Skip to main content

Polymer/Carbon Nanocomposites for Biomedical Applications

  • Chapter
  • First Online:
Polymeric and Natural Composites

Abstract

The technological need for novel and intelligent materials as well as the drive for basic understanding has led to noteworthy progress in the field of polymer science. The current interest in polymer matrix-based nanocomposites (NCs) has materialized mainly due to research including exfoliated clay, carbon nanotubes (CNTs), carbon nanofillers, graphene, nanocrystalline metals, and a host of additional nanoscale inorganic fillers. This chapter presents a comprehensive survey of the existing and current literature on different aspects of CNTs, their NCs with polymeric materials and their biomedical applications. This chapter also highlights a variety of methods used to produce CNTs polymer nanocomposites, along with their characterization techniques. Polymer nanocomposites (PNCs) based on CNTs offer remarkably improved mechanical, electrical, and sensing properties. All this justifies the emergent interest in both academia and industrial development. Likewise, the present status and upcoming possibilities of CNT/PNCs are examined in general along with appropriate examples drawn from existing literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu X-W, Sun X-F, Huang Y-X, Sheng G-P, Wang S-G, Yu H-Q (2011) Carbon nanotube/chitosan nanocomposite as a biocompatible biocathode material to enhance the electricity generation of a microbial fuel cell. Energ Environ Sci 4:1422–1427

    Article  Google Scholar 

  2. Taha MA, El-Sabbagh AM, Taha IM (2010) Design, development and testing of rubber nanocomposites. Key Eng Mater 425:61–93

    Article  Google Scholar 

  3. Karttunen M, Ruuskanen P, Pitkänen V, Albers WM (2008) Electrically conductive metal polymer nanocomposites for electronics applications. J Electron Mater 37(7):951–954

    Article  Google Scholar 

  4. Wayne E, Jones Jr, Jasper C, Edwin J, Ashok P, Daryl S (2010) Electrically and thermally conducting nanocomposites for electronic applications. Mater 3(2):1478–1496

    Google Scholar 

  5. Miomandre F, Audebert P, Bonnett JP, Brosseau A, Perriat P, Weisbuch C, Wen W, Sheng P (2008) Silica-polypyrrole core-shell nanocomposites as active materials for dielectrophoretic displays. J Nanosci Nanotechnol 8(9):4353–4359

    Article  Google Scholar 

  6. Henriette MC, de Azeredo (2009) Nanocomposites for food packaging applications. Food Res Inter 42:1240–1253

    Google Scholar 

  7. Arora A, Padua GW (2010) Review: nanocomposites in food packaging. J Food Sci 75(1):43–49

    Article  Google Scholar 

  8. Meng ZX, Zheng W, Ding MH, Zhou HM, Chen XQ, Chen JC, Liu MK, Zheng YF (2011) Fabrication and characterization of elastomeric polyester/carbon nanotubes nanocomposites for biomedical application. J Nanosci Nanotech 11(4):3126–3133

    Article  Google Scholar 

  9. Sanchez C, Julián B, Belleville P, Popall M (2005) Applications of hybrid organic–inorganic nanocomposites. J Mater Chem 15:3559–3592

    Article  Google Scholar 

  10. Müller K, Bugnicourt E, Latorre M, Jorda M, Sanz YE, Lagaron JM, Miesbauer O, Bianchin A, Hankin S, Bölz U, Pérez G, Jesdinszki M, Lindner M, Scheuerer Z, Castelló S, Schmid M (2017) Review on the processing and properties of polymer nanocomposites and nanocoatings and their applications in the packaging. Automot Solar Energ Fields Nanomater 7(4):74

    Google Scholar 

  11. Bayda S, Adeel M, Tuccinardi T, Cordani M, Rizzolio F (2020) The history of nanoscience and nanotechnology from chemical-physical applications to nanomedicine. Molecules 25:112

    Article  Google Scholar 

  12. Gnach A, Lipinski T, Bednarkiewicz A, Rybka J, Capobianco JA (2015) Up converting nanoparticles assessing the toxicity. Chem Soc Rev 44:1561–1584

    Article  Google Scholar 

  13. Reynolds GH (2003) Nanotechnology and regulatory policy: three futures. Harv J Law Technol 17:179–209

    Google Scholar 

  14. Ramanathan T, Abdala AA, Stankovich S, Dikin DA, Herrera-Alonso M, Piner RD, Adamson DH, Schniepp HC, Chen X, Ruoff RS, Nguyen ST, Aksay IA, Prud’Homme RK, Brinson LC (2008) Functionalized graphene sheets for polymer nanocomposites. Nat Nanotech 3:327–331

    Article  Google Scholar 

  15. Giannelis EP (1996) Polymer layered silicate nanocomposites. Adv Mater 8(1):29–35

    Article  Google Scholar 

  16. Sternitzke M (1997) Structural ceramic nanocomposites. J Eur Ceram Soc 17(9):1061–1082

    Article  Google Scholar 

  17. Peigney A, Laurent CH, Flahaut E, Rousset A (2000) Carbon nanotubes in novel ceramic matrix nanocomposites. Ceram Int 26(6):677–683

    Article  Google Scholar 

  18. Alexandre M, Dubois P (2000) Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng 28(1–2):1–63

    Article  Google Scholar 

  19. Gangopadhyay R, Amitabha D (2000) Conducting polymer nanocomposites: a brief overview. Chem Mater 12(7):608–622

    Article  Google Scholar 

  20. Thostenson ET, Ren Z, Chou TW (2001) Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Technol 61(13):1899–1912

    Article  Google Scholar 

  21. Gall K, Dunn ML, Liu Y, Finch D, Lake M, Munshi NA (2002) Shape memory polymer nanocomposites. Acta Mater 50(20):5115–5126

    Article  Google Scholar 

  22. Kickelbick G (2003) Concepts for the incorporation of inorganic building blocks into organic polymers on a nanoscale. Prog Polym Sci 28(1):83–114

    Article  Google Scholar 

  23. Fischer H (2003) Polymer nanocomposites: from fundamental research to specific applications. Mater Sci Eng C 23(6–8):763–772

    Article  Google Scholar 

  24. Ray SS, Okamoto M (2003) Polymer—layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28(11):1539–1641

    Article  Google Scholar 

  25. Andrews R, Weisenberger MC (2004) Carbon nanotube polymer composites. Curr Opin Solid State Mater Sci 8(1):31–37

    Article  Google Scholar 

  26. Wang C, Guo ZX, Fu S, Wu W, Zhu D (2004) Polymers containing fullerene or carbon nanotube structures. Prog Polym Sci 29(11):1079–1141

    Article  Google Scholar 

  27. Pandey JK, Reddy KR, Kumar AP, Singh RP (2005) An overview on the degradability of polymer nanocomposites. Polym Degrad Stab 88(2):234–250

    Article  Google Scholar 

  28. Thostenson ET, Li C, Chou TW (2005) Nanocomposites in context. Compos Sci Technol 65(3–4):491–516

    Article  Google Scholar 

  29. Jordan J, Jacob KI, Tannenbaum R, Sharaf MA, Jasiuk I (2005) Experimental trends in polymer nanocomposites: a review. Mater Sci Eng A 393(1–2):1–11

    Article  Google Scholar 

  30. Choi SM, Awaji H (2005) Nanocomposites: a new material design concept. Sci Technol Adv Mater 6(1):2–10

    Article  Google Scholar 

  31. Xie XL, Mai YW, Zhou XP (2005) Dispersion and alignment of carbon nanotubes in polymer matrix: a review. Mater Sci Eng R 49(4):89–112

    Article  Google Scholar 

  32. Ray SS, Bousmina M (2005) Biodegradable polymers and their layered silicate nanocomposites: in greening the 21st century materials world. Prog Mater Sci 50(8):962–1079

    Article  Google Scholar 

  33. Pandey JK, Kumar AP, Misra M, Mohanty AK, Drzal LT, Singh RP (2005) Recent advances in biodegradable nanocomposites. J Nanosci Nanotechnol 5(4):497–526

    Google Scholar 

  34. Camargo PHC, Satyanarayana KG, Wypych F (2009) Nanocomposites: synthesis, structure, properties and new application opportunities. Mater Res 12(1):1–39

