
Analysis of DP3T

Between Scylla and Charybdis

Serge Vaudenay
2020, April 8th

EPFL, Lausanne, Switzerland

Abstract. To help fighting the COVID-19 pandemic, the Pan-European Privacy-Preserving
Proximity Tracing (PEPP-PT) project proposed a Decentralized Privacy-Preserving Proximity
Tracing (DP3T) system. This helps tracking the spread of SARS-CoV-2 virus while keeping the
privacy of individuals safe. In this report, we analyze the security and the privacy protection
of DP3T. Without questioning how effective it could be against the pandemic, we show that
it may introduce severe risks to society. Furthermore, we argue that some privacy protection
measurements by DP3T may have the opposite affect of what they were intended to. Specifically,
sick and reported people may be deanonymized, private encounters may be revealed, and people
may be coerced to reveal the private data they collect.

1 Introduction

In 2019–20, the COVID-19 pandemic has completely changed the world. The impressive
spread of the disease imposed global confinement measures all around the world. The severe
economical impact of this global confinement is unknown at the moment, but is likely to be
listed as one of the top historical events that damaged economy. To reduce the cost, technolog-
ical tools were introduced to monitor the spread of SARS-CoV-2 and relax the confinements
measures by keeping them local. Those tools often require an authority to track people and
see when, how long, and at what distance they encounter. Under normal circumstances, these
tools would be considered as violation of individual’s basic privacy. Nevertheless, as a reac-
tion to COVID-19, some research projects investigated how to trace proximity while keeping
a high level of privacy.

The Pan-European Privacy-Preserving Proximity Tracing (PEPP-PT) project proposed a
Decentralized Privacy-Preserving Proximity Tracing (DP3T) system. This proposal requires
no central storage of location of people and minimizes the data which is stored. PEPP-PT was
announced on 1st of April, 2020 as a Swiss-based organization with “more than 130 members
across eight European countries”. On 3rd of April, 2020 a white paper describing the DP3T
system was released [1]. Implementations were announced for the following week. Deployment
is likely to follow.

The DP3T system offers interesting properties but also some potential threats which have
not sufficiently been addressed. Designers, as well as many other researchers, seem to take
for granted that such system should be decentralization because centralization is inherently
bad for privacy (the D in DP3T stands for “decentralized”). A natural scientific question is
to wonder if this dogmatic approach is well founded.

Current telecommunication infrastructures already enables network operators to track
people by their cell phones and to identify proximity. This means that billions of people
currently use devices by which they can be tracked. Network operators are just forbidden by
law to keep or disclose this information. Feeling safe about one’s privacy requires assuming



that network operators do not betray the law. Since people will not stop using cell phones with
DP3T, this assumption remains unchanged with DP3T. Besides, DP3T introduces storage of
data in private smartphones and make them advertise their presence all the time. We show
in this report that it offers tracking vectors for any individual. First of all, having Bluetooth
turned on already creates privacy issues. Second, broadcasting ephemeral identifiers enables
a group of malicious people to organize themselves in militia to track infected people. Finally,
having a proximity history stored on the local renders users vulnerable to coercion attacks.
Consequently, in addition to trusting the network operators, we also need to trust individuals.

Although based on honorable goals, the DP3T system is opening a Pandora box which
uncovers severe privacy threats. In the present report, we wish to alert on the risks and invite
for corrective measures.

2 Overview on DP3T

We briefly describe the DP3T infrastructure as it is specified in the current version [1].

The participants of the DP3T system are

– users holding a communication device;

– a backend server;

– a (health) authority.

The communication device is a Bluetooth-equipped smartphone running the DP3T app. The
backend server acts as a repository for some data to be pushed by smartphones upon autho-
rization by the authority.

