Skip to main content

An Introduction to Common Numerical Integration Codes Used in Dynamical Astronomy

  • Chapter
  • First Online:
Dynamics of Small Solar System Bodies and Exoplanets

Part of the book series: Lecture Notes in Physics ((LNP,volume 790))

Abstract

As the tree of numerical methods used to solve ordinary differential equations develops more and more branches, it may, despite great literature, become hard to find out which properties should be aimed for, given certain problems in celestial mechanics. With this chapter the authors intend to give an introduction to common, symplectic, and non-symplectic algorithms used to numerically solve the basic Newtonian gravitational N-body problem in dynamical astronomy. Six methods are being presented, including a Cash–Karp Runge–Kutta, Radau15, Lie Series, Bulirsch-Stoer, Candy, and a symplectic Hybrid integrator of Mon. Not.R. Astro. Soc. 304: 793–799,?]. Their main properties, as for example, the handling of conserved quantities, will be discussed on the basis of the Kepler problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Candy, J., Rozmus, W.: A symplectic integration algorithm for separable Hamiltonian functions. . Comp. Phys. 92, 230–256 (1991)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. Cash, J.R., Gridlestone, S.: Variable Step Runge-Kutta-Nyström methods for the numerical solution of reversible systems. J. Num. Anal. Ind. Appl. Math. 59–80 (2006)

    Google Scholar 

  3. Cash, J.R., Karp, A.H.: A variable order Runge-Kutta Method for initial value problems with rapidly varying right-hand sides. ACM Transac Math. Softw. 16(3), 201–222 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chambers, J.E.: A hybrid symplectic integrator that permits close encounters between massive bodies. Mon. Not. R. Astron. Soc. 304, 793–799 (1999)

    Article  ADS  Google Scholar 

  5. Chambers, J.E.: N-body integrators for planets in binary star systems http://arxiv.org/abs/0705.3223v1, Cornell University Library, Cornell (2007)

  6. Danby, J.M.A.: Fundamental of Celestial Mechanics Atlantic Books. Willmann-Bell, Richmond (1988)

    Google Scholar 

  7. Delva, M.: Integration of the elliptic restricted three-body problem with Lie series. Celestial Mech. 34, 145–154 (1984)

    Article  MATH  ADS  Google Scholar 

  8. Deuflhard, P.: Order and stepsize control in extrapolation methods. Num. Math. 41, 399–422 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  9. Deuflhard, P., Bornemann, F.: Scientific Computing with Ordinary Differential Equations. Springer, New York (2002)

    MATH  Google Scholar 

  10. Duncan, M.J., Levison, H.F., Lee, M.H.: A multiple time step symplectic algorithm for integrating close encounters. Astron. J. 116, 2067–2077 (1998)

    Article  ADS  Google Scholar 

  11. Duncan, M., Levison, H.F.: Symplectically integrating close encounters with the Sun. Astron. J. 120, 2117–2123 (2000)

    Article  ADS  Google Scholar 

  12. Everhart, E.: Implicit single-sequence methods for integrating orbits Celestial Mech. 10, 35–55 (1974)

    MATH  MathSciNet  Google Scholar 

  13. Forster, O.: Analysis I, p.73 et sqq. Vieweg Verlag, Wiesbaden (2006)

    MATH  Google Scholar 

  14. Flaherty, J.E.: Course notes – ODE4 http://www.cs.rpi.edu/∼flaherje/ (2007)

  15. Fukushima, T.: Reduction of round-off errors in the extrapolation methods and its application to the integration of orbital motion. Astron. J. 112, 1298 (1996)

    Article  ADS  Google Scholar 

  16. Gladman, B., Duncan, M, Candy, J.: Symplectic integrators for long-term integrations in celestial mechanics. Celestial Mech. Dynam. Astron. 52, 229 (1991)

    MathSciNet  ADS  Google Scholar 

  17. Gröbner, W.: Die Lie-Reihen und ihre Anwendungen. Deutscher Verlag, der Wissenschaften, 1967 – VI

    MATH  Google Scholar 

  18. Hairer, E., Lubich, C., Wanner, G.: Geometric numerical integration illustrated by the Størmer Verlet method. Cambridge University Press, Acta Numerica 1–51 (2003)