    Article  Google Scholar 

  35. Endo M, Hayashi T, Kim YA, Terrones M, Dresselhaus MS (2004) Applications of carbon nanotubes in the twenty-first century. Royal Soc 362:2223–2238

    Google Scholar 

  36. Mouritz AP, Gibson AG (2006) Fire Properties of polymer composite materials. Springer, p 143

    Google Scholar 

  37. Askeland DR (1996) Composite materials. In: The science and engineering of materials. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2895-5_16

  38. Rajak DK, Pagar DD, Menezes PL, Linul E (2019) Fiber-reinforced polymer composites: manufacturing. Prop Appl Polym 11:1667

    Google Scholar 

  39. Ruoff RS, Lorents DC (1995) Mechanical and thermal properties of carbon nanotubes. 33:925-930

    Google Scholar 

  40. Zhang Y (2015) Blends of cyclic poly (butylene terephthalate)/multiwalled carbon nanotube nanocomposites prepared by in situ polymerizartion. Diss. University of Birmingham

    Google Scholar 

  41. He H, Pham-huy LA, Dramou P, Xiao D, Zuo P, Pham-huy C (2013) Carbon nanotubes: applications in pharmacy and medicine. BioMed Res Int 1–13

    Google Scholar 

  42. Che J, Cagin T, Goddard WA (2000) Thermal conductivity of carbon nanotubes. Nanotechnology 11:65–69

    Article  Google Scholar 

  43. Thostenson ET, Ren Z, Chou TW (2001) Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Technol 61:1899–1912

    Article  Google Scholar 

  44. Lau AKT, Hui D (2002) The revolutionary creation of new advanced materials—carbon nanotube composites. Compos B Eng 33:263–277

    Article  Google Scholar 

  45. Treacy MMJ, Ebbesen TW, Gibson JM (1996) Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381:678

    Article  Google Scholar 

  46. Lourie O, Wagner HD (1998) Evaluation of Young’s modulus of carbon nanotubes by micro-Raman spectroscopy. J Mater Res 13:2418

    Article  Google Scholar 

  47. Yu MF, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS (2000) Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287:637

    Article  Google Scholar 

  48. Yu MF, Files BS, Arepalli S, Ruoff RS (2000) Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys Rev Lett 84:5552

    Article  Google Scholar 

  49. Yakobson BI, Brabec CJ, Bernholc J (1996) Nanomechanics of carbon tubes: instabilities beyond linear response. Phys Rev Lett 76:2511

    Article  Google Scholar 

  50. Overney G, Zhong W, Tomanek D (1993) Structural rigidity and low frequency vibrational modes of long carbon tubules. Zeitschrift für Physik D Atoms, Molecules and Clusters 27:93–96

    Article  Google Scholar 

  51. Mintmire JW, Dunlap BI, White CT (1992) Are fullereue tubules metallic? Phys Rev Lett 68:631

    Article  Google Scholar 

  52. Hamada N, Sawada SI, Oshiyama A (1992) New one-dimensional conductors: graphitic microtubules. Phys Rev Lett 10:1579

    Article  Google Scholar 

  53. Ebbesen TW, Lezec HJ, Hiura H, Bennett JW, Ghaemi HF, Thio T (1996) Electrical conductivity of individual carbon nanotubes. Nature 382:54

    Article  Google Scholar 

  54. Pop E, Mann D, Wang Q, Goodson K, Dai H (2006) Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett 6(1):96–100

    Article  Google Scholar 

  55. Tiwari SK, Kumar V, Huczko A, Oraon R, Adhikari AD, Nayak GC (2016) Magical allotropes of carbon: prospects and applications. Crit Rev Solid State Mater Sci 41(4):257–317

    Article  Google Scholar 

  56. Qian D, Dickey EC (2000) Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Appl Phys Lett 76(20):2868

    Article  Google Scholar 

  57. Schadler LS, Giannaris SC, Ajayan PM (1998) Load transfer in carbon nanotube epoxy composites. Appl Phys Lett 73(26):3842–3844

    Article  Google Scholar 

  58. Charlier JC, Issi JP (1996) Electrical conductivity of novel forms of carbon. J Phys Chem Solids 57:957

    Article  Google Scholar 

  59. Stadermann M, Papadakis SJ, Falvo MR, Novak J, Snow E, Fu Q, Liu J, Fridman Y, Boland JJ, Superfine R, Washburn S (2004) Nanoscale study of conduction through carbon nanotube networks. Phys Rev B 69:10–12

    Article  Google Scholar 

  60. Hecht D, Hu L, Grüner G (2006) Conductivity scaling with bundle length and diameter in single walled carbon nanotube networks. Appl Phys Lett 89:133112–133113

    Article  Google Scholar 

  61. Li C, Thostenson ET, Chou TW (2007) Dominant role of tunneling resistance in the electrical conductivity of carbon nanotube–based composites. Appl Phys Lett 91:

    Article  Google Scholar 

  62. Ahmad A, Kholoud MM, El-Nour A, Reda AA, Al-Warthan AA (2012) Carbon nanotubes, science and technology part (I) structure, synthesis and characterization. Arab J Chem 5:1–23

    Google Scholar 

  63. Ando Y, Zhao X, Sugai T, Kumar M (2004) Growing carbon nanotubes, materialstoday. Appl Phys Lett 7:22–29

    Google Scholar 

  64. Krätschmer W, Lamb LD, Fostiropoulos K, Huffman DR (1990) Solid C60: a new form of carbon. Nature 347:354–358

    Google Scholar 

  65. Vanderwal RL, Berger G, Ticich TM (2003) Carbon nanotube synthesis in a flame using laser ablation for in situ catalyst generation. Appl Phys A 77:885–889

    Article  Google Scholar 

  66. Ebbesen TW, Ajayan PM (1992) Large-scale synthesis of carbon nanotubes. Nature 358:220

    Article  Google Scholar 

  67. Bethune DS, Klang CH, Devries MS, Gorman G, Savoy R, Vazquez J, Beyers R (1993) Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer wall. Nature 363:605

    Article  Google Scholar 

  68. Hutchison JL, Kiselev NA, Krinichnaya EP, Krestinin AV, Loutfy RO, Morawsky AP, Muradyan VE, Obraztosva ED, Sloan J, Terekhov SV, Zakharov DN (2001) Double-walled carbon nanotubes fabricated by a hydrogen arc discharge method. Carbon 39:761–770

    Article  Google Scholar 

  69. Guo T, Nikolaev P, Thess A, Colbert DT, Smalley RE (1995) Catalytic growth of single-walled nanotubes by laser vaporization. Chem Phys Lett 243:49–54

    Article  Google Scholar 

  70. Thess A, Lee R, Nikolaev P, Dai H, Petit P, Robert J, Xu C, Lee YH, Kim SG, Rinzler AG, Colbert DT, Scuseria GE, Tomanek D, Fischer JE, Smalley RE (1996) Crystalline ropes of metallic carbon nanotubes. Science 273:483–487

    Article  Google Scholar 

  71. Dai H (2002) Carbon nanotubes: opportunities and challenges. Surf Sci 500:218–241

    Article  Google Scholar 

  72. Cassell AM, Raymakers JA, Kong J, Dai H (1999) Large scale CVD synthesis of single-walled carbon nanotubes. J Phys Chem B 103:6484–6492

    Article  Google Scholar 

  73. Ren ZF, Huang ZP, Xu JW, Wang JH, Bush P, Siegal MP, Provencio PN (1998) Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science 298:1105

    Article  Google Scholar 

  74. Fadiran OO, Girouard N, Meredith JC (2018) Pollen fillers for reinforcing and strengthening of epoxy composites. Emergent Mater 1:95–103

    Article  Google Scholar 

  75. Ajayan PM, Schadler LS, Braun PV (2003) Nanocomposite science and technology. 3-527-30359-6

    Google Scholar 

  76. Young RJ, Kinloch IA, Gong L, Novoselov KS (2012) The mechanics of graphene nanocomposites: a review. Compos Sci Technol 72:1459–1476

