
Release Engineering Best
Practices at Google
Dinah McNutt, Senior Release Engineer

What is a Release Engineer?

● Release engineering - discipline of building and releasing
software

● Skill set includes development, configuration
management, test integration and sysadmin

● Experts in SCM, compilers, automated build tools,
package managers and installers

Role of a Release Engineer

● Define best practices to ensure consistent and repeatable
processes

● Make sure tools do the right thing by default
● Developing tools (build automation, project metrics, etc.)
● Work with SREs and project teams to develop strategies

for deployment

Philosophy

● Self-service Model
● High Velocity
● Hermetic Builds
● Enforcement of Policies and Procedures

Self-Service Model

● Teams must be self-sufficient to work at scale
● Teams decide when and how often to release
● Release processes can be automated to the point of

minimal effort
● Releases are truly automatic, not just automated

High Velocity

● Frequent builds have fewer changes between releases
○ Easier to troubleshoot problems

● Some teams build hourly or daily and then decide which
builds to release based on test results and features

● Other teams have adopted a “Push on Green” philosophy

Hermetic Builds

Hermetic Builds

● Build tools must ensure consistency and repeatability
● Builds are insensitive to the libraries and software

installed on the build machines
● Build process is self-contained
● Build tools are versioned

○ A re-build of a project released last month will use the
same version of the compiler

Enforcement of Policies and Procedures -
Gated Operations

● Approving source code changes
● Defining what actions are performed during a release
● Creating a release
● Deploying a release
● Making changes to the build configuration

Continuous Build and Deployment

● Rapid is our automated release system
● Leverages Google technologies to deliver release

processes that are
○ Scalable
○ Hermetic
○ Reliable

Building

● Blaze (open sourced as Bazel)
○ Engineers define build targets and dependencies
○ Both are built automatically

● Rapid configuration files specify the build targets and test
targets

● Rapid passes build flag to Blaze to include unique build
identifier
○ We can easily associate a binary with how it was built

Branching

● All code is checked into main branch of repository
● We branch from the mainline before beginning a release

○ Changes are never merged back to the main branch
○ Bug fixes are submitted to main branch and “cherry

picked” into branch

Fast Branches

● Branching is very fast
● Created instantly using a specific revision number in the

main branch
● Reference created to our source-based filesystem

○ /src/depot/1234567/google
● Files are copied to the branch as needed, in the

background
● Scales very well

Testing

● Continuous test system runs unit tests against the
mainline each time a change is submitted

● Tests are re-run during the release process
○ Build flags are different
○ Test targets might be different
○ Once a cherry pick is performed, the branch probably

contains a version of the code that does not exist
elsewhere

Midas Package Manager (MPM)

● MPM assemble packages based on Blaze rules:
○ build artifacts
○ owners
○ permissions

● Package metadata
○ Name (e.g. search/shakespeare/frontend)
○ Unique Hash identifier
○ Package signer (for authenticity)

MPM Labels

● Label can be applied to packages
● Useful for indicating where a package is in the release

process: dev, canary, released
● Rapid applies a label containing a unique build id that

makes it easy to associate the package with how it was
built (e.g. shakespeare_2015_11_12_RC0)

● Packages can be installed by specifying the name and
label

Continuous Build and Release System - Rapid

Typical Release Process

● Rapid uses requested revision number to create release
branch

● Rapid uses Blaze to compile binaries and execute unit
tests (often in parallel)

● Build artifacts are made available for system testing and
deployment (usually an MPM)

● Results are logged for each step
● Report of changes since last release generated

Deployment

● Rapid can drive simple deployments directly (by updating
the Borg jobs to use the newly-built MPMS)

● For more complicated deployments, we use Sisyphus

Sisyphus

● General purpose roll-out automation framework
● Developed by SRE
● Provides Python classes to support any type of rollout
● Dashboard for controlling rollout and monitoring progress
● Rapid creates a rollout in a long-running Sisyphus job

○ Uses build label to specify which MPM to rollout

Rollout Process

● Can update all jobs at once or rollout over longer period of
time

● Deployment process should match risk profile
○ We might build and push hourly in pre-production

environments
○ Large, user-facing services, we might start in one

cluster and expand exponentially
○ Critical infrastructure services may take several days

Configuration Management

● For the purposes of this talk, defined as releasing binaries
and associated configuration files

● Our approach has changed over time
● Well, actually we have adopted more approaches over

time

Deployment Schemes

● Use mainline for configuration files
● Package binaries and configuration files together
● Package configuration file into config-only packages
● Read configuration files from external store

Use Mainline for Configuration Files

● Read configuration files directly from mainline
● Changes are reviewed and available immediately upon

submission
● Jobs must be updated to pick up changes
● Binaries and configs are decoupled

○ Can lead to skew between running version and
checked-in version

Package Binaries and Configs Together

● Ideal for projects with few configuration files or where
configs change with each release

● Tightly bind configs with binaries
○ simplifies deployment - only one package to install
○ limits flexibility as new packages must be built when

only config changes

Package Configs into Config-only MPMs

● Binaries can be released separately from configs
○ Cherrypick in one does not require building both

● MPM labeling indicates which MPMs should be installed
together

Read Configs from External Store

● Configs that change frequently or dynamically
● Can be stored in Chubby, BigTable or our source-based

file system
● We have more than one option for almost everything!

(My Personal) Conclusions

● Releasing software can be automatic, not just automated
● Solving release engineering problems “at scale” make

solutions for smaller environments easier
● Many companies face the same issues (regardless of

size):
○ How do you version your packages?
○ How often should you release?
○ Do you use a Push on Green model?

Release Engineering from the Beginning

● Release engineering is usually an afterthought
● Budget for it up front - cheaper in the long run
● Define best practices
● Development teams, SREs and release engineering should

work together
● Discipline is still evolving

Shameless Plug #1

● Drop into URES on Friday
● Your LISA badge gets you in!
● Summit begins immediately after the Friday morning keynote in Lincoln 5
● https://www.usenix.org/conference/ures15 (or page 27 of your conference

directory)

Shameless Plug #2

Look for "Site Reliability Engineering” from O’
Reilly in 2016

Written by Googlers!