At setup, the app creates a key SK0. (The length is not specified but it is suggested that it
could be an HMAC-SHA256 key.) Periodically (presumably, every day), the key expires and
is replaced by a new one which is computed by

SKt = H(SKt−1)

for t = 1, 2, . . . The duration between the time SKt is created and its expiration is called the
cryptoperiod of SKt herein. These keys are kept in memory, and erased after a while (for
instance, 14 days after they expired). The choice of the hash function H is not specified.

Each secret key generates n ephemeral identifiers EphIDi of 128 bits by

EphID1∥ · · · ∥EphIDn = PRG (PRF(SKt, “broadcast key”))

PRF is suggested to be HMAC-SHA256 while PRG could be AES-CTR or Salsa20. During
the cryptoperiod of SKt, the ephemeral identifiers are used in sequence, following a random
order. Each EphIDi becomes the current one during one n-th of the cryptoperiod of SKt.

The app regularly broadcasts the current EphIDi, as a beacon, via Bluetooth interface.
The range of Bluetooth is limited and the strength of the signal indicates the proximity. The
frequency of broadcast is not specified.

Conversely, the app stores received beacons together with extra information such as the
time, the proximity (as inferred from the signal strength), and other metadata which are not
detailed. One principle of DP3T is to minimize the data to store, for privacy reasons. Another
principle is that data collection happens locally in the user’s device instead of happening in
a central server.

2



Upon authorization by the authority, the server is fed by apps with pairs consisting of
SKt’s and their time of validity. They correspond to keys which were used by the app held by a
user who was reported by the authority (because of infection). New pairs are added every day,
and retrieved by the apps every day. With each pair, the app can re-generate the n ephemeral
identifiers and check if they have been stored at the corresponding time. Based on that, the
app can see how long and at which distance the infected person has been encountered, and
can compute a risk. If the risk is above threshold, an alert is raised by the app.

How the alert is treated remains open. Typically, the user would contact the health au-
thority. The health authority would then decide to authorize for the recent SKt of the app
to be uploaded on the server. Again, how this would be done is open. We can expect that
users would have to “volunteer” to contact the authorities and to agree to disclose their SKt,
but this will depend on the policy of the country. The policy may vary from one country to
another, and also change with time.

DP3T is aimed at being used in several countries. It suggests that each country would
have its server and authority. This means that the app would connect to the server of the
current country as well as the ones of recently visited ones. Reporting would be done by one
authority and transmitted to others. This implies that the app also stores the list of recently
visited countries and discloses it to the authority if needed.

Users can volunteer to share data with epidemiologists. According to the DP3T document,
sharing data only occurs when an alert is raised.

3 Communication between Participants

The DP3T paper does not specify how communication is made between participants nor what
security is needed.

Server-to-app channel. The server plays the role of a bulletin board, indirectly fed by the
authority. It is important that apps can be convinced that what is read on the bulletin board
is correct. Otherwise, an adversary could make them receive rogue keys or make them missing
some. If the server is trusted, this can be achieved by standard secure communication between
the app and the server (the server being authenticated). Encryption is not necessary.

The DP3T document [1] is ambiguous as for whether the server should be trusted:

This backend server is trusted to not add or remove information shared by the users
and to be available. However, it is untrusted with regards to privacy (i.e., collecting
and processing of personal data). In other words, the privacy of the users in the system
does not depend on the actions of this server. Even if the server is compromised or
seized, privacy remains intact.

Since adding or removing information on the server has privacy consequences, we deduce the
server should not be trusted.

Depending on how the authorization to upload SKt is implemented, we could live without
any trust assumption on the server. Indeed, the authorization could come with an authenti-
cation by means of a digital signature. To make sure that no SKt is maliciously erased, we
could use a blockchain. This all depends on the “authorization scheme” by the authority to
publish SKt. The way this scheme is made is crucial for security.

A simpler solution would be to have the authority to regularly upload a signed list of
new SKt but it would require an infrastructure change: the server would be populated by the
authority directly instead of the apps.