    Article  Google Scholar 

  77. Reynaud E, Gauthier C, Perez J (1999) Nanophases in polymers. Revue De Metallurgie 98:169–176

    Article  Google Scholar 

  78. Ajayan PM, Stephan O, Colliex C, Trauth D (1994) Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite. Science 265:1212–1214

    Article  Google Scholar 

  79. Manias E (2007) Nanocomposites: stiffer by design. Nat Mater 6(1):9–11

    Article  Google Scholar 

  80. Fayyad EM, Abdullah AM, Hassan MK, Mohamed AM, Jarjoura G, Farhat Z (2018) Recent advances in electroless-plated Ni-P and its composites for erosion and corrosion applications: a review. Emergent Mater 1:1–22

    Article  Google Scholar 

  81. Paul DR, Robeson LM (2008) Polymer nanotechnology: nanocomposites. Polymer 49:3187–3204

    Article  Google Scholar 

  82. Friedrich K, Fakirov S, Zhang Z (2005) Polymer composite from nano-scale to macro-scale. Springer

    Google Scholar 

  83. Gabbott P (2008) Principles and applications of thermal analysis. Wiley

    Google Scholar 

  84. Edwards DC (1990) Polymer-filler interactions in rubber reinforcement. J Mater Sci 25:4175–4185

    Article  Google Scholar 

  85. Kargarzadeh H, Mariano M, Huang J, Lin N, Ahmad I, Dufresne A, Thomas S (2017) Recent developments on nanocellulose reinforced polymer nanocomposites: a review. Polymer 132:368–393

    Article  Google Scholar 

  86. Herron N, Thron DL (1998) Nanoparticles: uses and relationships to molecular cluster compounds. Adv Mater 10:1173–1184

    Article  Google Scholar 

  87. Liu Y, Wang A, Claus R (1997) Molecular Self-Assembly of TiO2/polymer nanocomposite films. J Phys Chem 101:1385–1388

    Article  Google Scholar 

  88. Huang JC, He CB, Xiao Y, Mya KY, Dai J, Siow YP (2003) Polyimide/POSS nanocomposites: interfacial interaction, thermal properties and mechanical properties. Polymer 44:4491–4499

    Article  Google Scholar 

  89. Fasolino A, Los JH, Katsnelson MI (2007) Intrinsic ripples in graphene. Nat Mater 6:858–861

    Article  Google Scholar 

  90. Favier V, Canova GR, Shrivastava SC, Cavaille JY (1997) Mechanical percolation in cellulose whisker nanocomposites. Polym Eng Sci 37:1732–1739

    Article  Google Scholar 

  91. Chazeau L, Cavaille JY, Dendievel R, Boutherin B (1999) Viscoelastic properties of plasticized PVC reinforced with cellulose whiskers. J Appl Polym Sci 71:1797–1808

    Article  Google Scholar 

  92. Ogawa M, Kuroda K (1997) Preparation of inorganic-organic nanocomposites through intercalation of organoammonium ions into layered silicates. Bull Chem Soc Japan 70:2593–2618

    Article  Google Scholar 

  93. Calvert P (1999) Nanotube composites—a recipe for strength. Nature 399:210–211

    Article  Google Scholar 

  94. Liu M, Jia Z, Jia D, Zhou C (2014) Recent advance in research on halloysite nanotubes-polymer nanocomposite. Prog Polym Sci 39:1498–1525

    Article  Google Scholar 

  95. Du F, Fischer JE, Winey KI (2003) Coagulation method for preparing single-walled carbon nanotube/poly(methyl methacrylate) composites and their modulus, electrical conductivity, and thermal stability. J Polym Science Part B 41:3333

    Article  Google Scholar 

  96. Shaffer MSP, Windle AH (1999) Fabrication and characterization of carbon nanotube/poly(vinyl alcohol) composites. Adv Mater 11:937

    Article  Google Scholar 

  97. Safadi B, Andrews R, Grulke EA (2002) Multiwalled carbon nanotube polymer composites: synthesis and characterization of thin films. J Appl Polym Sci 84:2660

    Article  Google Scholar 

  98. Jin L, Bower C, Zhou O (1998) Alignment of carbon nanotubes in a polymer matrix by mechanical stretching. Appl Phys Lett 73:1197–1199

    Article  Google Scholar 

  99. Geng H, Rosen R, Zheng B, Shimoda H, Fleming L, Jie L, Zhou O (2002) Fabrication of properties of composites of poly(ethylene oxide) and functionalized carbon nanotubes. Adv Mater 14:1387–1390

    Google Scholar 

  100. Chen L, Pang XJ, Qu MZ, Zhang QT, Wang B, Zhang BL, Yu ZL (2005) Fabrication and characterization of polycarbonate/carbon nanotubes composites. Compos A Appl Sci Manuf 37:1485–1489

    Article  Google Scholar 

  101. Sahoo NG, Jung YC, Yoo HJ, Cho JW (2006) Effect of functionalized carbon nanotubes on molecular interaction and properties of polyurethane composites. Macromol Chem Phys 207:1773–1780

    Article  Google Scholar 

  102. Cui S, Scharff P, Siegmund C, Schneider D, Risch K, Klotzer S, Spiess L, Romanus H, Schawohl J (2004) Investigation on preparation of multiwalled carbon nanotubes by DC arc discharge under N2 atmosphere. Carbon 42:931–939

    Article  Google Scholar 

  103. Sen R, Zhao B, Perea D, Itkis ME, Hu H, Love J, Bekyarova E, Haddon RC (2004) Preparation of single-walled carbon nanotube reinforced polystyrene and polyurethane nanofibers and membranes by electrospinning. Nano Lett 4:459–464

    Article  Google Scholar 

  104. Dror Y, Salaha W, Khalfin RL, Cohen Y, Yarin AL, Zussman E (2003) Carbon nanotubes embedded in oriented polymer nanofibers by electrospinning. Langmuir 19:7012–7020

    Article  Google Scholar 

  105. Andrews R, Jacques D, Qian D, Rantell T (2002) Multiwall carbon nanotubes: synthesis and application. Acc Chem Res 35:1008–1017

    Article  Google Scholar 

  106. Hill DE, Lin Y, Rao AM, Allard LF, Sun YP (2002) Functionalization of carbon nanotubes with polystyrene. Macromolecules 35:9466–9471

    Article  Google Scholar 

  107. Potschke P, Bhattacharyya AR, Janke A (2004) Melt mixing of polycarbonate with multiwalled carbon nanotubes: microscopic studies on the state of dispersion. Eur Polym J 40:137–148

    Article  Google Scholar 

  108. Kim JY, Kim SH (2006) Influence of multiwall carbon nanotube on physical properties of poly(ethylene 2,6-naphthalate) nanocomposites. J Polym Sci Part B Polym Phys 44:1062–1071

    Article  Google Scholar 

  109. Haggenmueller R, Zhou W, Fischer JE, Winey KI (2003) Production and characterization of polymer nanocomposites with highly aligned single-walled carbon nanotubes. J Nanosci Nanotechnol 3:105–110

    Article  Google Scholar 

  110. Tang W, Santare MH, Advani SG (2003) Melt processing and mechanical property characterization of multi-walled carbon nanotube/high density polyethylene (MWNT/HDPE) composite films. Carbon 41:2779–2785

    Article  Google Scholar 

  111. Zeng Y, Ying Z, Du J, Cheng HM (2007) Effects of carbon nanotubes on processing stability of polyoxymethylene in melt-mixing process. J Phys Chem C 111:13945–13950

    Article  Google Scholar 

  112. Cooper CA, Ravich D, Lips D, Mayer J, Wagner HD (2002) Distribution and alignment of carbon nanotubes and nanofibrils in a polymer matrix. Compos Sci Technol 62:1105–1112

    Article  Google Scholar 

  113. Moniruzzaman M, Winey KI (2006) Polymer nanocomposites containing carbon nanotubes. Macromolecules 39:5194–5205

    Article  Google Scholar 

  114. Andrews R, Jacques D, Minot M, Rantell T (2002) Fabrication of carbon multiwall nanotube/polymer composites by shear mixing. Macromol Mater Eng 287:395–403

