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ABSTRACT: Conductive polymers (CPs) such as polypyrrole (PPY) are emerging biomaterials for use as scaffolds and bioelectrodes 

which interact with biological systems electrically. Still, more electrically conductive and biologically interactive CPs are required to 

develop high performance biomaterials and medical devices. In this study, in situ electrochemical copolymerization of polydopamine 

(PDA) and PPY were performed for electrode modification. Their material and biological properties were characterized using multi-

ple techniques. The electrical properties of electrodes coated with PDA/PPY were superior to electrodes coated with PPY alone. The 

growth and differentiation of C2C12 myoblasts and PC12 neuronal cells on PDA/PPY was enhanced compared to PPY. Electrical 

stimulation of PC12 cells on PDA/PPY further promoted neuritogenesis. In vivo EMG signal measurements demonstrated more 

sensitive signals from tibia muscles when using PDA/PPY coated electrodes than bare or PPY coated electrodes, revealing PDA/PPY 

to be a high performance biomaterial with potential for various biomedical applications. 

1. Introduction 

Electrical signals play important roles in biological systems, 

such as electrical communication,1–3 wound healing,4–6 and em-

bryonic development,7–9 inspiring research into the efficient 

mediation of electrical signals between biological tissues and 

medical devices (particularly for bioelectrodes to record or 

stimulate electrophysiological signals in live cells/tissues). To 

this end, electrically conductive polymers (CPs), which contain 

conjugated double bonds with delocalized π-orbitals, have been 

emerged as intermediating materials between bioelectrodes and 

biological system as they can intimately interact with biological 

systems rendering them interesting materials to modify bioelec-

trodes.10–15  

CP-based biomaterials have been utilized to electrically stim-

ulate electrically excitable cells/tissues can affect cellular be-

havior (e.g. proliferation and differentiation of various cells).16–

19 For example, several reports successfully demonstrate pro-

motion of neurite outgrowth of neuronal cells by electrical stim-

ulation through conductive polymer scaffolds. In addition, CP-

modified electrodes can efficiently record electrophysiological 

signals in electrically excitable tissues (e.g., nerves and mus-

cles), which benefit the diagnosis of pathological and physio-

logical conditions.20–25 Among various conductive polymers, 

polypyrrole (PPY) is one of the most studied CPs for biomedi-

cal applications because of its good biocompatibility, high con-

ductivity, ease of synthesis, and environmental stability.10,26–30 

PPY modification of electrodes can dramatically lower electri-

cal impedance by increasing surface areas and charge storage 

capacitance.31,32 PPY biomaterials has been further modified by 

creating specific topographies, incorporating biomolecules 

(e.g., peptides, proteins, and polysaccharides), and modulating 

mechanical properties to improve their biological interac-

tions.28,31,33,34 

Despite the unique benefits of CP-modified electrodes, their 

biocompatibility is often compromised by electrochemical 

functions (e.g. thick CP coatings can decrease the electrical im-

pedance of electrodes but lead to poor cell attachment and 

growth). The exact mechanism for this trade-off has not been 

systematically studied or reported yet. However, several pro-

posed mechanisms have been discussed in the literature. For ex-

ample, toxic monomeric and/or oligomeric units from the CPs 

may leach from the polymer matrices and thereby harm cells 

(problematic for thick CP coatings). Irregular and unstable fea-

tures of thick CP may have negative effects on its interactions 

with cells.32,35 Hence the development of high performance CP 

coatings that have both good biological and electrical charac-

teristics remains a challenge to their clinical translation. Dopa-

mine and its analogues have been widely used to promote adhe-

sion of various substances via various molecular interactions, 

such as hydrogen bonding, hydrophobic interactions, and aro-

matic-cationic interactions. We have previously reported the 

production of robust coatings of PDA/PPY on ITO (indium tin 



 

oxide) and gold electrodes via electrochemical copolymeriza-

tion, which were uniform, adhesive, and conductive. 35 Based 

on these findings, we hypothesized that PDA/PPY coatings can 

promote both the electrochemical and biological properties of 

electrodes and thus enhance the performances of conductive 

polymer biomaterials.  

Here we report the results of our investigation of the interac-

tions of PDA/PPY-modified electrodes with cells in vitro and 

in vivo (Scheme 1). We electrochemically deposited PPY or 

PDA/PPY on electrodes with different charges enabling us to 

vary the thickness and materials properties of these CP coatings. 

We validated the function of the materials in vitro through in-

vestigation of the growth and differentiation of PC12 neuronal 

cells and C2C12 myoblasts on PDA/PPY, and of the potential 

for electrical stimulation of PC12 cells to potentially promote 

neuritogenesis. Furthermore, we validated the function of the 

novel PDA/PPY coated bioelectrodes to sense bioelectronic 

signals in vivo by recording electromyography (EMG) signals.  

 

2. Materials and Methods 

Materials: pyrrole, sodium chloride, aluminum oxide, dopa-

mine hydrochloride, potassium hexacyanoferrate(III), and pot-

tassium hexacyanoferrate(II) were purchased from Sigma-Al-

drich (St. Louis, MO, USA). Dulbecco’s modified Eagle’s me-

dium (DMEM) and fetal bovine serum (FBS) were obtained 

from Hyclone (Logan, UT, USA). Dulbecco’s phosphate buff-

ered saline (DPBS), F12K Kaighn's modification medium 

(F12K), horse serum (HS), antibiotic-antimycotic solution, and 

trypsin/EDTA were purchased from Gibco (Grand Island, NY, 

USA). Aelxa-fluor 488-conjugated phalloidin and DAPI were 

purchased from Invitrogen (Carlsbad, CA, USA). All other re-

agents and solvents were of analytical grade and used as re-

ceived. 