3



App-to-authority channel. When an app contacts the authority, it is also important that
communication is secured to protect the privacy of the user. For this, communication must
be encrypted and the authority must be authenticated. Additionally, the authority must be
convinced that whatever is reported by the app is genuine. Otherwise, an adversary could
forge an alert report. As discussed later, this verification requires a tedious human verification
(e.g. a medical diagnosis) or to have the app authenticated by a Trusted Platform Module
(TPM).1

App-to-app channel. Finally, the communication between the apps should also be protected.
We will see next a series of attacks exploiting the lack of authentication in this channel. We
can also imagine a denial of service (DoS) attack which consists in flooding a target app
with a huge amount of rogue EphID broadcasts. One goal of this attack could be to drain the
battery or to fill up the memory. Protection measures against DoS exist.

4 False Alert Injection Attacks

In the attack scenario of this section, the goal of the malicious adversary is to make the app
of a target victim raise false alerts. It could be disturbing and stressful for users to receive an
alert. They could also be severely blamed by their neighborhood or partner for being careless.
In some countries, people with an alerting app (such as a barcode with a wrong color, or a
“score” which is too high) can be discriminated too.

The adversary could get an advantage in disturbing his competitors. We could imagine
that the adversary is a competitor of the victim(s) in a sport event, in a business opportunity,
in a job application, etc. More simply, the motivation of the adversary could simply be to
harass his victim for any reason.

One way to make a target user raise false alerts is either to send his smartphone some
EphIDi of infected people or to make his smartphone receive an SKt which derive one of the
already received EphIDi. We consider several possible situations, each of them depends on
how exactly DP3T is implemented.

Note. The current white paper of PEPP-PT project [1] mentions “fake contact events” as
possible threats. The present attack scenario falls into this category.

4.1 Backend Impersonation

The adversary can proceed as follows:

1. pick a random SKt;

2. derive an EphIDi;

3. get close to the victim;

4. send EphIDi to the victim (same as the app would do);

5. (later) impersonate the backend server to send SKt to the victim.

Mitigation. Having a proper secure communication between the app and the server defeats
this attack. However, it is not enough for the next one.

1 The use of a TPM is already given as a possible evolution in the DP3T document [1].

4



4.2 False Report

Instead of impersonating the backend server or the authority, the adversary could report his
infection case and reveal the random SKt from the previous attack, as follows:

1. pick a random SKt;
2. derive an EphIDi;
3. get close to the victim;
4. send EphIDi to the victim (same as the app would do);
5. (later) report SKt to the server

Mitigation. We see here that the authorization scheme by the authority is crucial. Clearly, the
outcome of this scheme must be that the list of SKt is authenticated. However, authorization
must be given only if the case is serious. The authority could perform a tedious medical
verification on the user to eliminate fake reports. Without such tedious human verification,
the technological solution is more complicated. It requires a proper verification of a high risk,
which can only be done if the app is trusted. Here, the only way is to have the app run on a
Trusted Platform Module (TPM). Solutions are not perfect tough. (The DP3T document [1]
mentions such approach in another context.)

4.3 Replay of Released Cases

Since the backend server releases a list of SKt, anyone can derive the EphIDi and broadcast
them close to target people. The adversary could do that too. He could proceed as follows:

1. watch at the backend releases to catch any new SKt;
2. as soon as a new SKt is released, continue;
3. derive an EphIDi from this SKt;
4. get close to the victim;
5. send EphIDi to the victim (same as the app would do).

At the time the present report is written, it is not clear how releases and communication
is done with the app. We make the assumption that SKt comes together with the date when
the key was active and that the app computes the risk score by trying, for every date, to
match every collected EphID in that date with the ones generated by the SKt of the same
date. This means that in the above attack, the adversary should only reuse an SKt which is
still considered as active. On the date the reporting infected user discloses his keys, he still
has an active one. If reporting spreads to the server and to the apps on the same day, this
situation can occur: the still-active SKt can be reused.

We can wonder if an app will continue to verify if an EphID which has just been received
matches a still-active SKt which has already been downloaded from the server. If this is the
case, the above attack always works. If not, the attack only works if the adversary was faster
than the target app to retrieve SKt.

Mitigation. When an app reports its SKt, it generates a completely new key so it should not
send EphIDi coming from SKt any more. Hence, the implementation of the app should verify
the date of validity of SKt and consider that retrieved SKt are no longer valid. This is enough
to defeat many attack situations. What remains is the case where SKt are not immediately
retrieved by the app. This can be defeated with the same method as the next attack scenario.

5



4.4 Replay Attack

The next step consists of collecting existing EphIDi and anticipating that they will be reported.
This attack requires a collection phase.

1. collect several EphIDi and make a pool;
2. get close to the victim;
3. send one (or several) of the EphIDi from the pool to the victim (same as the app would

do);
4. expect that the corresponding SKt will be reported.

To increase the probability of success of this attack, it is crucial to collect EphIDi’s of
people who are likely to be contaminated. There may be places with higher probabilities to
meet infected people (like hospitals).

The collection phase may be tedious but could easily be distributed. Just as there exist
stolen lists of credit card numbers which we can buy on the darknet, there could be a list
of EphIDi available. Those lists could be populated by malicious users who could sell all the
EphIDi they collect.

At a first glance, having a black market of EphIDi looks unrealistic, because anyone can
generate EphIDi’s at random for free. What makes an EphIDi valuable is to be released by a
case of infection. After release, the attack essentially falls back to the previous one. However,
there could by an economic model, enforced by a smart contract in a blockchain, by which
collectors would post their collected EphIDi and later get a substantial reward if it happens
to be in a released event. To avoid people posting EphIDi at random, posting an EphIDi could
come with a tiny fee. This principle of stick and carrot could give enough incentives to develop
a black market for EphIDi of infected people. Crypto currencies and anonymity could help the
black market to escape from all legal protections.

Of course, one terrible side effect of such a black market is that people in the need may
take risks to meet as many infected people as possible.

Mitigation. When the EphIDi’s are generated from SKt, they are permuted at random and
each EphIDi is aimed at being used at a coarse time τi of the day. We could at the same time
generate some tags

tagi = MAC(SKt, ⟨EphIDi, ti⟩)

with a message authentication code MAC which could be rather short. Broadcast would then
send EphIDi together with tagi and would be stored together with the current coarse time τi.
The tag would be verified if a match occurs. With this protection, only replay in the same
coarse time period would still be feasible.

To avoid replay attacks during the same coarse time period, we could drastically modify
the DP3T infrastructure and have an interactive protocol instead of beacons: the app could
derive

EphSK1∥ · · · ∥EphSKn = PRG (PRF(SKt, “secret key”))

together with EphIDi, send EphIDi, get a challenge Challengei, and reply with

tagi = MAC(EphSKi, ⟨Challengei, ti⟩)

The receiving app would store the triplet

(EphIDi,Challengei, tagi)

6



instead of EphIDi alone. This triplet can be verified once SKt is disclosed. The protocol is
depicted as follows:

Advertising app Receiving app
EphIDi−−−−−−−−−−−−−−→

pick Challengei
Challengei←−−−−−−−−−−−−−−

tagi ← MAC(EphSKi, ⟨Challengei, ti⟩)
tagi−−−−−−−−−−−−−−→

store (Challengei,EphIDi, tagi)

Of course, such modification has a much higher cost, because the two apps now need to
interact instead of using the broadcast mode. Computationally, this change in DP3T remains
extremely cheap.

This protocol could also create a privacy risk by disclosing digital evidence. Having a tag
relatively small would reduce the risk and mitigate enough replay attacks.

4.5 Relay Attack

Instead of replaying an EphIDi which could be rejected by the above protection, we could
passively relay a current EphIDi as follows:

1. a partner of the adversary gets close to a (potentially) infected person;

2. the adversary gets close to the victim;

3. the adversary and partner relay all communication between the infected person and the
victim (including the EphIDi of the infected person);

4. expect that the corresponding SKt will be reported.