    Article  Google Scholar 

  115. Wu D, Sun Y, Zhang M (2009) Kinetics study on melt compounding of carbon nanotube/polypropylene nanocomposites. J Polym Sci Part B Polym Phys 47:608–618

    Article  Google Scholar 

  116. Hong JS, Kim C (2007) Extension-induced dispersion of multi-walled carbon nanotube in non-Newtonian fluid. J Rheol 51:833–850

    Article  Google Scholar 

  117. Kim ST, Choi HJ, Hong SM (2007) Bulk polymerized polystyrene in the presence of multiwalled carbon nanotubes. Colloid Polym Sci 285:593–598

    Article  Google Scholar 

  118. Yoo HJ, Jung YC, Sahoo NG, Cho JW (2006) Polyurethane-carbon nanotube nanocomposites prepared by in-situ polymerization with electroactive shape memory. J Macromol Sci Part B 45:441–451

    Article  Google Scholar 

  119. Wu TM, Lin SH (2006) Synthesis, characterization, and electrical properties of polypyrrole/multiwalled carbon nanotube composites. J Polym Sci Part A Polym Chem 44:6449–6457

    Article  Google Scholar 

  120. Kang M, Myung SJ, Jin HJ (2006) Nylon 610 and carbon nanotube composite by in situ interfacial polymerization. Polymer 47:3961–3966

    Article  Google Scholar 

  121. Haggenmueller R, Fischer JE, Winey KI (2006) Single wall carbon nanotube/polyethylene nanocomposites: nucleating and templating polyethylene crystallites. Macromolecules 39:2964–2971

    Article  Google Scholar 

  122. Hu N, Zhou H, Dang G, Rao X, Chen C, Zhang W (2007) Efficient dispersion of multi-walled carbon nanotubes by in situ polymerization. Polym Int 56:655–659

    Article  Google Scholar 

  123. Geng Y, Liu MY, Li J, Shi XM, Kim JK (2008) Effects of surfactant treatment on mechanical and electrical properties of CNT/epoxy nanocomposites. Compos A Appl Sci Manuf 39:1876–1883

    Article  Google Scholar 

  124. Chowdhury SR, Chen Y, Wang Y, Mitra S (2009) Microwave-induced rapid nanocomposite synthesis using dispersed single-wall carbon nanotubes as the nuclei. J Mater Sci 44:1245–1250

    Article  Google Scholar 

  125. Moisala A, Li Q, Kinloch IA, Windle AH (2006) Thermal and electrical conductivity of single-walled and multi-walled carbon nanotube-epoxy composites. Compos Sci Technol 66:1285–1288

    Article  Google Scholar 

  126. Ma PC, Tang BZ, Kim JK (2008) Effect of CNT decoration with silver nanoparticles on electrical conductivity of CNT-polymer composites. Carbon 46:1497–1505

    Article  Google Scholar 

  127. Yang Z, Dong B, Huang Y, Liu L, Yan FY, Li HL (2005) Enhanced wear resistance and micro-hardness of polystyrene nanocomposites by carbon nanotubes. Mater Chem Phys 94:109–113

    Article  Google Scholar 

  128. Zhang B, Fu RW, Zhang MQ, Dong XM, Lan PL, Qiu JS (2005) Preparation and characterization of gas-sensitive composites from multi-walled carbon nanotubes/polystyrene. Sens Actuators B Chem 109:323–328

    Article  Google Scholar 

  129. Chang TE, Kisliuk A, Rhodes SM, Brittain WJ, Sokolov AP (2006) Conductivity and mechanical properties of well-dispersed single-wall carbon nanotube/polystyrene composite. Polymer 47:7740–7746

    Article  Google Scholar 

  130. Zhang Z, Zhang J, Chen P, Zhang B, He J, Hu GH (2006) Enhanced interactions between multi-walled carbon nanotubes and polystyrene induced by melt mixing. Carbon 44:692–698

    Article  Google Scholar 

  131. Nayak RR, Lee KY, Shanmugharaj AM, Ryu SH (2007) Synthesis and characterization of styrene grafted carbon nanotube and its polystyrene nanocomposite. Eur Polym J 43:4916–4923

    Article  Google Scholar 

  132. Yu J, Lu K, Sourty E, Grossiord N, Koning CE, Loos J (2007) Characterization of conductive multiwall carbon nanotube/polystyrene composites prepared by latex technology. Carbon 45:2897–2903

    Article  Google Scholar 

  133. Mountrichas G, Pispas S, Tagmatarchis N (2008) Grafting-to approach for the functionalization of carbon nanotubes with polystyrene. Mater Sci Eng B 152:40–43

    Article  Google Scholar 

  134. Sun G, Chen G, Liu J, Yang J, Xie J, Liu Z, Li R, Li X (2009) A facile gemini surfactant-improved dispersion of carbon nanotubes in polystyrene. Polymer 50:5787–5793

    Article  Google Scholar 

  135. Sun G, Chen G, Liu Z, Chen M (2010) Preparation, crystallization, electrical conductivity and thermal stability of syndiotactic polystyrene/carbon nanotube composites. Carbon 48:1434–1440

    Article  Google Scholar 

  136. Martins JA, Cruz VS (2011) Flow activation volume of polystyrene/multiwall carbon nanotubes composites. Polymer 52:5149–5155

    Article  Google Scholar 

  137. Patole AS, Patole SP, Jung SO, Yoo JB, An JH, Kim TH (2012) Self assembled graphene/carbon nanotube/polystyrene hybrid nanocomposite by in situ microemulsion polymerization. Eur Polym J 48:252–259

    Article  Google Scholar 

  138. Chipara DM, Macossay J, Ybarra AVR, Chipara AC, Eubanks TM (2013) Raman spectroscopy of polystyrene nanofibers Multiwalled carbon nanotubes composites. Appl Surf Sci 275:23–27

    Article  Google Scholar 

  139. Sarvi A, Sundararaj U (2014) Rheological percolation in polystyrene composites filled with polyaniline-coated multiwall carbon nanotubes. Synth Met 194:109–117

    Article  Google Scholar 

  140. Suemori K, Kamata T (2017) Thermoelectric characteristics in out-of plane direction of thick carbon nanotube-polystyrene composites fabricated by the solution process. 227:177–181

    Google Scholar 

  141. Cong L, Li X, Ma L, Peng Z, Yang C, Han P, Wang G, Li H, Song W, Song G (2018) High-performance graphene oxide/carbon nanotubes aerogelpolystyrene composites: preparation and mechanical properties. Mater Lett 214:190–193

    Article  Google Scholar 

  142. Li Y, Pionteck J, Potschke P, Voit B (2019) Organic vapor sensing behavior of polycarbonate/polystyrene/ multi-walled carbon nanotube blend composites with different microstructures. Mater Des 179:

    Article  Google Scholar 

  143. Joulazadeha M, Navarchian AH (2010) Study on elastic modulus of cross linked polyurethane/organoclay nanocomposites. Polym Adv, Technol

    Google Scholar 

  144. Yung KC, Wang J, Yue TM (2006) Modeling Young’s modulus of polymer-layered silicate nanocomposites using a modified Halpin—Tsai micromechanical model. J Reinf Plast Compos 25:8847–8861

    Article  Google Scholar 

  145. Kojima Y, Usuki A, Kawasumi M, Okada A, Kurauchi T, Kamigaito OJ (1993) J Polym Sci Part A Polym Chem 31:983

    Article  Google Scholar 

  146. Yano K, Usuki A, Karauchi T, Kamigaito O (1993) J Polym Sci Part A Polym Chem 31:2493

    Article  Google Scholar 

  147. Vaia RA, Ishii H, Giannelis EP (1993) Synthesis and properties of two-dimensional nanostructures by direct intercalation of polymer melts in layered silicates. Chem Mater 5:1694–1696

    Article  Google Scholar 

  148. Koo CM, Ham HT, Choi MH, Kim SO, Chung IJ (2003) Characteristics of polyvinylpyrrolidone-layered silicate nanocomposites prepared by attrition ball milling. Polymer 44:681–689

    Google Scholar 

  149. Kojima Y, Usuki A, Kawasumi M, Okada A, Fukushima Y, Kurauchi T, Kamigaito O (1993) J Mater Res 8:1185

    Article  Google Scholar 

  150. Kojima Y, Usuki A, Kawasumi M, Okada A, Kurauchi T, Kamigaito O (1993) J Appl Polym Sci 8:1185

    Google Scholar 

  151. Charitos I, Georgousis G, Kontou E (2019) Preparation and thermomechanical characterization of metallocene linear low-density polyethylene/carbon nanotube nanocomposite. Polym Compos 40:1263–1273

    Article  Google Scholar 

  152. Bae J, Jang J, Yoon SH (2002) Macromol. Chem Phys 203:2196–2204

    Google Scholar 

  153. Kearns JC, Shambaugh RL (2002) Polypropylene fibers reinforced with carbon nanotubes. J Appl Polym Sci 86:2079–2084

    Article  Google Scholar 

  154. Pirlot C, Willems I, Fonseca A (2002) Preparation and characterization of carbon nanotube/polyacrylonitrile composites. Adv Eng Mater 4:109–114

    Article  Google Scholar 

  155. Musa I, Baxendale M, Amaratunga GAJ, Eccleston W (1999) Properties of regioregular poly (3-octylthiophene)/multi-wall carbon nanotube composites. Synth Met 102:1250

    Article  Google Scholar 

  156. Mcnally T, Potschke P, Halley P, Murphy M, Martin D, Bell SEJ, Brennan GP, Bein D, Lemoine P, Quinn JP (2005) Polyethylene multiwalled carbon nanotube composites. Polymer 46:8222–8232

    Article  Google Scholar 

  157. Zhang Q, Rastogi S, Chen D, Lippits D, Lemstra PJ (2006) Low percolation threshold in single-walled carbon nanotube/high density polyethylene composites prepared by melt processing technique. Carbon 44:778–785

    Article  Google Scholar 

  158. Haggenmueller R, Guthy C, Lukes JR, Fischer JE, Winey KI (2007) Single wall carbon nanotube/polyethylene nanocomposites: thermal and electrical conductivity. Macromolecules 40:2417–2421

    Article  Google Scholar 

  159. Kanagaraj S, Varanda FR, Zhil’tsova TV, Oliveira MSA, Simoes JAO (2007) Mechanical properties of high density polyethylene/carbon nanotube composites. Compos Sci Technol 67:3071–3077

    Google Scholar 

  160. Adhikari AR, Chipara M, Lozano K (2009) Processing effects on the thermo-physical properties of carbon nanotube polyethylene composite. Mater Sci Eng A 526:123–127

    Article  Google Scholar 

  161. Palza H, Reznik B, Kappes M, Hennrich F, Naue IFC, Wilhelm M (2010) Characterization of melt flow instabilities in polyethylene/carbon nanotube composites. Polymer 51:3753–3761

    Article  Google Scholar 

  162. Gorrasi G, Lieto RD, Patimo G, Pasquale SD, Sorrentino A (2011) Structure property relationships on uniaxially oriented carbon nanotube/polyethylene composites. Polymer 52:1124–1132

    Article  Google Scholar 

  163. Sreekant PSR, Kumar NN, Kanagaraj S (2012) Improving post irradiation stability of high density polyethylene by multi walled carbon nanotubes. Compos Sci Technol 72:390–396

    Article  Google Scholar 

  164. Yim YJ, Park SJ (2015) Electromagnetic interference shielding effectiveness of high-density polyethylene composites reinforced with multi-walled carbon nanotubes. J Ind Eng Chem 21:155–157

    Article  Google Scholar 

  165. Malekie S, Ziaie F (2015) Study on a novel dosimeter based on polyethylene–carbon nanotube composite. Nucl Instrum Methods Phys Res Sect A 791:1–5

    Article  Google Scholar 

  166. Goyal M, Goyal N, Kaur H, Gera A, Minocha K, Jindal P (2016) Fabrication and characterisation of low density polyethylene (LDPE)/multi walled carbon nanotubes (MWCNTs) nano-composites. Persp Sci 8:403–405

    Google Scholar 

  167. Yang J, Zhang X, Liu C, Li X, Li H, Ma G, Tian F (2017) Effects of 1 MeV electrons on the deformation mechanisms of polyethylene/carbon nanotube composites. Nucl Instrum Methods Phys Res Sect B 409:2–8

    Article  Google Scholar 

  168. Kazakova MA, Selyutin AG, Semikolenova NV, Ishchenko AV, Moseenkov SI, Matsko MA et al (2018) Structure of the in situ produced polyethylene based composites modified with multi-walled carbon nanotubes: in situ synchrotron X-ray diffraction and differential scanning calorimetry study. Compos Sci Technol 167:148–154

    Article  Google Scholar 

  169. Hu C, Liao X, Qin QH, Wang G (2019) The fabrication and characterization of high density polyethylene composites reinforced by carbon nanotube coated carbon fibers. Compos A Appl Sci Manuf 121:149–156

    Article  Google Scholar 

  170. Peng B, Jiang Y, Zhu A (2019) A novel modification of carbon nanotubes for improving the electrical and mechanical properties of polyethylene composites. Polym Test 74:72–76

    Article  Google Scholar 

  171. Kurup SN, Ellingford C, Wan C (2020) Shape memory properties of polyethylene/ethylene vinyl acetate/carbon nanotube composites. Polym Test 81:

    Article  Google Scholar 

  172. Broza G, Piszczek K, Schulte K, Sterzynski T (2007) Nanocomposites of poly(vinyl chloride) with carbon nanotubes (CNT). Compos Sci Technol 67:890–894

    Article  Google Scholar 

  173. O’connor I, Hayden H, O’connor S, Coleman JN, Gun’ko YK (2008) Kevlar coated carbon nanotubes for reinforcement of polyvinylchloride. J Mater Chem 18:5585–5588

    Google Scholar 

  174. Sterzynski T, Tomaszewska J, Piszczek K, Skorczewska K (2010) The influence of carbon nanotubes on the PVC glass transition temperature. Compos Sci Technol 70:966–969

    Article  Google Scholar 

  175. Mkhabela VJ, Mishra AK, Mbianda XY (2011) Thermal and mechanical properties of phosphorylated multiwalled carbon nanotube/polyvinyl chloride composites. Carbon 49:610–617

    Article  Google Scholar 

  176. Zaho F, Qiu F, Zhang X, Yu S, Kim SH, Park HD, Takizawa S, Wang P (2012) Preparation of single-walled carbon nanotubes/ polyvinylchloride membrane and its antibacterial property. Water Sci Technol 66:2275–2283

    Article  Google Scholar 

  177. Song BJ, Ahn JW, Cho KK, Roh JS, Lee DY, Yang YS et al (2013) Electrical and mechanical properties as a processing condition in polyvinylchloride multi walled carbon nanotube composites. J Nanosci Nanotechnol 13:7723–7727

    Article  Google Scholar 

  178. Vasanthkumar MS, Bhatia R, Arya VP, Sameera I, Prasad V, Jayanna HS (2014) Characterization, charge transport and magnetic properties of multi-walled carbon nanotube–polyvinyl chloride nanocomposites. Physica E 56:10–16

    Article  Google Scholar 

  179. Zanjanijam AR, Bahrami M, Hajian M (2016) Poly(vinyl chloride)/single wall carbon nanotubes composites: investigation of mechanical and thermal characteristics. J Vinyl Add Tech 22:128–133

    Article  Google Scholar 

  180. Hezma AM, Elashmawi IS, Abdelrezek EM, Rajesh A, Kamal M (2017) Enhancement of the thermal and mechanical properties of polyurethane/polyvinyl chloride blend by loading single walled carbon nanotubes. Prog Natl Sci Mater Int 27:338–343

    Article  Google Scholar 

  181. Jiashun T, Yujun Q, Pu Z, Zhixin G (2019) Preparation and properties of polyvinyl chloride/carbon nanotubes composite. J Wuhan Univ Technol Mater Sci Ed 34(3):516–520

    Google Scholar 

  182. Daver F, Baez E, Shanks RA, Brandt M (2016) Conductive polyolefin–rubber nanocomposites with carbon nanotubes. Compos A Appl Sci Manuf 80:13–20

    Article  Google Scholar 

  183. Lee SH, Park JS, Lim BK, Kim SO (2008) Polymer/carbon nanotube nanocomposites via noncovalent grafting with end-functionalized polymers. J Appl Polym Sci 110:2345–2351

    Article  Google Scholar 

  184. Haghighatpanah S, Bolton K (2013) Molecular-level computational studies of single wall carbon nanotube–polyethylene composites. Comput Mater Sci 69:443–454

    Article  Google Scholar 

  185. Ritter U, Scharff P, Pinchuk TM (2010) Radiation modification of polyvinyl chloride nanocomposites with multi-walled carbon nanotubes. Mater Sci Eng Technol 41:675–681

    Google Scholar 

  186. Chipara M, Cruz J, Vega ER, Alarcon J, Mion T, Chipara DM, Ibrahim E, Tidrow SC, Hui D (2012) Polyvinylchloride-single-walled carbon nanotube composites: thermal and spectroscopic properties. J Nanomater 1–6

    Google Scholar 

  187. Grady BP, Pompeo F, Shambaugh RL, Resasco DE (2002) Nucleation of polypropylene crystallization by single-walled carbon nanotubes. J Phys Chem B 106:5852–5858

    Article  Google Scholar 

  188. Moore EM, Ortiz DL, Marla VT, Shambaugh RL, Grady BP (2004) Enhancing the strength of polypropylene fibers with carbon nanotubes. J Appl Polym Sci 93:2926–2933

    Article  Google Scholar 

  189. Yang J, Lin Y, Wang J, Lai M, Li J, Liu J, Tong X, Chen H (2005) Morphology, thermal stability, and dynamic mechanical properties of atactic polypropylene/carbon nanotube composites. J Appl Polym Sci 98:1087–1091

    Google Scholar 

  190. Manchado MAL, Valentini L, Biagiotti J, Kenny JM (2005) Thermal and mechanical properties of single-walled carbon nanotubes–polypropylene composites prepared by melt processing. Carbon 43:1499–1505

    Article  Google Scholar 

  191. Funck A, Kaminsky W (2007) Polypropylene carbon nanotube composites by in situ polymerization. Compos Sci Technol 67:906–915

    Article  Google Scholar 

  192. Tjong SC, Liang GD, Bao SP (2007) Electrical behavior of polypropylene/multiwalled carbon nanotube nanocomposites with low percolation threshold. Scripta Mater 57:461–464

    Article  Google Scholar 

  193. Koval’chuk AA, Shchegolikhin AN, Shevchenko VG, Nedorezova PM, Klyamkina AN, Aladyshev AM (2008) Synthesis and properties of polypropylene/multiwall carbon nanotube composites. Macromolecules 41:3149–3156

    Google Scholar 

  194. Li WH, Chen XH, Yang Z, Xu LS (2009) Structure and properties of polypropylene-wrapped carbon nanotubes composite. J Appl Polym Sci 113:3809–3814

    Article  Google Scholar 

  195. Soitong T, Pumchusak J (2011) Morphology and tensile properties of polypropylenemultiwalled carbon nanotubes composite fibers. J Appl Polym Sci 119:962–967

    Article  Google Scholar 

  196. Long GJ, Hui LY, Ming LD (2011) Preparation and properties of recycled polypropylene/carbon nanotube composites. Adv Mater Res 279:106–111

    Article  Google Scholar 

  197. Tambe PB, Bhattacharyya AR, Kulkarni AJ (2012) The influence of melt-mixing process conditions on electrical conductivity of polypropylene/multiwall carbon nanotubes composites. J Appl Polym Sci 1–10

    Google Scholar 

  198. Araujo RS, Oliveira RJB, Marques MDFV (2014) Preparation of nanocomposites of polypropylene with carbon nanotubes via masterbatches produced by in situ polymerization and by melt extrusion. Macromol React Eng 8:747–754

    Article  Google Scholar 

  199. Ghoshal S, Wang PH, Gulgunje P, Verghese N, Kumar S (2016) High impact strength polypropylene containing carbon nanotubes. Polymer 100:259–274

    Article  Google Scholar 

  200. Wang PH, Sarkar S, Gulgunje P, Verghese N, Kumar S (2018) Fracture mechanism of high impact strength polypropylene containing carbon nanotubes. Polymer 151:287–298

    Article  Google Scholar 

  201. Zhao C, Hu G, Justice R, Schaefer DW, Zhang S, Yang M, Han CC (2005) Synthesis and characterization of multi-walled carbon nanotubes reinforced polyamide 6 via in situ polymerization. Polymer 46:5125–5132

    Article  Google Scholar 

  202. Giraldo LF, Lopez BL, Brostow W. Effect of the Type of Carbon Nanotubes on Tribological Properties of Polyamide 6. Polymer Engineering & Science. 2009; 896–902

    Google Scholar 

  203. Mahmood, N., Islam, M., Hameed, A., Saeed, S., Polyamide 6/Multiwalled Carbon Nanotubes Nanocomposites with Modified Morphology and Thermal Properties 2013, 5, 1380–1391

    Google Scholar 

  204. Li J, Tong L, Fang Z, Gu A, Xu Z (2006) Thermal degradation behavior of multi-walled carbon nanotubes/polyamide 6 composites. Polym Degrad Stab 91:2046–2052

    Article  Google Scholar 

  205. Ha H, Kim SC (2010) Morphology and Properties of Polyamide/Multi-walled Carbon Nanotube Composites. Macromol Res 18:660–667

    Article  Google Scholar 

  206. Zhao H, Qiu S, Wu L, Zhang L, Chen H, Gao C (2014) Improving the performance of polyamide reverse osmosis membrane by incorporation of modified multi-walled carbon nanotubes. J Membr Sci 450:249–256

    Article  Google Scholar 

  207. Ferreira T, Paiva MC, Pontes AJ (2013) Dispersion of carbon nanotubes in polyamide 6 for microinjection moulding. J Polym Res 301:1–9

    Google Scholar 

  208. Logakis E, Pandis C, Peogols V, Pissis P, Stergiou C, Pionteck J, Potschke P, Micusik M, Omastova M (2009) Structure-Property Relationships in Polyamide 6/Multi-Walled Carbon Nanotubes Nanocomposites. Journal of Polymer Science. 47:764–774

    Google Scholar 

  209. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–58

    Article  Google Scholar 

  210. Simon J, Flahaut E, Golzio M (2019) Overview of Carbon Nanotubes for Biomedical Applications. Materials. 12:624

    Article  Google Scholar 

  211. Sireesha M, Babu VJ, Ramakrishna S (2017) Functionalized carbon nanotubes in bio-world: Applications, limitationsand future directions. Mater Sci Eng, B 223:43–63

    Article  Google Scholar 

  212. Hirlekar R, Yamagar M, Garse H, Vij M, Kadam V (2009) Carbon nanotubes and its applications: a review. Asian Journal. 2:17–27

    Google Scholar 

  213. Kunzmann A, Andersson B, Thurnherr T, Krug H, Scheynius A, Fadeel B. Toxicology of engineered nanomaterials: Focus on biocompatibility, biodistribution and biodegradation. Biochimica et Biophysica Acta (BBA) - General Subjects. 2011; 1810:361–373

    Google Scholar 

  214. Smart SK, Cassady AI, Lu GQ, Martin DJ (2006) The biocompatibility of carbon nanotubes. Carbon 44:1034–1047

    Article  Google Scholar 

  215. Dey P, Das N (2013) Carbon nanotubes: it’s role in modern health care. International Journal of Pharmacy and Pharmaceutical Sciences. 5:9–13

    Google Scholar 

  216. Cao Y, Huang H-Y, Chen L-Q, Du H-H, Cui J-H, Zhang LW, Lee B-J, Cao Q-R (2019) Enhanced lysosomal escape of pH-responsive PEI-betaine functionalized carbon nanotube for the co-delivery of survivin siRNA and doxorubicin. ACS Appl Mater Interfaces 11:9763–9776

    Article  Google Scholar 

  217. Chou CC, Hsiao HY, Hong QS, Chen CH, Peng YW, Chen HW, Yang PC (2008) Single-Walled Carbon Nanotubes Can Induce Pulmonary Injury in Mouse Model. Nano Lett 8:437–445

    Article  Google Scholar 

  218. Khan MU, Reddy KR, Snguanwongchai T, Haque E, Gomes VG (2016) Polymer brush synthesis on surface modified carbon nanotubes via in situ emulsion polymerization. Colloid Polym Sci 294:1599–1610

    Article  Google Scholar 

  219. Che J, Cagin T, Goddard WA III (2000) Thermal conductivity of carbon nanotubes. Nanotechnology. 11:65–69

    Article  Google Scholar 

  220. Song C, Yun J, Lee H, Park H, Jeong YR, Lee G, Kim MU, Ha JS. A Shape Memory High-Voltage Supercapacitor with Asymmetric Organic Electrolytes for Driving an Integrated NO2 Gas Sensor. Advanced Functional Materials. 2019; 1–12

    Google Scholar 

  221. Liu Z, Sun X, Ratchford NN, Dai H (2007) Supramolecular Chemistry on Water Soluble Carbon Nanotubes for Drug Loading and Delivery. ACS Nano 1:50–56

    Article  Google Scholar 

  222. Liu Z, Fan AC, Rakhra K, Sherlock S, Goodwin A, Chen X et al (2009) Supramolecular Stacking of Doxorubicin on Carbon Nanotubes for In Vivo Cancer Therapy. Angew Chem 48:7668–7672

    Article  Google Scholar 

  223. Miyawaki J, Yudasaka M, Imai H, Yorimitsu H, Isobe H, Nakamura E, Iijima S (2006) Synthesis of Ultrafine Gd2O3 Nanoparticles Inside Single-Wall Carbon Nanohorns. J. Phys. Chem. B. 110:5179–5181

    Article  Google Scholar 

  224. Kim J, Yoo H, Ba VAP, Shin N, Hong S (2018) Dye-functionalized Sol-gel Matrix on Carbon Nanotubes for Refreshable and Flexible Gas Sensors. Scientific reports. 8:11958

    Article  Google Scholar 

  225. Im JS, Bai BC, Lee YS (2010) The effect of carbon nanotubes on drug delivery in an electro-sensitive transdermal drug delivery system. Biomaterials 31:1414–1419

    Article  Google Scholar 

  226. Servant A, Methven L, Williams RP, Kostarelos K (2013) Electroresponsive polymer-carbon nanotube hydrogel hybrids for pulsatile drug delivery in vivo. Adv Healthcare Mater 2:806–811

    Article  Google Scholar 

  227. Foldvari M, Bagonluri M (2008) Carbon nanotubes as functional excipients for nanomedicines: II. Drug delivery and biocompatibility issues. Nanomed Nanotechnol Biol Med 4:183–200

    Google Scholar 

  228. Wang JTW, Fabbro C, Venturelli E, Methven L, Ros TD, Robinson MK (2014) The relationship between the diameter of chemically-functionalized multi-walled carbon nanotubes and their organ biodistribution profiles in vivo. Biomaterials 35:9517–9528

    Article  Google Scholar 

  229. Costa PM, Bourgognon M, Wang JTW, Jamal KTA (2016) Functionalised carbon nanotubes: from intracellular uptake and cell-related toxicity to systemic brain delivery. J Controlled Release 241:200–219

    Article  Google Scholar 

  230. Akhtari J, Faridnia R, Kalani H, Bastani R, Fakhar M, Rezvan H, Beydokhti AK (2019) Potent in vitro antileishmanial activity of a nanoformulation of cisplatin with carbon nanotubes against Leishmania major. J Glob Antimicrob Resist 16:11–16

    Article  Google Scholar 

  231. Loos LR, Coelho LAF, Pezzin SH, Amico SC (2008) Effect of carbon nanotubes addition on the mechanical and thermal properties of epoxy matrices. Mater Res 11:347

    Article  Google Scholar 

  232. Lam CW, James JT, McCluskey R, Hunter RL (2004) Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci 77:126–134

    Article  Google Scholar 

  233. Fang L, Zhao C, Chen Y, Sheng L, An K, Yu L, Ren W, Zhao X (2015) Single-chirality separation of ultra-thin semiconducting arc discharge single-walled carbon nanotubes. Carbon 91:408–415

    Article  Google Scholar 

  234. Khazaei A, Rad MNS, Borazjani MK (2010) Organic functionalization of single-walled carbon nanotubes (SWCNTs) with some chemotherapeutic agents as a potential method for drug delivery. Int J Nanomed 5:639–645

    Article  Google Scholar 

  235. Lotfi M, Morsali A, Bozorgmehr MR (2018) Comprehensive quantum chemical insight into the mechanistic understanding of the surface functionalization of carbon nanotube as a nanocarrier with cladribine anticancer drug. Appl Surf Sci 462:720–729

    Article  Google Scholar 

  236. Wei C, Dong X, Zhang Y, Liang J, Yang A, Zhu D, Liu T (2018) Simultaneous fluorescence imaging monitoring of the programmed release of dual drugs from a hydrogel-carbon nanotube delivery system. Sens Actuators B Chem 273:264–275

    Article  Google Scholar 

  237. Karthika V, Kaleeswarran P, Gopinath K, Arumugam A, Govindarajan M, Alharbi NS, Khaled JM, Al-anbr MN, Benelli G (2018) Biocompatible properties of nano-drug carriers using TiO2-Au embedded on multiwall carbon nanotubes for targeted drug delivery. Mater Sci Eng C 90:589–601

    Article  Google Scholar 

  238. Mazzaglia A, Scala A, Sortinao G, Zagami R, Zhu Y, Pizzo MM, Piperno A (2018) Intracellular trafficking and therapeutic outcome of multiwalled carbon nanotubes modified with cyclodextrins and polyethylenimine. Colloids Surf B 163:55–63

    Article  Google Scholar 

  239. Mallakpour S, Khodadadzadeh L (2018) Ultrasonic-assisted fabrication of starch/MWCNT-glucose nanocomposites for drug delivery. Ultrason Sonochem 40:402–409

    Google Scholar 

  240. Gonzalez-Lavado E, Iturrioz-Rodriguez N, Padin-Gonzalez E, Gonzalez J, Villegas JC, Valiente R, Fanarraga ML Biodegradable multi-walled carbon nanotubes trigger antitumoral effects. Nanoscale 1–8

    Google Scholar 

  241. Hesabi M, Behjatmanesh-Ardakani R (2018) Investigation of carboxylation of carbon nanotube in the adsorption of anti-cancer drug: a theoretical approach. Appl Surf Sci 427:112–125

    Article  Google Scholar 

  242. Kamel M, Raissi H, Morsali A, Shahabi M (2017) Assessment of the adsorption mechanism of flutamide anticancer drug on the functionalized single-walled carbon nanotube surface as a drug delivery vehicle: an alternative theoretical approach based on DFT and MD. In: APSUSC 2017

    Google Scholar 

  243. Li H, Sun X, Li Y, Liang C, Wang H (2018) Preparation and properties of carbon nanotube (Fe)/hydroxyapatite composite as magnetic targeted drug delivery carrier. Mater Sci Eng

    Google Scholar 

  244. Saeednia L, Yao L, Cluff K, Asmatulu R (2019) Sustained releasing of methotrexate from injectable and thermosensitive chitosan-carbon nanotube hybrid hydrogels effectively controls tumor cell growth. ACS Omega 4:4040–4048

    Article  Google Scholar 

  245. Biagittoi G, Ligi MC, Fedeli S, Pranzini E, Gamberi T, Cicchi S, Paoli P (2018) Metformin salts with oxidized multiwalled carbon nanotubes: in vitro biological activity and inhibition of CNT internalization. J Drug Delivery Sci Technol 254–258

    Google Scholar 

  246. Sukhodub LB, sukhodub LF, Prylutskyy YI, Strutynska NY, Vovchenko LL, Soroca VM, Slobodyanik NS, Tsierkezos NG, Ritter U (2018) Composite material based on hydroxyapatite and multi-walled carbon nanotubes filled by iron: preparation, properties and drug release ability. Mater Sci Eng C