 

Electrochemical synthesis of PPY and PDA/PPY coatings: 

Pyrrole was purified by passing it through an aluminum oxide 

column before use. PDA/PPY films were prepared according to 

our previous report.35 In brief, the PDA/PPY polymerization so-

lution was prepared to have 0.13 M pyrrole, 26 mM dopamine, 

and 0.1 M NaCl in deionized (DI) water at pH 6. Polymerization 

solution for PPY films was prepared to have 0.13 M pyrrole and 

0.1 M NaCl in DI water at pH 6. Individual PPY and PDA/PPY 

samples were electrochemically polymerized using a three-

electrode set-up using a VersaSTAT3 electrochemical working 

station (Princeton Applied Research) with a gold electrode as a 

working electrode, a platinum wire as a counter electrode, and 

a saturated calomel reference electrode (SCE, CH Instrument, 

Inc.). A current density of 1 mA cm-2 was applied to the elec-

trolyte solution. Charges of 50, 100, 200, 300 mC cm-2 were 

employed during the electrochemical PPY and PDA/PPY dep-

osition, respectively, to prepare different electrodes of different 

thickness. The polymerized PPY and PDA/PPY were then care-

fully washed with DI water. 

 

Characterization of PPY and PDA/PPY coatings: Atomic 

force microscopy (AFM, XE-100, Park System, Seoul, Repub-

lic of Korea) was used to characterize the surface topography. 

Substrates were scanned in a tapping mode with an NCHR tip 

(NCHR Nanoworld, Neuchâtel, Switzerland) at a scan rate of 

0.3 Hz. Roughness was calculated from the data by XEI soft-

ware 4.3 (Park Systems, South Korea). Film thickness of the 

PPY and PDA/PPY were measured using the DEKTAK-XT 

stylus profiler (Bruker, Germany). Static water contact angles 

of the various PPY and PDA/PPY films were measured using a 

Phoenix 300 contact angle analyzer (Surface Electro Optics 

Co., Suwon, Republic of Korea). A 10 µL DI water droplet was 

placed on the surface of the substrates. Photographs were ac-

quired and contact angles were measured. Electrochemical im-

pedance spectra of the PPY or PDA/PPY-modified electrodes 

were obtained using VersaSTAT3 electrochemical working sta-
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Scheme 1. A schematic of the electrochemical copolymerization (PDA/PPY) of dopamine and pyrrole and the use of PDA/PPY as 

a high performance biomaterial for cell-stimulating conductive scaffolds and highly sensitive bioelectrode applications. 



 

tion with the three-electrode setup. A tape of a circular hole (in-

ner diameter of 6 mm) was attached onto the electrode surfaces 

to have the same exposed electrode areas (0.283 cm2) in all sam-

ples prior to electrochemical deposition. Impedances of the 

electrodes were measured in the solution (5 mM [Fe(CN)6]
3-/4- 

in PBS) with an amplitude of 5 mV in a range of 0.1-105 Hz. A 

quartz crystal microbalance QCM (SEIKO EG & G, Ltd., Ja-

pan) was used with on gold-coated crystals to monitor protein 

adsorption onto the PPY and PDA electrodes. Briefly, samples 

were mounted in a QCM flow cell and exposed to the solutions 

pumped at 100 mL min-1 for 1 h. Solutions were flowed to the 

QCM cells in an order of PBS, 10% fetal bovine serum (FBS; 

in PBS), and PBS. A peristaltic pump (a low flow variable-flow 

peristaltic pump, Fisher scientific, MA) was used to pump the 

solution to the QCM crystal surface. The frequency changes 

were monitored by WinQCM software. Each adsorption exper-

iment was performed three times. 

 

In vitro cell culture studies: Mouse C2C12 myoblasts were 

maintained on a tissue culture plate in growth medium (DMEM 

containing 10% FBS and 1% antibiotic-antimycotic solution) 

with 5% CO2 at 37°C. Culture media was exchanged every 3 d 

and cells were passaged with a 0.05% trypsin-EDTA solution 

at 90% confluence. C2C12 cells were seeded on substrates at a 

density of 5 X 103 cells cm-2 and cultured for 3 and 7 days. After 

incubation, the samples were fixed in 3.7% paraformaldehyde 

at room temperature for 20 min. The samples were then washed 

with DPBS. Next, the samples were incubated overnight at 

room temperature in permeabilizing/blocking solution (0.1% 

Triton X100, 5% BSA, and 5% goat serum in DPBS) and then 

incubated overnight at 4°C in rabbit anti-MHC antibody solu-

tion (MF-20, R&D systems, 1:200 in the permeabilizing/block-

ing solution), and washed 3 times with DPBS. Next, the sam-

ples were incubated in Alexa Fluor 555-labeled goat anti-rabbit 

antibody solution (1:200 in the permeabilizing/blocking solu-

tion, Life Technologies) for 1 h at room temperature. The sam-

ples were then incubated with 4’-6-diamidino-2-phenylindole 

(DAPI) solution (1:1000 in DPBS) for 3 min at room tempera-

ture were washed three times with DPBS. For F-actin staining, 

the samples were incubated at room temperature for 20 min in 

Aelxa-fluor 488-conjugated phalloidin (1:200 in blocking solu-

tion, Invitrogen). The samples were washed with DPBS and 

then incubated in DAPI (1:2500 in DPBS) solution to stain nu-

clei.  

PC12 neuronal cells were maintained in DMEM supple-

mented with 10% heat-inactivated horse serum, 5% FBS, and 

1% antibiotic-antimycotic solution with 5% CO2 at 37°C. Prior 

to cell culture experiments, PC12 cells were primed by cultur-

ing them on collagen-coated tissue culture plate in the differen-

tiation medium (F-12K medium containing 1% heat-inactivated 

horse serum, 0.5% FBS, and 1% antibiotic-antimycotic solu-

tion) with 100 ng mL-1 soluble nerve growth factor (NGF, 2.5S, 

murine submaxillary gland, Promega, USA) one week prior to 

an experiment. For cell seeding, the samples were washed three 

times with sterile PBS for 1 h. The primed PC12 cells were 

seeded on individual substrates at a density of 2 X 104 cells cm-

2 and cultured for 3 and 5 days. After incubation, the samples 

were fixed in 3.7% paraformaldehyde at room temperature for 

20 min. The samples were then washed with DPBS. Cells were 

permeabilized in DPBS containing 0.1% Triton X-100 for 10 

min and incubated in the blocking solution (2% bovine serum 

albumin (BSA) in DPBS) for 2 min. Then, F-actin staining was 

performed as described above. Fluorescence images were ac-

quired using florescence microscope (DMI3000B, Leica, Ger-

many).  

 

Electrical stimulation of PC12: The effects of electrical stim-

ulation of PC12 growing on the conductive substrates (i.e., PPY 

and PDA/PPY) on their neurite outgrowth were investigated us-

ing the electrical stimulation assembly prepared similarly to the 

previous literature.36 In brief, a polycarbonate well (12 mm in-

ner diameter) was placed on a PPY and PDA/PPY coated-elec-

trode with medical glue. Three electrode systems were em-

ployed, in which a platinum mesh electrode and a silver wire 

electrode were used as a counter electrode and a reference elec-

trode, respectively, while the PPY or PDA/PPY electrode was 

used as a working electrode.  For electrical stimulation, 24 h 

after the seeding, PC12 cells were cultured in the NGF-

containing medium for 24 h and then stimulated with 100 mV 

for 2 h. Then, the cells were cultured for additional 24 h.  

 

Image analysis: Image analysis performed using ImageJ soft-

ware (National Institutes of Health, Bethesda, MD, USA). Ran-

domly acquired images were used for analysis. At least five 

samples were analyzed for each condition. Fusion index was 

defined as the percentage of nuclei present in the polynuclear 

microtubules containing two or more nuclei  among all the nu-

clei in the field of view.37  For PC12 cells, neurite length was 

measured as a linear distance between the cell junction and the 

tip of neurite. Data was collected for neurite lengths greater than 

10 μm. Cells with neurites longer than 10 μm were identified as 

neurite-bearing cells. 

 

In vivo electrophysiological measurement and histological 

assessment: All animal experiments were performed with per-

mission from a committee on animal research and ethics in 

Gwangju Institute of Science and Technology (GIST), Republic 

of Korea. Adult female rats (Orient Bio Inc., South Korea) 

weighing approximately 350 g were used for EMG signal re-

cording. The rats were anesthetized with 3% isoflurane solution 

(Ankuk Inc., Republic of Korea). Concentric needle electrodes 

were electrodeposited with PDA/PPY or PPY and further used 

for EMG recording. These electrodes were inserted into rat tib-

ialis anterior. EMG signals were generated by stimulating of 

sciatic nerve using a Plexigals-platinum electrode with 0.7 V. 

EMG signals and were recorded from the various needle elec-

trodes with Biopac MP36 (Biopac Systems, Inc., CA, USA).  

 

Histological assessment: To examine the tissue compatibility 

of PDA/PPY-modified electrodes, in vivo animal experiments 

were conducted with male BALB/c mice (six weeks old). 

PDA/PPY coated electrodes were sterilized by soaking in 70% 

ethanol for 1 h, followed by thorough washing with DPBS. The 

mice were anesthetized with 2% isoflurane solution. After dis-

infection of shaved areas with 70% (v/v) ethanol, subcutaneous 

pockets were made to the right and left of a midline incision on 

the back. Two electrodes were implanted (one into each pocket) 

and the skin was sutured with silk thread. Three mice were used 

for samples. After four weeks, mice were sacrificed. Skin and 

muscle tissues containing an implant were embedded in paraf-

fin. Paraffin-embedded tissue block was sectioned at 5 µm 

thickness using a microtome. For histological analyses of tissue 

sections, hematoxylin and eosin (H&E) (Sigma) staining was 



 

performed according to the literature 27; samples were mounted 

in Canada balsam. Images of stained tissue samples were ac-

quired using an optical microscope. 

 

Statistical analysis: All tests were performed at least in trip-

licate and data were presented as the mean ± standard deviation 

(SD) unless otherwise noted. Statistical significance was exam-

ined by one-way analysis of variance (ANOVA) with a Tukey’s 

post-hoc comparison of the means using Origin software. A p-

value less than 0.05 was considered to be statistically signifi-

cant. 

 

3. Results 

3.1. Electrochemical fabrication and characterization of the 

electrodes. 

PPY and PDA/PPY were electrochemically polymerized in a 

chronopotentiometric mode (1 mA cm-2) using either a pyrrole 

solution or a pyrrole/dopamine (1:0.2 molar ratio) solution, re-

spectively.35 The electrochemical polymerization of the PPY 

and PDA/PPY was monitored (Figure 1a). The potentials dur-

ing the polymerization of both polymers decreased and re-

mained constant within ~ 50 s, which is indicative of the oxida-

tive electrochemical polymerization of PPY and PDA/PPY on 

the surface of the electrodes. During the chronopotentiometric 

polymerization, PDA/PPY polymerization potential (~ 0.43 V 

vs SCE) was slightly lower than PPY polymerization potential 

(~ 0.68 V), indicating the presence of dopamine facilitated the 

electrochemical polymerization process by acting as an electron 

mediator during the oxidative polymerization of pyrrole.35 Ad-

ditionally, electrode masses monitored by an electrochemical 

quartz crystal microbalance (EQCM) revealed the formation 

and growth of PPY and PDA/PPY films on the surface of the 

electrodes (Figure 1b). As the deposition time increased, the 

electrode masses concomitantly increased. Mass increases in 

PPY-electrodes were higher than PDA/PPY-electrodes at the 

same current density (1 mA cm-2). For example, the mass in-

creases after 300 mC passage were 9.65 μg and 8.29 μg for PPY 

and PDA/PPY-electrodes, respectively. The thicknesses of the 

PPY and PDA/PPY coatings after electrodeposition with differ-

ent charges was also measured (Figure 1c): the thickness of 

PPY or PDA/PPY layers were 92.7 nm or 63.4 nm for 50 mC 

cm-2, 196 nm or 89.7 nm for 100 mC cm-2, 312 nm or 174 nm 

for 200 mC cm-2, and 453 nm or 200 nm for 300 mC cm-2, re-

spectively. These trends were similar to the increases in the 

electrode’s masses. The thicknesses (or masses) of PPY films 

were higher than those of PDA/PPY films when comparing the 

films prepared with the same deposition charges, which might 

be accounted for by the preferential formation of colloidal 

PDA/PPY particles in the polymerization solution in the vicin-

ity of electrodes rather than deposition on their surfaces during 

electrochemical polymerization.35 We can reproducibly obtain 

PPY electrode coatings (90~450 nm thick) and PDA/PPY elec-

trode coatings (60~200 nm thick) by varying the deposition 

time (i.e. charge passed). The electrochemical and biological 

performances of the coatings of various thicknesses were stud-

ied using various techniques. Examination by AFM (Figure 1d 

and 1e) showed the topographies of both PPY and PDA/PPY 

coatings were substantially affected by deposition charges (or 

thicknesses); thin coatings of both PPY and PDA/PPY were 

smooth, and increasing deposition charges resulted in coatings 

with rougher features. This was manifested as an increased fre-

quency of large nodules for PPY-modified electrodes, whereas 

the PDA/PPY-coated electrodes remained relatively smooth 

without noticeable nodules (e.g., average roughness of 40.27 

nm or 8.55 nm for the PPY films (at 300 mC) and the PDA/PPY 

films (at 300 mC), respectively). The smooth surface features 

of PPY/PDA might be attributed to the well-ordered polymeri-

zation of the PPY component (e.g., without pyrrole α-β cou-

pling) and stabilized intermediates.38,39 The water contact an-

gles of all of the PPY and PDA/PPY-coated electrodes were ~ 

0 50 100 150 200 250 300
0

2

4

6

8

10

M
a
s
s
 (

μ
g
)

Time (s)

 PPY 300mC

 PDA/PPY 300mC

0 50 100 150 200 250 300
0.0

0.5

1.0

1.5

P
o
te

n
ti
a
l 
(V

 v
s
. 
S

C
E

)

Time (s)

 PPY 300mC

 PDA/PPY 300mC

a b

50 100 200 300
0

200

400

600

T
h

ic
k
n
e

s
s
 (

n
m

)

Deposition charge (mC/cm2)

 PPY

 PDA/PPY

c

P
D

A
/P

P
Y

P
P

Y

50 mC 100 mC 200 mC 300 mC

50 100 200 300
0

10

20

30

40

50

R
a
 (

n
m

)

Deposition charge (mC/cm2)

 PPY

 PDA/PPY

d e

Figure 1. Synthesis and characterization of PPY and PDA/PPY-modified electrodes. (a) Potentials and (b) masses of electrodes during a 

chronopotentiometric polymerization (300 mC cm-2) for 300 s. Electrochemical polymerization was conducted in the solutions containing 

pyrrole and pyrrole with dopamine, respectively. (c) Thicknesses of PPY and PDA/PPY layers prepared with different deposition charges. 

(d) Atomic force microscopic images of PPY and PDA/PPY deposited with current densities (50, 100, 200, and 300 mC cm-2). (e) Arithmetic 

average surface roughness of various PPY and PDA/PPY sample surfaces. 



 

44° with no statistically significant differences between the 

PPY and PDA/PPY samples (Supplementary Information Fig-

ure S1), and it is noteworthy that such moderately hydrophilic 

surfaces are suitable for biological interactions, such as protein 

adsorption and cell adhesion.40,41 

 

3.2. Electrochemical properties of PPY and PDA/PPY-

modified electrodes 

The electrochemical impedances of the PPY- and PDA/PPY-

modified gold electrodes were analyzed (Figure 2), observing 

significant decreases in impedances at all frequencies. As the 

thickness of the polymer coating increases, the impedances de-

creased dramatically, and the thickness-impedance plots at 1 Hz 

and 1 kHz are displayed in Figure 2c and 2d. These frequencies 

(i.e., 1 Hz and 1 kHz) were chosen because they encompass the 

biologically important frequency range for electrical stimula-

tion of muscle/nerve tissue and recording electrophysiological 

signals in vivo.42,43 Interestingly, the PDA/PPY electrodes ex-

hibited significantly lower impedances compared to the PPY 

electrodes that had similar thicknesses, for example, the imped-

ance of PPY (50 mC) and PDA/PPY (100 mC) at 1 Hz (which 

had thicknesses of 92.7 nm and 89.7 nm, respectively) was 

1114.37 Ω and 571.61 Ω, respectively (Figure 2c and 2d). In 

addition, as PPY or PDA/PPY coating thickness increased, the 

impedances especially at low frequencies progressively de-

creased, which might be attributed to the increased capacitive 

properties of the electrodes. Conductive polymer coating could 

increase diffusive and/or double layer capacitance by increasing 

electroactive surface areas.44,45 Electrodes with low impedance 

polymer (PDA/PPY)-based coatings have great potential for ap-

plication for electrical simulation and recording by ensuring ef-

ficient charge transfer between the electrode and cells/tissues. 

 

3.3. In vitro cell culture studies of PPY and PDA/PPY-

modified electrodes. 

The growth and differentiation of C2C12 myoblasts and 

PC12 neuronal cells on PPY and PDA/PPY substrates with dif-

ferent thickness were studied in vitro. As shown in Figure 3, 

myoblast growth and differentiation on PPY substrates was rel-

atively poor. For example, some cells were found only on the 

thin film (i.e., PPY (50 mC)) and few cells on other thicker PPY 

samples at day 3. This poor cell growth is frequently observed 

when using PPY-based materials.33 By comparison the 

PDA/PPY samples supported myoblast growth, with signifi-

cantly more cells observed on PDA/PPY (50 mC) compared to 

the other PDA/PPY samples prepared with 100 mC, 200 mC, 

and 300 mC charges. Myoblast numbers on the thin PPY and 

all PDA/PPY substrates increased over 7 days of culture. At 7 

days of culture, the cells on PPY (50 mC), PPY (100 mC), and 

all PDA/PPY samples reached confluence with approximately 

220 ~ 300 cells per image, suggesting that thin PPY films and 

all the tested PDA/PPY films were suitable substrates for my-

oblast growth. Comparing cell growth on PPY and PDA/PPY 

of the similar thicknesses, PDA/PPY films were found to sup-

port more cell attachment and faster growth than PPY films. 

When C2C12 myoblasts become confluent, they begin to dif-

ferentiate into myotubes with morphological changes to form 

fused multinucleated cells expressing specific proteins, such as 

myosin heavy chain (MHC).46 MHC immunostaining revealed 

that the MHC expression of cells grown on all PDA/PPY-

coated electrodes at day 7 was higher than that of cells grown 

on PPY-coated electrodes. Furthermore, we examined the fu-

sion index of myoblasts cultured on different samples. My-

oblast fusion is a typically important process in myognesis as 
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Figure 2. Characterization of electrochemical properties of PPY and PDA/PPY. Bode plots of (a) PPY and (b) PDA/PPY-modified gold 

electrodes prepared with different deposition charges. Impedance spectra were collected in a range of 10-1-105 Hz, applying an a.c. sinus-

oidal signal at 5 mV vs. SCE, in PBS solution. Thickness-impedance plots of PPY and PDA/PPY modified electrodes at (c) 1 Hz and (d) 

1 kHz, respectively. 



 

myoblasts are fused to form multiinucleated myotubes and my-

ofiber.47 The fusion index of the cells on thin PDA/PPY samples 

(50 mC and 100 mC) was significantly higher than on thick 

PDA/PPY (200 mC and 300 mC). Interestingly, PDA/PPY (200 

mC and 300 mC) led to higher myogenesis than PPY (100 mC), 

i.e. PDA/PPY-based materials are cell-adhesive conductive bi-

oelectrodes that not only support myoblast growth but also my-

ogenesis.  

Moreover, PC12 neuronal cell growth on PDA/PPY elec-

trodes was investigated (Figure 4). The numbers of PC12 cells 

were compared according to the electrode types (PPY and 

PDA/PPY) and film thicknesses. PC12 cells were homogene-

ously distributed and proliferated well on all of PDA/PPY films 

throughout 7 day culture. Thickness-cell number plots clearly 

demonstrate significant differences in cell numbers between 

PPY and PDA/PPY and their dependency of film thickness 

(Figure 4b). PC12 cells grew well only on PPY (50 mC) elec-

trodes and other PPY samples did not permit cell adhesion and 

growth, with low cell numbers for 7 days. By comparison, more 

PC12 cells were observed on the thinner PDA/PPY electrodes 

at day 3, and the cells on all the PDA/PPY reached confluency 

with similar cell numbers at day 7. Results from PC12 cell cul-

ture on PPY and PDA/PPY were similar to those obtained with 

C2C12 cells, i.e., PC12 cell adhesion and growth was better on 

PPY/PDA regardless of its thickness. As shown in Figure 4a, 

PC12 cells showed neurites on thin PPY and all the PDA/PPY 

films (high confluency and rendered analysis of individual cells 

and neurites challenging).  

Several studies have demonstrated enhanced neurite for-

mation and/or elongation of neuronal cells after electrical stim-

ulation of neuronal cells through various conductive materi-

als.16,48,49 Accordingly, we validated the efficacy of the electri-

cally conductive substrates to electrically stimulate neuronal 

cells and potentially promote neurite outgrowth. Electrical stim-

ulation was performed using PPY (50 mC) and PDA/PPY (100 

mC), which have similar thickness (approximately 90 nm), to 

avoid possible thickness-associated effects on neurite out-

growth (Figure 5). For unstimulated groups, neurite-bearing 

cell portions were not significantly different between the cells 

on PPY (22.7 ± 10.9%) and PDA/PPY (24.3 ± 6.9%). Electrical 

stimulation with PPY samples increased the neurite-bearing cell 

percentages from 22.7% to 31.9% (p = 0.27). Strikingly, PC12 

cells on PDA/PPY showed a large promotion in neurite for-

mation after electrical stimulation (56.5 ± 10.1%) compared to 

unstimulated controls (24.3 ± 6.9%). Electrical stimulation of 

PC12 cells also led to increases in mean neurite length from 

12.6 μm to 22.3 μm for PPY films, and from 19.0 μm to 28.3 

μm for PDA/PPY films. Results indicate that neurite length was 

higher in the PDA/PPY groups than in the PPY groups in both 

the absence and presence of electrical stimuli. The neurites from 
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Figure 3. In vitro C2C12 myoblast growth and differentiation on the PPY and PDA/PPY-modified electrodes. (a) Immunofluorescence 

images of C2C12 cells cultured on PPY and PDA/PPY samples for 3 and 7 days. Cells were stained for F-actin (green), myosin heavy chain 

(MHC) (red), and nuclei (blue). Scale bars = 200 μm. (b) Number of cells at day 3 and day 7. (c) Fusion indices of the C2C12 myoblasts at 

day 7. For image analysis, images were randomly taken from multiple samples and analyzed. n = 5. 



 

PC12 cells grown on PDA/PPY (100 mC) with electrical stim-

ulation were significantly longer than those from other groups. 

These results indicate that PDA/PPY can serve as an effective 

platform to induce neuritogenesis via electrical signals.  

Growth and differentiation of myoblasts and neuronal cells 

could be affected by multiple factors. We postulated that protein 

adsorption might be attributed to the promoted cell growth and 
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Figure 4. In vitro PC12 culture on the PPY and PDA/PPY-coated electrodes. (a) Immunofluorescence images of C2C12 cells cultured on 
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differentiation on the PDA/PPY because of its role in determin-

ing cellular adhesion and growth. Consequently, quartz crystal 

microbalance (QCM) experiments were conducted to monitor 

mass changes of PPY or PDA/PPY electrodes during incubation 

for 1 h in 10% fetal bovine serum (FBS) solution. As shown in 

Figure 6, while bare gold electrodes (used as a control substrate) 

did not show significant mass changes, protein adsorption was 

clear for both PPY and PDA/PPY films. Protein adsorption in-

creased as the thickness of the coatings (PPY and PDA/PPY) 

increased, likely due to their increased surface roughness. Inter-

estingly, more protein adsorption was found from the PDA/PPY 

substrates than the PPY substrates (typically1.5-3.4 times 

higher for PDA/PPY than PPY substrates prepared with the 

same deposition charges). These QCM experimental results 

suggest the dopamine and PDA in the PDA/PPY copolymer en-

hances serum protein adsorption and thereby supports cell 

growth and differentiation, which is consistent with the findings 

of previous studies that PDA can encourage protein adsorption 

and thus cell adhesion.50–53 

 

3.4. In vivo EMG measurement and tissue compatibility tests 

The function of the PDA/PPY-modified electrodes as im-

plantable bioelectrodes was validated by measuring electromy-

ography (EMG) in vivo. EMG signals were recorded from the 

concentric needle electrodes modified with PPY (50 mC) or 

PDA/PPY (100 mC) in the tibialis anterior while stimulating a 

sciatic nerve with a hook type electrode (Figure 7a and 7b). 

When a voltage pulse (0.7 V at 1 Hz) was delivered to the sciatic 

nerve of a rat, the hind limb muscle contracted and generated an 

EMG signal with an M-wave signal. EMG signals recorded 

from various electrodes (i.e., bare, PPY-coated, and PDA/PPY-

coated) were compared. Peak-to-peak amplitudes were higher 

in the signals from the PDA/PPY-modified electrode (10.79 

mV) than those from the bare (7.46 mV) and PPY-modified 

electrode (7.47 mV) (Figure 7c). The signal-to-noise ratio 

(SNR) gradually increased in the order of bare electrode (13.01 

dB), PPY-coated electrode (27.97 dB), and PDA/PPY-coated 

electrodes (37.67 dB) (Figure 7d). High quality signal record-

ings from the PDA/PPY-modified electrodes might be at-

tributed to effective charge transfers and low impedance. Our 

EMG signal recording experiments successfully demonstrated 

that our PDA/PPY modified electrodes were suitable for elec-

trophysiological recording in vivo. In addition, the PDA/PPY 

coating remained intact on the electrode surfaces, as evident by 

the visual inspection of the retrieved electrodes (Supplementary 

Information Figure S2). For tissue compatibility tests, 

PDA/PPY (100 mC)-modified electrodes were subcutaneously 

implanted on male BALB/c mice for four weeks. H&E staining 

revealed no significant inflammatory responses in the vicinity 

of the PDA/PPY implants (Figure 7e). Furthermore, no severe 

symptoms of severe inflammation around the implant sites 

(such as redness or yellow fluids) were observed, suggesting 

good tissue compatibility of the PDA/PPY electrodes and their 

suitability as implantable biomaterials. 

 

4. Discussion 

CPs, including PPY, are recognized as emerging biomaterials 

enabling efficient mediation of electrical signaling with biolog-

ical systems and thereby important components to create func-

tional tissue engineering scaffolds, bionic devices, and prosthet-

ics.24,54–56 Despite their unique properties, several issues are un-

solved. One important issue involves the combination of both 

good electrical properties and biocompatibility. As mentioned 

earlier, increases of the CP coating thickness offer improved 

charge capacitances and electrical conductance (admittance); 

however, concurrently cause impairment of mechanical stabil-

ity (e.g., coating adhesion) and their biological ability to interact 

with cells. This trade-off has been commonly reported by sev-

eral CPs, including PEDOT and PPY.32,57 Consequently, the de-

velopment of CP-deposition presenting both good electrical 

properties and cellular interaction by overcoming the trade-off 

limits is an appealing prospect. Therefore, we aimed to develop 

novel conductive materials presenting good electrical, mechan-

ical, and biocompatible properties to leverage the utilities of 

CP-based biomaterials for the applications as tissue scaffolds 

and bioelectrodes. 
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Dopamine is a key molecular moiety mimicking the adhesive 

components in adhesive foot in mussel byssus.58–60 Thus, dopa-

mine and its analogues have been widely used to promote adhe-

sion of various substances via various molecular interactions, 

such as hydrogen bonding, hydrophobic interactions, and aro-

matic-cationic interactions.61–63 Dopamine can be polymerized 

either by chemical or electrochemical oxidation, and the poly-

meric forms (PDA) exhibit great strength and affinity to various 

molecules/materials. Our previous studies demonstrated that in 

situ electrochemical copolymerization of pyrrole and dopamine 

and their deposition onto electrodes greatly improved mechan-

ical adhesion and electrical performance of the electrodes.35  

Based on these findings, we further attempted to explore the 

suitability of PDA/PPY to address above-mentioned trade-off 

issue and thus develop high performance biomaterials for scaf-

folds and bioelectrode applications. Importantly, comparison 

the electrical properties of PPY and PDA/PPY-modified elec-

trodes of various thicknesses revealed that the PDA/PPY elec-

trodes exhibited lower impedances compared to PPY electrodes 

that had similar thicknesses although the PDA/PPY generally 

had smoother surfaces PPY. This improved electrical property 

can be attributed to the enhanced adhesion of the conductive 

coating to electrode surfaces and well-organized polymeric 

structures between pyrrole units by minimizing random α-β 

coupling.38 Although we could observe the incorporation of 

PDA in the PDA/PPY films in our previous report35, the com-

position of the actual PDA/PPY could not be clearly analyzed 

due to the difficulties in similar atomic compositions and struc-

tures of the PPY and PDA. Accordingly, the future studies for 

the precise determination of the compositions of the PDA/PPY 

films will be necessary to understand and further improve the 

film properties. 

In this present study, we first observed that PPY substrates of 

various thicknesses displayed a distinct trade-off trend; for in-

stance, poor adhesion and growth on the thick PPY films. Con-

versely, PDA/PPY supported the growth and differentiation of 

C2C12 myoblasts and PC12 neuronal cells. These results 

clearly indicate that PDA/PPY supports cell growth at variety 

of thicknesses. Cellular behaviors, such adhesion, growth, and 

differentiation, are strongly affected by surface roughness and 

protein adsorption. Comparison of cell growth on PPY and 

PDA/PPY substrates, which had with similar surface rough-

ness, demonstrated the PDA/PPY is superior to PPY in support-

ing cell growth. For example, PDA/PPY (200 mC) and 

PDA/PPY (300 mC) showed better adhesion of myoblasts and 

neuronal cells compared to PPY (100 mC) although they have 

similar surface roughness (implying that poor adhesion on PPY 

did not result from surface features). Our protein adsorption 

studies revealed that PDA in PDA/PPY greatly enhanced pro-

tein adsorption from 10% FBS solution (in PBS). PDA/PPY 

(200 mC) and PDA/PPY (300 mC) absorbed 4-4.6 times higher 

mass increases compared to PPY (100 mC) during 1 h of incu-

bation in the 10% FBS solution. Since protein adsorption, espe-

cially in serum-containing medium, plays an essential role in 

Figure 7. In vivo implantation of PDA/PPY-modified electrodes for electrophysiological measurement and tissue compatibility studies. 

(a) A schematic illustration of the electrophysiological EMG signal measurement at tibilalis anterior using a concentric needle electrode 

by stimulating sciatic nerve. (b) A photograph of animal experiments showing the stimulating hook electrode and the concentric needle 

electrode. (c) EMG signals recorded from a bare electrode, PPY, and PDA/PPY-coated electrodes. (d) Average peak-to-peak amplitudes 

and (e) signal-to-noise ratios (SNRs) obtained from EMG signals from different electrodes. (f) Micrographs of H&E staining tissue section 

after 4 week implantation of PDA/PPY-modified electrode. 
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initial cell adhesion and growth, the promoted cell adhesion, 

growth, and differentiation on PDA/PPY are believed to result 

from the higher serum protein adsorption. Higher protein ad-

sorption onto PDA/PPY can be explained by bio-adhesive do-

pamine moieties in PDA/PPY.50,64 

Not only electrically excitable cells (e.g., neuronal cells and 

muscle cells) but also other cells (e.g., osteoblasts and stem 

cells) are reported to respond to electrical stimulation. In this 

study, electrical stimulation of PC12 cells was performed to ex-

amine possible promotion of neurite outgrowth for the demon-

stration of uses of the PDA/PPY biomaterials as scaffolds able 

to effectively modulate cellular responses by electrical stimula-

tion. Electrical stimulation with PPY could slightly increase 

neurite formation and elongation in line with the literature.55 

The electrical stimulation of PC12 cells via PDA/PPY led to 

significantly more and longer neurites than PPY groups and un-

stimulated groups. This suggests that PDA/PPY is an effective 

platform to effectively stimulate cells and thus efficiently affect 

cellular responses (growth and differentiation). Enhanced neu-

rite outgrowth on PDA/PPY with electrical stimulation might 

be accounted for higher electrical conductivity and lower im-

pedance that can afford efficient delivery of electrical signals to 

cells. Also, it is possible that the proteins, absorbed more and 

stably on the PDA/PPY, would play collaborative roles with 

electrical signals in induce neurite outgrowth. 

For the demonstration of PDA/PPY-modified electrodes for 

potential in vivo applications as implantable bioelectrodes, we 

implanted the concentric needle electrodes in tibialis anterior of 

a rat and measured EMG signals while stimulating a sciatic 

nerve. PPY electrodes showed higher SNR than bare electrodes, 

but similar peak-to-peak amplitudes to the bare electrodes. 

More sensitive EMG signals with higher peak-to-peak ampli-

tude and SNRs were obtained from the PDA/PPY than others. 

For example, SNRs of the EMG signals from the PDA/PPY-

electrodes were 1.3 and 2.9 times higher than those from the 

PPY and bare electrodes, respectively. High quality EMG sig-

nals from the PDA/PPY electrodes result from the low imped-

ance and strong adhesion of conductive layer on the electrode. 

Conductive polymer coatings often suffer from weak adhesion 

to electrode surfaces resulting in delamination and performance 

instability.65 Dopamine moieties in PDA/PPY are believed to 

enable the firm adhesion of PDA/PPY by avoiding its local de-

lamination and possible instability. Histological inspection of 

the subcutaneous tissues implanted with PDA/PPY electrodes 

for 4 weeks demonstrated the good tissue compatibility. Vari-

ous CPs have been utilized as implantable biomaterials (e.g., 

neural electrodes and scaffolds), which usually exhibited mod-

erate-to-good tissue responses.20,66,67 Yet, some of the CP-

modified electrodes lose their electrical sensitivity after the im-

plantation due to instability of the CPs and/or insufficient tissue 

compatibility.68–70 Our PDA/PPY is a promising electrochemi-

cally sensitive and tissue-compatible biomaterial for the devel-

opment of high performance bioelectrodes.  

 

5. Conclusion 

With the aim of developing high performance conductive bi-

omaterials, we employed electrochemical polymerization of 

pyrrole and dopamine. The PDA/PPY-modified electrodes ex-

hibited excellent electrical and biological properties compared 

to PPY-modified electrodes. Especially, modification of 

PDA/PPY could address a typical trade-off issue between elec-

trical properties and biological compatibility as PDA/PPY pre-

sented good electrochemical and cell-supporting characteristics 

even when thick layers were deposited on electrodes. Our series 

of in vitro cell culture experiments demonstrated that PDA/PPY 

significantly encouraged growth and differentiation of C2C12 

myoblasts and PC12 neuronal cells. Electrical stimulation of 

PC12 using PDA/PPY-modified electrodes showed the further 

promotion of neurite outgrowth. In vivo experiments further 

demonstrated successful recording of high sensitive EMG sig-

nals from rats and good tissue compatibility. We believe that 

the PDA/PPY is a novel conductive biomaterial that enables 

good electrical and biological performances for potential use as 

multifunctional tissue engineering scaffolds and implantable bi-

oelectrodes. 
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Highly performing conductive polymer-modified biomaterials were prepared by in situ electrochemical polymerization 

(PDA/PPY) of pyrrole and dopamine. The PDA/PPY-modified electrodes exhibit superior electrochemical and biological char-

acteristics to conventional PPY electrodes. These conductive PDA/PPY biomaterials offer in vitro electrical stimulation of 

neuronal cells and in vivo EMG recording with good tissue compatibility. 

 

 

 