This attack is harder to implement but still feasible at a low cost.

Mitigation. The only way to defeat this type of attack is to use some form of a distance-
bounding protocol. Pure distance-bounding protocols are hard to implement. As an alterna-
tive, we could try to exploit the geographic location (may it be GPS or based on a mobile
network) but storing the geographic location induces an additional privacy threat which goes
against the principle of data minimization of DP3T. Hence, one challenge is to design a
protocol based on the location which does not create a new privacy risk.

The above interactive protocol can be enriched as follows.

7



Advertising app Receiving app
EphIDi−−−−−−−−−−−−−−→

get location1 get location2
pick rand1 pick rand2, ρ

c← Commit(rand2, location2, ρ)
c←−−−−−−−−−−−−−−

rand1−−−−−−−−−−−−−−→
rand2,location2,ρ←−−−−−−−−−−−−−−

verify c = Commit(rand2, location2, ρ)
verify D(location1, location2) is small

Challengei ← rand1 ⊕ rand2 Challengei ← rand1 ⊕ rand2
tagi ← MAC(EphSKi, ⟨Challengei, ti⟩)

tagi−−−−−−−−−−−−−−→
store (EphIDi,Challengei, tagi)

We use here a binding commitment scheme Commit for secure coin-flipping, the location
of both participants, and the geographic distance D. The protocol assumes a reliable way
to determine the location. The protocol is made with plausible deniability of the geographic
location: the advertising app only “signs” a random challenge. If both participants are honest,
no relay attack over a long distance is possible. However, this protocol should not be taken
as a proof of small distance because either participant could cheat with its own location.

The computational cost of such protocol is really small. The only difficulty is to replace
the broadcast model by a two-party interactive protocol.

5 A New Tool for Tracking People

A curious adversary A can use a lot of available information:

– a list of SKt of infected people with dates;
– when these SKt were reported;
– the content of his own smartphone;
– data shared by other people;
– other data obtained by other channels.

One possible side channel is the information that a user B had an alert raised by his app.
This information may be observed, for instance, because B is noticeably panicking.

The adversary may perform a passive attack based on the above information. The adver-
sary may also perform active reaction attacks in the entire system. He could for instance send
some chosen EphIDi’s to a target and later observe the impact on information at disposal.

5.1 Using the Bluetooth Beacon

Many people turn Bluetooth off on their smartphone for various reasons:

– to reduce electro-smog;2

2 At the time of writing, many people associate 5G electro-smog to the spread of pandemic. Some claim that
electro-smog creates health problems and therefore reduce the immune system, even through this is not
proven. Some even go further with more exotic claims and conspiration theories.

8



– to save the battery;
– for privacy reasons.

Indeed, as Bluetooth is turned on and broadcasting messages all the time, anyone can see a
Bluetooth device is around. We can boost a normal Bluetooth received with a good antenna
to be able to watch Bluetooth devices in a large area.

It is possible to check if a present Bluetooth device has a given MAC address.3 This means
that if the MAC address of a Bluetooth device is known and fixed, it can be recognized.
Additionally, devices with Bluetooth on often advertise themselves explicitly (e.g. “iPhone of
Serge”). A simple scanning experience in an apartment building showed that 10% of Bluetooth
devices are explicitly identifiable (about 100 self-advertising devices collected in 20 minutes).

Given that, on the one hand, we can recognize a user by his Bluetooth smartphone, and
on the other hand, that this smart phone broadcasts DP3T ephemeral identifiers, we can
easily keep a local mapping to deanonymize the target user. By watching the release on the
backend server, we can later check if this target user was reported as infected or not.

This type of attack can be done passively (i.e. without performing any malicious commu-
nication) with little equipment.

Mitigation? It seems that keeping Bluetooth in DP3T creates several worries about privacy.
As Bluetooth have inherent privacy concerns, one reasonable approach is first to make sure
that Bluetooth is correctly configured. This implies advertising no explicit device name and
enforcing the rotation of the MAC address. However, having a rotating MAC address and a
rotating EphID at the same time creates an leakage, by interference. One solution could be to
use the MAC address in lieu of EphID, and to broadcast it with a tag which requires SKt.

In any case, keeping Bluetooth broadcasting will always reveal the presence of a smart-
phone using the DP3T app.

5.2 Deanonymizing Known Reported Users

If an adversary A encounters a user B, A can listen to the EphIDi broadcast then associate
this EphIDi as belonging to B. If later B has its SKt disclosed, A can deanonymize this key
and learn that B was infected.

Occasional disclosure. When a user A has its app raising an alert, he may be stressed and
behave randomly. He could be curious to inspect his phone to figure out why it is raising an
alert. If he knows DP3T enough, or if he finds a tool to do it for him, he would realize the
alert is raised because of a series of EphIDi which were collected on the same coarse time on
a given date. A could assume that it comes from those EphID′

is come from the same user and
that their number indicate a duration of encounter. It may be enough for A to remember
about B and therefore deanonymize B.

Paparazzi attack. A needs not to closely encounter B to deanonymize. Using a Bluetooth
receiver with a good antenna, A can catch the EphIDi broadcast by B from far away. We
could easily imagine a paparazzo A trying to collect EphIDi of public people this way and
waiting for one to be reported to sell this information to popular newspapers. Collecting a
single EphIDi is enough to recognize B from the released SKt.

3 Some Bluetooth devices have MAC address rotation for privacy reasons but it is not always the case and
alignment with the EphIDi rotation is tricky.

9



Nerd attack. The DP3T app collects as little information as possible by design, but operates
with an open protocol. This means that anyone can develop his own DP3T-like client, and
possibly decide to collect more data than what DP3T meant. There could be “enriched apps”
which collect more information for each encounter such as the geographic location, the exact
time, more information about the Bluetooth message. The app would make its best effort
to link changing EphIDi, which would not be too hard from Bluetooth metadata and signal
strength if there are not many neighbors in proximity and they are all static. The app could
further invite the user to enter more data such as if he knows the person, their gender,
approximate age, visible ethnicity, etc, or in which circumstance this encounter occurred (e.g.
in bus line x, in the elevator of building y). The enriched app could easily create a huge
database. With this, an isolated malicious user could start identifying many reported cases.

Militia attack. The previous attack allows individuals to collect lots of information. Collected
information could also be sold, or shared within a community of people which organizes itself
as a militia. History shows that a militia could threaten sick people and force them to isolate
in an asylum.

Mitigation? The DP3T architecture inherently makes sure that reported users can be recog-
nized by the apps of their encounters. Based on that, the only way to mitigate this attack is to
deny the same privileges as the apps to individuals. This would require to run the apps on a
TPM. In the nerd and militia attacks, the users are malicious and can run their own enriched
app, outside of the TPM. To defeat this approach, genuine apps must exchange their EphID
in a way which is unusable by other apps. Typically, they could encrypt it with a rotating
key which is shared by all apps. Deploying such infrastructure would be a challenge.

5.3 Disclosing Private Encounters

Here is an active attack by which an adversary A can check if a user B has met another user
C in a close enough distance and long enough duration:

1. make one of the false alert injection attacks from Section 4 on target C until C reports an
alert and has its SKt reported

2. observe if B raises an alert as soon as the key of C was reported

In the second step, seeing an alert for B as soon as C is reported supports the hypothesis that
B and C met.

The first step is an active attack to force C to be reported. We can also consider a passive
attack and assume that C was reported and identified (by any of the previously seen attacks
in Section 5.2).

Without seeing the alert occurring for B, A observing that B was reported soon after
C (assuming that A succeeded to deanonymize them) is also leaking information on their
possible encounter.