    Google Scholar 

  19. Hanslmeier, A., Dvorak, R.: Numerical integration with Lie-series. Astron. Astrophys. 132, 203–207 (1984)

    MATH  MathSciNet  ADS  Google Scholar 

  20. Kinoshita, H., Yoshida, H., Nakai, H.: Symplectic integrators and their application to dynamical astronomy. Celestial Mech. Dynam. Astron. 50, 59–71 (1990)

    Article  ADS  Google Scholar 

  21. Lasagni, F.M.: Canonical Runge-Kutta methods. ZAMP 39, 952–953 (1988)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. Lee, M.H., Duncan, M.J., Levison, H.F.: Variable time step integrators for long-term orbital integrations computational astrophysics; In: Clarke, D.A. and West, M.J. (eds.) 12th Kingston Meeting on Theoretical Astrophysics; Proceedings of meeting held in Halifax; Nova Scotia, Canada October 17–19, 1996, ASP Conference Series #123, p. 32 (1997)

    Google Scholar 

  23. Lichtenegger, H.: The dynamics of bodies with variable masses, Celestial Mech. 34: 357–368 (1984)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  24. Mikkola, S., Aarseth, S. J.: An implementation of n-body chain regularization. CelestialMech. Dynam. Astron. 57, 439 et sqq. (1993) 436

    Google Scholar 

  25. NASA – JPL http://ssd.jpl.nasa.gov/txt/p_elem_t1.txt(2008)

  26. Neri, F.: Lie Algebras and Canonical Integration. Department of Physics, University of Maryland, Maryland, preprint (1987)

    Google Scholar 

  27. Okunbor, D.I., Skeel, R.D.: Canonical Runge-Kutta-Nyström methods of orders five and six. J. Comput. Appl. Math. 51:375–382 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  28. Press, W.H., Teukolsky, S.A., Vetterling, W.T.: Numerical recipes in Fortran 77, p.718 et sqq. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  29. Saha, P., Tremaine, S.: Symplectic integrators for solar system dynamics. Astron. J. 104, 1633–1640 (1992)

    Article  ADS  Google Scholar 

  30. Sanz-Serna, J.M.: Runge-Kutta schemes for Hamiltonian systems. BIT 28, 877–883 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  31. Suris, Y.B.: On the Conservation of the Symplectic Structure in the Numerical Solution of Hamiltonian Systems, pp. 148–160. USSR Academy of Sciences, Moscow (1988)

    Google Scholar 

  32. Stoer, J., Bulirsch, R.: Introduction to Numerical Analysis. Springer, New York (1980)

    Google Scholar 

  33. Stoer, J., Bulirsch, R.: Numerische Mathematik 2 Springer, 4. Auflage (2000)

    Google Scholar 

  34. Vesely, F.: Computational Physics – An Introduction, p. 105 et sqq. Springer, New York (2001)

    Google Scholar 

  35. Wisdom, J., Holman, M.: Symplectic maps for the n-body problem. Astron. J. 102. 1528–1538 (1992)

    Article  ADS  Google Scholar 

  36. Yoshida, H.: Conserved quantities of symplectic integrators 23. Symposium on Celestial Mechanics, pp. 16–19 (1990)

    Google Scholar 

  37. Yoshida, H.: Recent progress in the theory and application of symplectic integrators. Celestial Mech. Dynam. Astron. 56: 27–43 (1993)

    Article  MATH  ADS  Google Scholar 

Download references

Acknowledgments

S. Eggl would like to acknowledge the support from Austrian FWF Project P-20216. R. Dvorak would like to acknowledge the support from Austrian FWF Project P-18930 – N16

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Eggl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Eggl, S., Dvorak, R. (2010). An Introduction to Common Numerical Integration Codes Used in Dynamical Astronomy. In: Souchay, J., Dvorak, R. (eds) Dynamics of Small Solar System Bodies and Exoplanets. Lecture Notes in Physics, vol 790. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04458-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04458-8_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04457-1

  • Online ISBN: 978-3-642-04458-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics