Skip to main content
Log in

Effect of Nanotubes on the Electrical and Mechanical Properties of Chitosan Films

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Using the methods of X-ray diffraction and scanning electron microscopy, the structure of composite films based on chitosan and single-wall carbon tubes has been studied. It is shown that the introduction of carbon nanotubes leads to the ordering of the chitosan structure. Increase in concentration of nanotubes (0–3%) causes rise in the value of storage modulus from 3 to 4 GPa (DMA data), increase in electrical conductivity of samples (from 10–11 to 102 S/m), and some changes in their dielectric permittivity (from 5.5. to 26 at an electrical field frequency of 1 kHz). Data on the ionic and electronic components of the conductivity of the composite film are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. T. G. Vladkova. Int. J. Polym. Sci., 2010, 1 (2010). https://doi.org/10.1155/2010/296094

  2. Z. Liu, X. Wan, Z. L. Wang, L. Li. Adv. Mater., 33, 2007429 (2021). https://doi.org/10.1002/adma.202007429

  3. P. Morgan. Carbon Fibers and Their Composites (CRC Press, 2005). https://doi.org/10.1201/9781420028744

    Book  Google Scholar 

  4. I. V. Mitrofanova, I. V. Milto, I. V. Suhodolo, G. Y. Vasyukov. Bull. Sib. Med., 13, 135 (2014). https://doi.org/10.20538/1682-0363-2014-1-135-144

    Article  Google Scholar 

  5. B. Guo, P. X. Ma. Biomacromolecules, 19, 1764 (2018). https://doi.org/10.1021/acs.biomac.8b00276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. V. V. Matrenichev, P. V. Popryadukhin, A. E. Kryukov, N. V. Smirnova, E. M. Ivan’kova, I. P. Dobrovol’skaya, V. E. Yudin. Polym. Sci. Ser. A, 60, 215 (2018). https://doi.org/10.1134/S0965545X18020104

    Article  CAS  Google Scholar 

  7. J. Chen, S. Chen, X. Zhao, L. V. Kuznetsova, S. S. Wong, I. Ojima. J. Am. Chem. Soc., 130, 16778 (2008). https://doi.org/10.1021/ja805570f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. J. Cheng, M. J. Meziani, Y.-P. Sun, S. H. Cheng. Toxicol. Appl. Pharmacol., 250, 184 (2011). https://doi.org/10.1016/j.taap.2010.10.012

    Article  CAS  PubMed  Google Scholar 

  9. B. Pan, D. Cui, P. Xu, C. Ozkan, G. Feng, M. Ozkan, T. Huang, B. Chu, Q. Li, R. He, G. Hu, Nanotechnology, 20, 125101 (2009). https://doi.org/10.1088/0957-4484/20/12/125101

  10. A. Abarrategi, M. C. Gutiérrez, C. Moreno-Vicente, M. J. Hortigüela, V. Ramos, J. L. López-Lacomba, M. L. Ferrer, F. del Monte. Biomaterials, 29, 94 (2008). https://doi.org/10.1016/j.biomaterials.2007.09.021

    Article  CAS  PubMed  Google Scholar 

  11. G. S. Lorite, L. Ylä-Outinen, L. Janssen, O. Pitkänen, T. Joki, J. T. Koivisto, M. Kellomäki, R. Vajtai, S. Narkilahti, K. Kordas. Nano Res., 12, 2894 (2019). https://doi.org/10.1007/s12274-019-2533-2

    Article  CAS  Google Scholar 

  12. V. Lovat, D. Pantarotto, L. Lagostena, B. Cacciari, M. Grandolfo, M. Righi, G. Spalluto, M. Prato, L. Ballerini. Nano Lett., 5, 1107 (2005). https://doi.org/10.1021/nl050637m

    Article  ADS  CAS  PubMed  Google Scholar 

  13. M. Rouabhia, H. Park, S. Meng, H. Derbali, Z. Zhang. PLoS One, 8, 1 (2013). https://doi.org/10.1371/journal.pone.0071660

    Article  CAS  Google Scholar 

  14. B. Reid, M. Zhao. Adv. Wound Care, 3, 184 (2014). https://doi.org/10.1089/wound.2013.0442

    Article  Google Scholar 

  15. M. N. Ravi Kumar. React. Funct. Polym., 46, 1 (2000). https://doi.org/10.1016/S1381-5148(00)00038-9

    Article  Google Scholar 

  16. E. Stewart, N. R. Kobayashi, M. J. Higgins, A. F. Quigley, S. Jamali, S. E. Moulton, R. M. I. Kapsa, G. G. Wallace, J. M. Crook. Tissue Eng. Pt. C-Meth., 21, 385 (2015). https://doi.org/10.1089/ten.tec.2014.0338

    Article  CAS  Google Scholar 

  17. J. Yang, G. Choe, S. Yang, H. Jo, J.Y. Lee. Biomater. Res., 20, 1 (2016). https://doi.org/10.1186/s40824-016-0078-y

    Article  CAS  Google Scholar 

  18. B. Huang. Biomanufacturing Rev., 5, 1 (2020). https://doi.org/10.1007/s40898-020-00009-x

    Article  Google Scholar 

  19. I. P. Dobrovol’skaya, P. V. Popryadukhin, A. Y. Khomenko, E. N. Dresvyanina, V. E. Yudin, V. Y. Elokhovskii, S. N. Chvalun, N. N. Saprykina, T. P. Maslennikova, E. N. Korytkova. Polym. Sci. Ser. A, 53, 418 (2011). https://doi.org/10.1134/S0965545X11050038

    Article  CAS  Google Scholar 

  20. I. P. Dobrovol’skaya, L. I. Slutsker, Z. Yu. Cherejskij, L. E. Utevskij. Vysokomolek. soed. A, 17 (7), 1555 (1975) (in Russian).

    Google Scholar 

  21. E. N. Dresvyanina, S. F. Grebennikov, I. P. Dobrovol’skaya, T. P. Maslennikova, E. M. Ivan’kova, V. E. Yudin. Polym. Sci. Ser. A, 62, 205 (2020). https://doi.org/10.1134/S0965545X20030050

    Article  CAS  Google Scholar 

  22. A. Kamalov, E. Dresvyanina, M. Borisova, N. Smirnova, K. Kolbe, V. Yudin. Mater. Today Proc., 30, 798 (2020). https://doi.org/10.1016/j.matpr.2020.02.346

    Article  CAS  Google Scholar 

  23. C. Gabriel, S. Gabriel, E. Corthout. Phys. Med. Biol., 41, 2231 (1996). https://doi.org/10.1088/0031-9155/41/11/001

    Article  CAS  PubMed  Google Scholar 

  24. B. Tsai, H. Xue, E. Birgersson, S. Ollmar, U. Birgersson. J. Electr. Bioimpedance, 10, 14 (2019). https://doi.org/10.2478/joeb-2019-0003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. J. C. Maxwell. A Treatise on Electricity and Magnetism (Cambridge Univer. Press, Cambridge, 2010).

    Book  Google Scholar 

  26. X. Xia, Z. Zhong, G.J. Weng. Mech. Mater., 109, 42 (2017). https://doi.org/10.1016/j.mechmat.2017.03.014

    Article  Google Scholar 

  27. K. W. Wagner. Archiv f. Elektrotechnik, 2, 371 (1914). https://doi.org/10.1007/BF01657322

    Article  Google Scholar 

  28. S. Bonardd, E. Robles, I. Barandiaran, C. Saldias, A. Leiva, G. Kortaberria. Carbohydr. Polym., 199, 20 (2018). https://doi.org/10.1016/j.carbpol.2018.06.088

    Article  CAS  PubMed  Google Scholar 

  29. E. N. Dresvyanina, I. P. Dobrovol’skaya, V. E. Smirnov, E. N. Popova, E. N. Vlasova, V. E. Yudin. Polym. Sci. Ser. A, 60, 179 (2018). https://doi.org/10.1134/S0965545X18020049

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was carried out with support from the Russian Foundation for Basic Research, grant no. 18-29-17011mk.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Kamalov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamalov, A.M., Kodolova-Chukhontseva, V.V., Dresvyanina, E.N. et al. Effect of Nanotubes on the Electrical and Mechanical Properties of Chitosan Films. Tech. Phys. 68 (Suppl 2), S366–S373 (2023). https://doi.org/10.1134/S1063784223900279

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784223900279

Keywords:

Navigation