sectional Study
10. Quantitative detection of morphine based on an up-conversion luminescent system
11. DARK Classics in Chemical Neuroscience: Heroin and Desomorphine
12. Progress in agonist therapy for substance use disorders: Lessons learned from methadone and buprenorphine
13. Current status of opioid addiction treatment and related preclinical research
14. 6-Monoacetylmorphine (6-MAM), Not Morphine, Is Responsible for the Rapid Neural Effects Induced by Intravenous Heroin
15. The Emerging Role of Inhaled Heroin in the Opioid Epidemic
16. Pain Therapy Guided by Purpose and Perspective in Light of the Opioid Epidemic
17. Colchicine prodrugs and codrugs: Chemistry and bioactivities
18. Food deprivation facilitates reinstatement of morphine‐induced conditioned place preference: Role of intra‐accumbal dopamine D2‐like receptors in associating reinstatement of morphine CPP with stress
19. Cognitive Improvement via mHealth for Patients Recovering from Substance Use Disorder
20. Cognitive Training through mHealth for Individuals with Substance Use Disorder
21. Site- and species-specific hydrolysis rates of heroin
22. Silane modified magnetic nanoparticles as a novel adsorbent for determination of morphine at trace levels in human hair samples by high-performance liquid chromatography with diode array detection
23. GSK3β-activation is a point of convergence for HIV-1 and opiate-mediated interactive neurotoxicity
24. Computer-assisted therapy
25. Targeted Drug Delivery Systems: Strategies and Challenges
26. Opioids for pain after oral surgery
27. A new voltammetric sensor for morphine detection based on electrochemically reduced MWNTs-doped graphene oxide composite film
28. Morphine Enhances HIV-1SF162-Mediated Neuron Death and Delays Recovery of Injured Neurites
29. Increased densities of nitric oxide synthase expressing neurons in the temporal cortex and the hypothalamic paraventricular nucleus of polytoxicomanic heroin overdose victims: Possible implications for heroin neurotoxicity
30. The History of Opioid Use in Anesthetic Delivery
31. Neurotoxicity in Psychostimulant and Opiate Addiction
32. Electroencephalography and analgesics
33. Spectrofluorimetric and Spectrophotometric Analysis of Two Analgesic Drugs in Pharmaceutical Formulations and Biological Fluids
34. OPRM1 rs1799971 polymorphism and opioid dependence: evidence from a meta-analysis
35. Roles of dopaminergic innervation of nucleus accumbens shell and dorsolateral caudate-putamen in cue-induced morphine seeking after prolonged abstinence and the underlying D1- and D2-like receptor mechanisms in rats
36. Effects of Disulfiram on QTc Interval in Non–Opioid-Dependent and Methadone-Treated Cocaine-Dependent Patients
37. Electrocatalytic determination of morphine at the surface of a carbon paste electrode spiked with a hydroquinone derivative and carbon nanotubes
38. Prodrugs—from Serendipity to Rational Design
39. Opioid Analgesics
40. Kinetic spectrophotometric method for the determination of morphine in biological samples
41. Neurobehavioral Toxicology of Substances of Abuse
42. Post‐operative oral surgery pain: a review
43. Cellular and molecular mechanisms involved in the neurotoxicity of opioid and psychostimulant drugs
44. The chemical and pharmacological importance of morphine analogues
45.
46. Opioid Analgesics
47. HPLC–DAD determination of opioids, cocaine and their metabolites in plasma
48. Development of pharmaceutical heroin preparations for medical co-prescription to opioid dependent patients
49. Synergistic increases in intracellular Ca 2+ , and the release of MCP‐1, RANTES, and IL‐6 by astrocytes treated with opiates and HIV‐1 Tat
50. Molecular targets of opiate drug abuse in neuro AIDS
51. Effects of heroin and its metabolites on schedule-controlled responding and thermal nociception in rhesus monkeys: sensitivity to antagonism by quadazocine, naltrindole and ß-funaltrexamine
52. Intranasal Diamorphine as an Alternative to Intramuscular Morphine
53. Dmt and opioid peptides: A potent alliance
54. Vector-mediated drug delivery to the brain
55. μ Opioid receptor-mediated G-protein activation by heroin metabolites: evidence for greater efficacy of 6-monoacetylmorphine compared with morphine 11Abbreviations: 6-MAM, 6-monoacetylmorphine; GTPγS, guanosine-5′-O-(γ-thio)-triphosphate; DAMGO, [d-Ala2,(N-Me)Phe4,Gly5(OH)]enkephalin; M-6-G, morphine-6-βd-glucuronide; and hMOR-C6, C6 rat glioma cells expressing human μ opioid receptors.
56. Assessment of substitution in the second pharmacophore of Dmt-Tic analogues
57. Brain drug delivery technologies: novel approaches for transporting therapeutics
58. Analgesics: Opioids, Adjuvants and Others
59. Examining the Debate on the Use of Medical Marijuana
60. The role of liquid chromatography-mass spectrometry in the determination of heroin and related opioids in biological fluids
61. Anti-allodynic actions of intravenous opioids in the nerve injured rat: potential utility of heroin and dihydroetorphine against neuropathic pain
62. Pharmacology of Opiates
63. Medications of Abuse
64. Lack of hepatocyte involvement in the genesis of the sinusoidal dilatation related to heroin addiction: a morphometric study
65. Morphine-6-glucuronide contributes to rewarding effects of opiates
66. Vascular hepatotoxicity related to heroin addiction
67. Clinical analgesic assay of repeated and single doses of heroin and hydromorphone
68. EMR and the Brain: A Brief Literature Review
69. Reply

View Options

Get Access

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Canadian Journal of Physiology and Pharmacology

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

Media

Media

Other

Tables

Share Options

Share

Share the article link

Share on social media