Mitigation? Clearly, uploading reported keys as soon as they are identified and showing when
they are retrieved eventually leads to the above attacks. We could think of delaying releases,
but this would be a loss of time against the propagation of the virus. We could also populate
releases with fake keys to introduce noise, but this would increase the running time and would
not be so effective.

10



5.4 Coercion Threats

The existence of collected data on the smartphone of B could be a threat against B in itself.
An adversary A could force B to reveal its content. A could be anyone who could abuse
of some power on B (the police, an employer, a violent husband, etc), someone who could
steal/borrow the smartphone of B, or a malware in the smartphone of B. This way, A would
retrieve some private information:

– A could first see the list of the countries visited by B in the last 14 days.
– A could directly see how many EphIDi were collected by B during each coarse time, and

at which distance. Assuming that a given EphIDi is broadcast k times before it is rotated,
a same EphIDi value repeated k times in the record by B means that B encountered
someone for long enough. A could see in the same coarse time how many EphIDi have
exactly k occurrences and deduce that some come from the same person which has been
encountered for long.

– A could also match the EphIDi collected by B and the ones generated by reported SKt

to compute the infection risk of B by himself (and apply a lower threshold to ban B if it
finds the threshold by the authority too loose).

– A could also use some databases created in the previous attacks to try to identify the
encounters of B. If EphIDi is often rotating, the likelihood that B and a militia member
D have seen the same EphIDi from C is the same as the likelihood that B, C, and D were
all together. Equivalently, D could have reported that B encountered C without using the
DP3T leakage. Hence, this type of leakage is mitigated by a frequent rotation of EphIDi.

Having a militia of coercing A’s would amplify this threat. Indeed, the SKt of many B’s would
become known to the militia and every B would become automatically identifiable from and
EphIDi.

Clearly, the minimal information collected by the DP3T app reveals quite a lot. It threat-
ens users of being forced to disclose it. Depending on the attack scenario, a legal protection
may not be enough.

Mitigation. To fix this situation, the only way is to make sure that the honest user cannot
read his collected data. Here, running the DP3T in a TPM would be a perfect solution.

6 Conclusion

Proximity tracing systems are of paramount importance to control the COVID-19 pandemic.
At the same time, they come with severe privacy threats. DP3T was motivated by fundamental
ethical, security, and privacy concerns.

We discussed the security needed in communication between participants. Except for
the app-to-app channel, all these protections can be easily made with standard public-key
cryptography.

As for the app-to-app channel, adding security is too hard. This enables replay/relay at-
tacks, which could induce fake contact events. Replay attacks could be mitigating to some
extend by changing a bit the DP3T design. Without giving up with the broadcast communi-
cation model, replay during the same coarse time will always be possible. Better mitigations
would require interactive protocols between apps but would still be feasible at a small cost.

Regarding privacy, several elements, which are supposed to strengthen privacy, have the
opposite effect:

11



– the use of Bluetooth and constant broadcast;
– the local storage of data.

It is actually surprising that decentralization creates more privacy threats than it solves.
Indeed, sick people who are anonymously reported can be deanonymized, private encountered
can be uncovered, and people may be coerced to reveal their private data. We discussed
possible mitigation. Keeping Bluetooth would always reveal the presence of a device but
could not create any more threat if used with great care. At the time of writing, the usage of
a TPM seems to be unavoidable.

References

1. Carmela Troncoso, Mathias Payer, Jean-Pierre Hubaux, Marcel Salath, James Larus, Edouard Bugnion,
Wouter Lueks, Theresa Stadler, Apostolos Pyrgelis, Daniele Antonioli, Ludovic Barman, Sylvain Chatel,
Kenneth Paterson, Srdjan Capkun, David Basin, Dennis Jackson, Bart Preneel, Nigel Smart, Dave Singelee,
Aysajan Abidin, Seda Guerses, Michael Veale, Cas Cremers, Reuben Binns, Thomas Wiegand. Decentral-
ized Privacy-Preserving Proximity Tracing. Version: 3rd April 2020. PEPP-PT. https://github.com/DP-
3T/documents

12