    Google Scholar 

  247. Rafi AA, Jeddi MK, Hashemi AB, Mahkam M (2017) Synthesis of multiwalled carbon nanotubes–poly(Methacrylic Acid) nanohybrid systems: characterization, thermal properties, and in vitro release studies of naproxen as a model drug. Polym Plast Technol Eng 1–8

    Google Scholar 

  248. Saito N, Haniu H, Usui Y, Aoki K, Hara K, Takanashi S et al (2014) Safe clinical use of carbon nanotubes as innovative biomaterials. Chem Rev 114(11):6040–6079

    Article  Google Scholar 

  249. Serpell CJ, Kostarelos K, Davis BG (2016) Can carbon nanotubes deliver on their promise in biology? Harnessing unique properties for unparalleled applications. ACS Cent Sci 2:190–200

    Article  Google Scholar 

  250. Kuche K, Maheshwari R, Tambe V, Mak K-K, Jogi H, Raval N et al (2018) Carbon nanotubes (CNTs) based advanced dermal therapeutics: current trends and future potential. Nanoscale 10:8911–8937

    Article  Google Scholar 

  251. Zuru DU (2019) Theoretical model for the design and preparation of a CNT–ursonic acid drug matrix as HIV-gp120 entry inhibitor. Sci Afr 6:00177

    Google Scholar 

  252. Elhissi AMA, Ahmed W, Hassan IU, Dhanak VR, D’Emanuele A (2012) Carbon nanotubes in cancer therapy and drug delivery. J Drug Delivery 837327:10

    Google Scholar 

  253. Madani SY, Naderi N, Dissanayake O, Tan A, Seifalian AM (2011) A new era of cancer treatment: carbon nanotubes as drug delivery tools. Int J Nanomed 6:2963–2979

    Google Scholar 

  254. Sanginario A, Miccoli B, Demarchi D (2017) Carbon nanotubes as an effective opportunity for cancer diagnosis and treatment. Biosensors 7:9

    Article  Google Scholar 

  255. Jaque D, Maestro LM, Rosal BD, Haro-Gonzalez P, Benayas A, Plaza JL, Rodrígueza EM, Solé JG (2014) Nanoparticles for photothermal therapies. Nanoscale 6:9494–9530

    Article  Google Scholar 

  256. Liu Z, Robinson JT, Tabakman SM, Yang M, Dai H (2011) Carbon materials for drug delivery and cancer therapy. Materialstoday 14:316–323

    Google Scholar 

  257. Zhou F, Xing D, Ou Z, Wu B, Resasco DE, Chen WR (2009) Cancer photothermal therapy in the near-infrared region by using single-walled carbon nanotubes. J Biomed Opt 14(2):

    Article  Google Scholar 

  258. Sobhani Z, Behnam MA, Emami F, Dehghanian A, Jamhiri I (2017) Photothermal therapy of melanoma tumor using multiwalled carbon nanotubes. Int J Nanomed 12:4509–4517

    Article  Google Scholar 

  259. Langer R, Vacanti JP (1993) Tissue Eng 260:920–926

    Google Scholar 

  260. Chen F-M, Liu X (2016) Advancing biomaterials of human origin for tissue engineering. Prog Polym Sci 53:86–168

    Article  Google Scholar 

  261. Ma PX (2004) Scaffolds for tissue fabrication. Materialstoday 7:30–40

    Google Scholar 

  262. Nikolova MP, Chavali MS (2019) Recent advances in biomaterials for 3D scaffolds: a review. Bioactive Mater 4:271–292

    Article  Google Scholar 

  263. Stout DA, Webster TJ (2012) Carbon nanotubes for stem cell control. Materialstoday 15:312–318

    Google Scholar 

  264. Veetil JV, Ye K (2009) Tailored carbon nanotubes for tissue engineering applications. Biotechnol Prog 25(3):709–721

    Article  Google Scholar 

  265. Eivazzadeh-Keihan R, Maleki A, Guardia MDL, Bani MS, Chenab KK, Pashazadeh-Panahi P et al (2009) Carbon based nanomaterials for tissue engineering of bone: building new bone on small black scaffolds: a review. J Adv Res 18:185–201

    Article  Google Scholar 

  266. Gurjar PN, Chouksey S, Patil G, Naik N, Agrawal S (2013) Carbon nanotubes: pharmaceutical applications. Asian Biomed Pharm 3:8–13

    Google Scholar 

  267. Paul A, Hasan A, Al KH, Gaharwar K, Rao VTS, Nikkhah M et al (2014) Injectable graphene oxide/hydrogel-based angiogenic gene delivery system for vasculogenesis and cardiac repair. ACS Nano 8:8050–8062

    Google Scholar 

  268. Hasan A, Ragaert K, Swieszkowski W, Selimovic S, Paul A, Camci-unal G, Mofrad MRK, Khademhosseini A (2014) Biomechanical properties of native and tissue engineered heart valve constructs. J Biomech 47:1949–1963

    Google Scholar 

  269. Bosi S, Ballerini L, Prato M (2013) Carbon nanotubes in tissue engineering. Making Exploit Fullerenes Graphene Carbon Nanotubes 348:181–204

    Google Scholar 

  270. Lovat V, Pantarotto D, Lagostena L, Cacciari B, Grandolfo M, Righi M, Spalluto G, Prato M, Ballerini L (2005) Carbon nanotube substrates boost neuronal electrical signaling. Nano Lett 5(6):1107–1110

    Article  Google Scholar 

  271. Arslantunali D, Budak G, Hasirci V (2013) Multiwalled CNT-pHEMA composite conduit for peripheral nerve repair. J Biomed Mater Res Part A

    Google Scholar 

  272. Armentano I, Dottori M, Fortunati E, Mattioli S, Kenny JM (2010) Biodegradable polymer matrix nanocomposites for tissue engineering: a review. Polym Degrad Stab 95:2126–2146

    Article  Google Scholar 

  273. Cho Y, Borgens RB (2010) The effect of an electrically conductive carbon nanotube/collagen composite on neurite outgrowth of PC12 cells. Wiley Online Library, pp 1–8

    Google Scholar 

  274. Zhang X, Wang X, Lu Q, Fu C (2008) Influence of carbon nanotube scaffolds on human cervical carcinoma HeLa cell viability and focal adhesion kinase expression. Carbon 46:453–460

    Article  Google Scholar 

  275. Mackle JN, Blond DJ-P, Mooney E, Mcdonnell Blau WJ, Shaw G, Barry FP, Murphy JM, Barron V (2011) In vitro characterization of an electroactive carbon-nanotube-based nanofiber scaffold for tissue engineering. Macromol Biosci 11:1272–1282

    Google Scholar 

  276. Ogihara N, Usui Y, Aoki K, Shimizu M, Narita N, Hara K, Taruta S, Saito N (2012) Biocompatibility and bone tissue compatibility of alumina ceramics reinforced with carbon nanotubes. Nanomedicine 7(7):981–993

    Article  Google Scholar 

  277. Badhe RV, Bijukumar D, Chejara DR, Mabrouk M, Choonara YE, Kumar P, Toit LCD, Kondiah PPD (2016) A composite chitosan-gelatin bi-layered, biomimetic macroporous scaffold for blood vessel tissue engineering. Carbohydr Polym 1–10

    Google Scholar 

  278. Suo X, Eldridge BN, Zhang H, Mao C, Min Y, Sun Y, Singh R, Ming X (2018) P-Glycoprotein-Targeted photothermal therapy of drug-resistant cancer cells using antibody-conjugated carbon nanotubes. ACS Appl Mater Interfaces 10:33464–33473

    Article  Google Scholar 

  279. Liu X, Xu D, Liao C, Fang Y, Guo B (2018) Development of a promising drug delivery for formononetin: cyclodextrin modified single-walled carbon nanotubes. J Drug Delivery Sci Technol 43:461–468

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nath, J., Sharma, K., Kumar, S., Kumar, V., Sehgal, R. (2022). Polymer/Carbon Nanocomposites for Biomedical Applications. In: Hasnain, M.S., Nayak, A.K., Alkahtani, S. (eds) Polymeric and Natural Composites. Advances in Material Research and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-70266-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-70266-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-70265-6

  • Online ISBN: 978-3-030-70266-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics