ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Tailored Methodology Based on Vapor Phase Polymerization to Manufacture PEDOT/CNT Scaffolds for Tissue Engineering

  • Antonio Dominguez-Alfaro
    Antonio Dominguez-Alfaro
    Carbon Bionanotechnology Group, CIC biomaGUNE, Paseo de Miramón 182, 20014 Donostia-San Sebastián, Spain
    POLYMAT University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 20018 Donostia-San Sebastián, Spain
  • Nuria Alegret*
    Nuria Alegret
    Carbon Bionanotechnology Group, CIC biomaGUNE, Paseo de Miramón 182, 20014 Donostia-San Sebastián, Spain
    POLYMAT University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 20018 Donostia-San Sebastián, Spain
    Cardiovascular Institute, School of Medicine, UC Denver Anschutz Medical Campus, 12700 E. 19th Avenue, Bldg. P15, Aurora, Colorado 80045, United States
    *E-mail: [email protected] (N.A.).
    More by Nuria Alegret
  • Blanca Arnaiz
    Blanca Arnaiz
    Carbon Bionanotechnology Group, CIC biomaGUNE, Paseo de Miramón 182, 20014 Donostia-San Sebastián, Spain
    More by Blanca Arnaiz
  • Jose M. González-Domínguez
    Jose M. González-Domínguez
    Departamento de Química Orgánica, Facultad de Ciencias y Tecnologías Químicas-IRICA, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
  • Ana Martin-Pacheco
    Ana Martin-Pacheco
    Departamento de Química Orgánica, Facultad de Ciencias y Tecnologías Químicas-IRICA, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
  • Unai Cossío
    Unai Cossío
    Radioimaging and Image Analysis Platform, CIC biomaGUNE, Paseo de Miramón 182, 20014 Donostia-San Sebastián, Spain
    More by Unai Cossío
  • Luca Porcarelli
    Luca Porcarelli
    POLYMAT University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 20018 Donostia-San Sebastián, Spain
    More by Luca Porcarelli
  • Susanna Bosi
    Susanna Bosi
    Department of Chemical and Pharmaceutical Sciences, INSTM, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
    More by Susanna Bosi
  • Ester Vázquez
    Ester Vázquez
    Departamento de Química Orgánica, Facultad de Ciencias y Tecnologías Químicas-IRICA, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
    More by Ester Vázquez
  • David Mecerreyes*
    David Mecerreyes
    POLYMAT University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 20018 Donostia-San Sebastián, Spain
    Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
    *E-mail: [email protected] (D.M.).
  • , and 
  • Maurizio Prato*
    Maurizio Prato
    Carbon Bionanotechnology Group, CIC biomaGUNE, Paseo de Miramón 182, 20014 Donostia-San Sebastián, Spain
    Department of Chemical and Pharmaceutical Sciences, INSTM, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
    Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
    *E-mail: [email protected] (M.P.).
    More by Maurizio Prato
Cite this: ACS Biomater. Sci. Eng. 2020, 6, 2, 1269–1278
Publication Date (Web):December 16, 2019
https://doi.org/10.1021/acsbiomaterials.9b01316
Copyright © 2019 American Chemical Society

    Article Views

    1042

    Altmetric

    -

    Citations

    32
    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Three-dimensional (3D) scaffolds with tailored stiffness, porosity, and conductive properties are particularly important in tissue engineering for electroactive cell attachment, proliferation, and vascularization. Carbon nanotubes (CNTs) and poly(3,4-ethylenedioxythiophene) (PEDOT) have been extensively used separately as neural interfaces showing excellent results. Herein, we combine both the materials and manufacture 3D structures composed exclusively of PEDOT and CNTs using a methodology based on vapor phase polymerization of PEDOT onto a CNT/sucrose template. Such a strategy presents versatility to produce porous scaffolds, after leaching out the sucrose grains, with different ratios of polymer/CNTs, and controllable and tunable electrical and mechanical properties. The resulting 3D structures show Young’s modulus typical of soft materials (20–50 kPa), as well as high electrical conductivity, which may play an important role in electroactive cell growth. The conductive PEDOT/CNT porous scaffolds present high biocompatibility after 3 and 6 days of C8-D1A astrocyte incubation.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsbiomaterials.9b01316.

    • Axial, sagittal, and coronal views of the two sample’s micro-CT image; schematic representation of the chamber used for EIS analyses; XPS plot of Fe and Cl decay; first derivative from the TGA curves; TGA plot of different fractions of the scaffold; SEM images of the scaffolds synthesized at different conditions; SEM images of the scaffolds before the sucrose removal; high resolution pore size distribution histogram; impedance vs frequency measurement; Nyquist plot; in vitro LDH assay for the scaffolds synthesised at different conditions; Z-stack view of incubated C8-D1A astrocytes; and maximum projection view of Z-stack images (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 32 publications.

    1. Rafael Del Olmo, Antonio Dominguez-Alfaro, Jorge L. Olmedo-Martínez, Oihane Sanz, Cristina Pozo-Gonzalo, Maria Forsyth, Nerea Casado. Innovative Strategy for Developing PEDOT Composite Scaffold for Reversible Oxygen Reduction Reaction. The Journal of Physical Chemistry Letters 2024, Article ASAP.
    2. Charalampos Pitsalidis, Anna-Maria Pappa, Alexander J. Boys, Ying Fu, Chrysanthi-Maria Moysidou, Douglas van Niekerk, Janire Saez, Achilleas Savva, Donata Iandolo, Róisín M. Owens. Organic Bioelectronics for In Vitro Systems. Chemical Reviews 2022, 122 (4) , 4700-4790. https://doi.org/10.1021/acs.chemrev.1c00539
    3. Miryam Criado-Gonzalez, Antonio Dominguez-Alfaro, Naroa Lopez-Larrea, Nuria Alegret, David Mecerreyes. Additive Manufacturing of Conducting Polymers: Recent Advances, Challenges, and Opportunities. ACS Applied Polymer Materials 2021, 3 (6) , 2865-2883. https://doi.org/10.1021/acsapm.1c00252
    4. Nerea Casado, Sara Zendegi, Rafael del Olmo, Antonio Dominguez-Alfaro, Maria Forsyth. Tuning Electronic and Ionic Conductivities in Composite Materials for Electrochemical Devices. ACS Applied Polymer Materials 2021, 3 (4) , 1777-1784. https://doi.org/10.1021/acsapm.0c01315
    5. Antonio Dominguez-Alfaro, Nuria Alegret, Blanca Arnaiz, Maitane Salsamendi, David Mecerreyes, Maurizio Prato. Toward Spontaneous Neuronal Differentiation of SH-SY5Y Cells Using Novel Three-Dimensional Electropolymerized Conductive Scaffolds. ACS Applied Materials & Interfaces 2020, 12 (51) , 57330-57342. https://doi.org/10.1021/acsami.0c16645
    6. Reza Eivazzadeh-Keihan, Zahra Sadat, Farnaz Lalebeigi, Nooshin Naderi, Leila Panahi, Fatemeh Ganjali, Sakineh Mahdian, Zahra Saadatidizaji, Mohammad Mahdavi, Elham Chidar, Erfan Soleimani, Azadeh Ghaee, Ali Maleki, Iman Zare. Effects of mechanical properties of carbon-based nanocomposites on scaffolds for tissue engineering applications: a comprehensive review. Nanoscale Advances 2024, 6 (2) , 337-366. https://doi.org/10.1039/D3NA00554B
    7. Rasha A. Nasser, Sagar S. Arya, Khulood H. Alshehhi, Jeremy C.M. Teo, Charalampos Pitsalidis. Conducting polymer scaffolds: a new frontier in bioelectronics and bioengineering. Trends in Biotechnology 2024, 3 https://doi.org/10.1016/j.tibtech.2023.11.017
    8. Aishwarya Joji Mathew, Varsha Lisa John, Vinod T. P.. Gas-Phase Modifications of Carbon Nanostructures. 2024, 1-32. https://doi.org/10.1007/978-3-031-14955-9_26-1
    9. Morteza Eskandani, Hossein Derakhshankhah, Rana Jahanban-Esfahlan, Mehdi Jaymand. Biomimetic alginate-based electroconductive nanofibrous scaffolds for bone tissue engineering application. International Journal of Biological Macromolecules 2023, 249 , 125991. https://doi.org/10.1016/j.ijbiomac.2023.125991
    10. Nuria Alegret, Antonio Dominguez-Alfaro, David Mecerreyes, Maurizio Prato, Luisa Mestroni, Brisa Peña. Neonatal rat ventricular myocytes interfacing conductive polymers and carbon nanotubes. Cell Biology and Toxicology 2023, 39 (4) , 1627-1639. https://doi.org/10.1007/s10565-022-09753-x
    11. Zixuan Lu, Aimie Pavia, Achilleas Savva, Loig Kergoat, Róisín M. Owens. Organic microelectrode arrays for bioelectronic applications. Materials Science and Engineering: R: Reports 2023, 153 , 100726. https://doi.org/10.1016/j.mser.2023.100726
    12. Ajahar Khan, Khalid A. Alamry, Raed H. Althomali. Functionalized Carbon Nanotubes. 2023, 281-317. https://doi.org/10.1002/9781119905080.ch12
    13. Clíona M. McCarthy, Joanna M. Allardyce, Séamus E. Hickey, Michael T. Walsh, Kieran D. McGourty, John J.E. Mulvihill. Comparison of macroscale and microscale mechanical properties of fresh and fixed-frozen porcine colonic tissue. Journal of the Mechanical Behavior of Biomedical Materials 2023, 138 , 105599. https://doi.org/10.1016/j.jmbbm.2022.105599
    14. Shuping Wang, Shui Guan, Changkai Sun, Hailong Liu, Tianqing Liu, Xuehu Ma. Electrical stimulation enhances the neuronal differentiation of neural stem cells in three-dimensional conductive scaffolds through the voltage-gated calcium ion channel. Brain Research 2023, 1798 , 148163. https://doi.org/10.1016/j.brainres.2022.148163
    15. Guoxu Zhao, Hongwei Zhou, Guorui Jin, Birui Jin, Songmei Geng, Zhengtang Luo, Zigang Ge, Feng Xu. Rational design of electrically conductive biomaterials toward excitable tissues regeneration. Progress in Polymer Science 2022, 131 , 101573. https://doi.org/10.1016/j.progpolymsci.2022.101573
    16. Antonio Dominguez-Alfaro, Ngoc Do Quyen Chau, Stephen Yan, Donato Mancino, Sushma Pamulapati, Steven Williams, Lauren W. Taylor, Oliver S. Dewey, Matteo Pasquali, Maurizio Prato, Alberto Bianco, Alejandro Criado. Electrochemical modification of carbon nanotube fibres. Nanoscale 2022, 14 (26) , 9313-9322. https://doi.org/10.1039/D1NR07495D
    17. Eleana Manousiouthakis, Junggeon Park, John G Hardy, Jae Young Lee, Christine E Schmidt. Towards the translation of electroconductive organic materials for regeneration of neural tissues. Acta Biomaterialia 2022, 139 , 22-42. https://doi.org/10.1016/j.actbio.2021.07.065
    18. R. Krishnaveni, M. Naveen Roobadoss, S. Kumaran, A. Ashok Kumar, K. Geetha. Carbon Nanotubes in Regenerative Medicine. 2022, 1687-1737. https://doi.org/10.1007/978-3-030-91346-5_41
    19. R. Krishnaveni, M. Naveen Roobadoss, S. Kumaran, A. Ashok Kumar, K. Geetha. Carbon Nanotubes in Regenerative Medicine. 2022, 1-51. https://doi.org/10.1007/978-3-319-70614-6_41-1
    20. Fang-Jung Chen, Yu-Sheng Hsiao, I-Hsiang Liao, Chun-Ting Liu, Po-I Wu, Che-Yu Lin, Nai-Chen Cheng, Jiashing Yu. Rational design of a highly porous electronic scaffold with concurrent enhancement in cell behaviors and differentiation under electrical stimulation. Journal of Materials Chemistry B 2021, 9 (37) , 7674-7685. https://doi.org/10.1039/D1TB01260F
    21. Jerika A. Chiong, Helen Tran, Yangju Lin, Yu Zheng, Zhenan Bao. Integrating Emerging Polymer Chemistries for the Advancement of Recyclable, Biodegradable, and Biocompatible Electronics. Advanced Science 2021, 8 (14) https://doi.org/10.1002/advs.202101233
    22. Shahram Amini, Hossein Salehi, Mohsen Setayeshmehr, Masoud Ghorbani. Natural and synthetic polymeric scaffolds used in peripheral nerve tissue engineering: Advantages and disadvantages. Polymers for Advanced Technologies 2021, 32 (6) , 2267-2289. https://doi.org/10.1002/pat.5263
    23. Hamidreza Arzaghi, Bahareh Rahimi, Bashir Adel, Golbarg Rahimi, Zahra Taherian, Afsaneh L. Sanati, Amin Shiralizadeh Dezfuli. Nanomaterials modulating stem cell behavior towards cardiovascular cell lineage. Materials Advances 2021, 2 (7) , 2231-2262. https://doi.org/10.1039/D0MA00957A
    24. Nan Gao, Jiarui Yu, Shuai Chen, Xing Xin, Ling Zang. Interfacial polymerization for controllable fabrication of nanostructured conducting polymers and their composites. Synthetic Metals 2021, 273 , 116693. https://doi.org/10.1016/j.synthmet.2020.116693
    25. I. Jénnifer Gómez, Manuel Vázquez Sulleiro, Daniele Mantione, Nuria Alegret. Carbon Nanomaterials Embedded in Conductive Polymers: A State of the Art. Polymers 2021, 13 (5) , 745. https://doi.org/10.3390/polym13050745
    26. Jose M. González-Domínguez, Miguel Á. Álvarez-Sánchez, Caroline Hadad, Ana M. Benito, Wolfgang K. Maser. Carbon Nanostructures and Polysaccharides for Biomedical Materials. 2021, 98-152. https://doi.org/10.1039/9781839161070-00098
    27. Brisa Peña, Nuria Alegret, Melissa Laughter, Matthew R. G. Taylor, Luisa Mestroni, Maurizio Prato. Carbon Nanotubes for Cardiac Applications. 2021, 223-256. https://doi.org/10.1039/9781839161070-00223
    28. Antonio Dominguez-Alfaro, I. Jénnifer Gómez, Nuria Alegret, David Mecerreyes, Maurizio Prato. 2D and 3D Immobilization of Carbon Nanomaterials into PEDOT via Electropolymerization of a Functional Bis-EDOT Monomer. Polymers 2021, 13 (3) , 436. https://doi.org/10.3390/polym13030436
    29. Donato Mancino, Nuria Alegret. Biomedical applications of carbon nanotubes. 2021, 365-398. https://doi.org/10.1016/B978-0-12-821996-6.00003-8
    30. M. Heydari Gharahcheshmeh, K.K. Gleason. Texture and nanostructural engineering of conjugated conducting and semiconducting polymers. Materials Today Advances 2020, 8 , 100086. https://doi.org/10.1016/j.mtadv.2020.100086
    31. Weiguang Wang, Yanhao Hou, Dean Martinez, Darwin Kurniawan, Wei-Hung Chiang, Paulo Bartolo. Carbon Nanomaterials for Electro-Active Structures: A Review. Polymers 2020, 12 (12) , 2946. https://doi.org/10.3390/polym12122946
    32. Yue Shi, Ruping Liu, Liang He, Hongqing Feng, Ye Li, Zhou Li. Recent development of implantable and flexible nerve electrodes. Smart Materials in Medicine 2020, 1 , 131-147. https://doi.org/10.1016/j.smaim.2020.08.002

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect