ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Carbon Nanotube Transistor Operation at 2.6 GHz

View Author Information
Integrated Nanosystems Research Facility, Electrical Engineering and Computer Science, and Biomedical Engineering, University of California, Irvine, California 92697
Cite this: Nano Lett. 2004, 4, 4, 753–756
Publication Date (Web):March 23, 2004
https://doi.org/10.1021/nl0498740
Copyright © 2004 American Chemical Society

    Article Views

    1987

    Altmetric

    -

    Citations

    188
    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    We present the first demonstration of single-walled carbon nanotube transistor operation at microwave frequencies. To measure the source-drain ac current and voltage at microwave frequencies, we construct a resonant LC impedance-matching circuit at 2.6 GHz. Both semiconducting and metallic nanotubes are measured. Varying the back-gate voltage for a semiconducting nanotube at dc varies the 2.6-GHz source-drain impedance. In contrast, varying the back-gate voltage on a metallic nanotube at dc has no effect on the microwave source-drain impedance. We find the ac source-drain impedance to be different than the dc source-drain resistance, which may be due to the distributed nature of the capacitive and inductive impedance of the contacts to the nanotube.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

     Electrical Engineering and Computer Science.

     Biomedical Engineering.

    *

     Corresponding author. E-mail:  [email protected]. Phone:  949-824-9326. Fax:  949-824-3732.

    Supporting Information


    Terms & Conditions

    Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 188 publications.

    1. Yu Cao, Gerald J. Brady, Hui Gui, Chris Rutherglen, Michael S. Arnold, and Chongwu Zhou . Radio Frequency Transistors Using Aligned Semiconducting Carbon Nanotubes with Current-Gain Cutoff Frequency and Maximum Oscillation Frequency Simultaneously Greater than 70 GHz. ACS Nano 2016, 10 (7) , 6782-6790. https://doi.org/10.1021/acsnano.6b02395
    2. Yuchi Che, Yung-Chen Lin, Pyojae Kim, and Chongwu Zhou . T-Gate Aligned Nanotube Radio Frequency Transistors and Circuits with Superior Performance. ACS Nano 2013, 7 (5) , 4343-4350. https://doi.org/10.1021/nn400847r
    3. Yuchi Che, Alexander Badmaev, Alborz Jooyaie, Tao Wu, Jialu Zhang, Chuan Wang, Kosmas Galatsis, Hani A. Enaya, and Chongwu Zhou . Self-Aligned T-Gate High-Purity Semiconducting Carbon Nanotube RF Transistors Operated in Quasi-Ballistic Transport and Quantum Capacitance Regime. ACS Nano 2012, 6 (8) , 6936-6943. https://doi.org/10.1021/nn301972j
    4. Chuan Wang, Jun-Chau Chien, Hui Fang, Kuniharu Takei, Junghyo Nah, E. Plis, Sanjay Krishna, Ali M. Niknejad, and Ali Javey . Self-Aligned, Extremely High Frequency III–V Metal-Oxide-Semiconductor Field-Effect Transistors on Rigid and Flexible Substrates. Nano Letters 2012, 12 (8) , 4140-4145. https://doi.org/10.1021/nl301699k
    5. Chuan Wang, Alexander Badmaev, Alborz Jooyaie, Mingqiang Bao, Kang L. Wang, Kosmas Galatsis, and Chongwu Zhou . Radio Frequency and Linearity Performance of Transistors Using High-Purity Semiconducting Carbon Nanotubes. ACS Nano 2011, 5 (5) , 4169-4176. https://doi.org/10.1021/nn200919v
    6. Liangbing Hu, David S. Hecht, and George Grüner. Carbon Nanotube Thin Films: Fabrication, Properties, and Applications. Chemical Reviews 2010, 110 (10) , 5790-5844. https://doi.org/10.1021/cr9002962
    7. Liangti Qu, Feng Du and Liming Dai. Preferential Syntheses of Semiconducting Vertically Aligned Single-Walled Carbon Nanotubes for Direct Use in FETs. Nano Letters 2008, 8 (9) , 2682-2687. https://doi.org/10.1021/nl800967n
    8. J. Chaste,, L. Lechner,, P. Morfin,, G. Fève,, T. Kontos,, J.-M., Berroir,, D. C. Glattli,, H. Happy,, P. Hakonen, and, B. Plaçais. Single Carbon Nanotube Transistor at GHz Frequency. Nano Letters 2008, 8 (2) , 525-528. https://doi.org/10.1021/nl0727361
    9. Alexander Tselev,, Michael Woodson,, Cheng Qian, and, Jie Liu. Microwave Impedance Spectroscopy of Dense Carbon Nanotube Bundles. Nano Letters 2008, 8 (1) , 152-156. https://doi.org/10.1021/nl072315j
    10. Wen Pei Lim,, Kui Yao, and, Yifan Chen. Alignment of Carbon Nanotubes by Acoustic Manipulation in a Fluidic Medium. The Journal of Physical Chemistry C 2007, 111 (45) , 16802-16807. https://doi.org/10.1021/jp073456c
    11. Paul Rice, , T. Mitch Wallis,, Stephen E. Russek, and, Pavel Kabos. Broadband Electrical Characterization of Multiwalled Carbon Nanotubes and Contacts. Nano Letters 2007, 7 (4) , 1086-1090. https://doi.org/10.1021/nl062725s
    12. Carola Meyer,, Jeroen M. Elzerman, and, Leo P. Kouwenhoven. Photon-Assisted Tunneling in a Carbon Nanotube Quantum Dot. Nano Letters 2007, 7 (2) , 295-299. https://doi.org/10.1021/nl062273j
    13. C. Balocco,, A. M. Song,, M. Åberg,, A. Forchel,, T. González,, J. Mateos,, I. Maximov,, M. Missous,, A. A. Rezazadeh,, J. Saijets,, L. Samuelson,, D. Wallin,, K. Williams,, L. Worschech, and, H. Q. Xu. Microwave Detection at 110 GHz by Nanowires with Broken Symmetry. Nano Letters 2005, 5 (7) , 1423-1427. https://doi.org/10.1021/nl050779g
    14. Jinseong Heo and, Marc Bockrath. Local Electronic Structure of Single-Walled Carbon Nanotubes from Electrostatic Force Microscopy. Nano Letters 2005, 5 (5) , 853-857. https://doi.org/10.1021/nl0501765
    15. Jinyu Chen and, C. Patrick Collier. Noncovalent Functionalization of Single-Walled Carbon Nanotubes with Water-Soluble Porphyrins. The Journal of Physical Chemistry B 2005, 109 (16) , 7605-7609. https://doi.org/10.1021/jp050389i
    16. Shivang Agarwal, Amartya S. Banerjee. Solution of the Schrödinger equation for quasi-one-dimensional materials using helical waves. Journal of Computational Physics 2024, 496 , 112551. https://doi.org/10.1016/j.jcp.2023.112551
    17. Yaofei Huang, Kuo Yang, Jun Gao, Zhiyong Zhao, Hongwei Li, Zhenyu Wang. Study on the law and mechanism of anisotropic conductivity of carbon nanotubes film prepared by floating catalytic chemical vapor deposition method. Journal of Materials Research and Technology 2023, 26 , 3571-3585. https://doi.org/10.1016/j.jmrt.2023.08.129
    18. Youssef Nadir, Hassan Belahrach, Abdelilah Ghammaz, Aze-eddine Naamane, Mohammed Radouani. Electrical Transport Modeling of Graphene-Based Interconnects. 2023https://doi.org/10.5772/intechopen.105456
    19. Zoya Kosakowski, Svetlana von Gratowski, Victor Koledov, Anatoly Smolovich, Andrey Orlov, Vladimir Shavrov, Ning Dai. Study of Cold Field Emission from CNT Using Nanomanipulation Based on Nanogripper with Shape Memory Effect. 2022, 592-596. https://doi.org/10.1109/3M-NANO56083.2022.9941631
    20. Mohammadreza Kolahdouz, Buqing Xu, Aryanaz Faghih Nasiri, Maryam Fathollahzadeh, Mahmoud Manian, Hossein Aghababa, Yuanyuan Wu, Henry H. Radamson. Carbon-Related Materials: Graphene and Carbon Nanotubes in Semiconductor Applications and Design. Micromachines 2022, 13 (8) , 1257. https://doi.org/10.3390/mi13081257
    21. Baohui Xu, Rongmei Chen, Jiuren Zhou, Jie Liang. Recent Progress and Challenges Regarding Carbon Nanotube On-Chip Interconnects. Micromachines 2022, 13 (7) , 1148. https://doi.org/10.3390/mi13071148
    22. Gustavo Vera-Reveles, José Vulfrano González-Fernández, Juan Francisco Castillo-León, Francisco Javier González, Ramón Díaz de León-Zapata, Ariel Benjamín de la Rosa-Zapata, Norma Orocio-Castro, Jorge Simón. Tuning Bolometric Parameters of Sierpinski Fractal Antenna-Coupled Uncracked/Cracked SWCNT Films by Thermoelectric Characterization at UHF Frequencies. Electronics 2022, 11 (11) , 1665. https://doi.org/10.3390/electronics11111665
    23. Kun Peng, Michael B. Johnston. The application of one-dimensional nanostructures in terahertz frequency devices. Applied Physics Reviews 2021, 8 (4) https://doi.org/10.1063/5.0060797
    24. Nataliya A. Sakharova, André F. G. Pereira, Jorge M. Antunes, José V. Fernandes. Mechanical Characterization of Multiwalled Carbon Nanotubes: Numerical Simulation Study. Materials 2020, 13 (19) , 4283. https://doi.org/10.3390/ma13194283
    25. Alaa Taleb, Denis Pomorski, Christophe Boyaval, Steve Arscott, Gilles Dambrine, Kamel Haddadi. Control and Automation for Miniaturized Microwave GSG Nanoprobing. 2020, 751-768. https://doi.org/10.1007/978-3-030-22587-2_24
    26. Joo-Won Lee, Joon-Soo Yoon, Young-Min Kim, Yun-Mo Sung. Wet chemical growth of semiconductor 1-D nanostructure arrays on conductive substrates. Journal of Materials Chemistry C 2019, 7 (39) , 12019-12047. https://doi.org/10.1039/C9TC03594J
    27. Giorgio Zoppellaro, Aristides Bakandritsos, Jiří Tuček, Piotr Błoński, Toma Susi, Petr Lazar, Zdeněk Bad'ura, Tomáš Steklý, Ariana Opletalová, Michal Otyepka, Radek Zbořil. Microwave Energy Drives “On–Off–On” Spin‐Switch Behavior in Nitrogen‐Doped Graphene. Advanced Materials 2019, 31 (37) https://doi.org/10.1002/adma.201902587
    28. Mostafa Bedewy, Moataz Abdulhafez. Understanding Stochasticity in Carbon Nanotube Manufacturing. 2019, 31-64. https://doi.org/10.1016/B978-0-12-812667-7.00002-1
    29. Saurabh Srivastava, Brijesh Kumar Mishra. Electron transport through double-walled carbon nanotube quantum dots. Journal of Nanoparticle Research 2018, 20 (11) https://doi.org/10.1007/s11051-018-4398-9
    30. Sina Soleymani, Saeed Golmohammadi. Subwavelength Coupling of Surface Plasmon Polaritons Along Parallel Armchair Single-Wall Carbon Nanotubes. IEEE Transactions on Nanotechnology 2018, 17 (6) , 1159-1164. https://doi.org/10.1109/TNANO.2018.2855721
    31. George Fikioris, Anastasios Papathanasopoulos. On the Thin-Wire Integral Equations for Carbon Nanotube Antennas. IEEE Transactions on Antennas and Propagation 2018, 66 (7) , 3567-3576. https://doi.org/10.1109/TAP.2018.2826651
    32. Jens Lienig, Matthias Thiele. Mitigating Electromigration in Physical Design. 2018, 99-148. https://doi.org/10.1007/978-3-319-73558-0_4
    33. Yang Liu, Yichun Zhang, Cheng Zhang, Benyuan Huang, Xu Wang, Yulong Li, Wenchuan Lai, Xiangyang Liu. Aligned fluorinated single-walled carbon nanotubes as a transmission channel towards attenuation of broadband electromagnetic waves. Journal of Materials Chemistry C 2018, 6 (35) , 9399-9409. https://doi.org/10.1039/C8TC02522C
    34. Michael Ridley, Riku Tuovinen. Time-dependent Landauer-Büttiker approach to charge pumping in ac-driven graphene nanoribbons. Physical Review B 2017, 96 (19) https://doi.org/10.1103/PhysRevB.96.195429
    35. Yu Cao, Sen Cong, Xuan Cao, Fanqi Wu, Qingzhou Liu, Moh. R. Amer, Chongwu Zhou. Review of Electronics Based on Single-Walled Carbon Nanotubes. Topics in Current Chemistry 2017, 375 (5) https://doi.org/10.1007/s41061-017-0160-5
    36. . An Introduction to Radio Frequency Nanoelectronics. 2017https://doi.org/10.1017/9781316343098.001
    37. . On-Wafer Measurements of RF Nanoelectronic Devices. 2017https://doi.org/10.1017/9781316343098.004
    38. Antonio Pantano. Effects of mechanical deformation on electronic transport through multiwall carbon nanotubes. International Journal of Solids and Structures 2017, 122-123 , 33-41. https://doi.org/10.1016/j.ijsolstr.2017.05.041
    39. Farhat Majeed, Morteza Shahpari, David V. Thiel. Pole-zero analysis and wavelength scaling of carbon nanotube antennas. International Journal of RF and Microwave Computer-Aided Engineering 2017, 27 (6) , e21103. https://doi.org/10.1002/mmce.21103
    40. Michael Ridley, Angus MacKinnon, Lev Kantorovich. Partition-free theory of time-dependent current correlations in nanojunctions in response to an arbitrary time-dependent bias. Physical Review B 2017, 95 (16) https://doi.org/10.1103/PhysRevB.95.165440
    41. Jean Dijon. Overview of Carbon Nanotubes for Horizontal On-Chip Interconnects. 2017, 165-194. https://doi.org/10.1007/978-3-319-29746-0_6
    42. G. Tulevski, A. Afzali. Directed Assembly of Carbon Nanotubes. 2017, 27-45. https://doi.org/10.1016/B978-0-12-409547-2.12635-6
    43. Aida Todri-Sanial, Raphael Ramos, Hanako Okuno, Jean Dijon, Abitha Dhavamani, Marcus Widlicenus, Katharina Lilienthal, Benjamin Uhlig, Toufik Sadi, Vihar Georgiev, Asen Asenov, Salvatore Amoroso, Andrew Pender, Andrew Brown, Campbell Millar, Fabian Motzfeld, Bernd Gotsmann, Jie Liang, Goncalo Goncalves, Nalin Rupesinghe, Ken Teo. A Survey of Carbon Nanotube Interconnects for Energy Efficient Integrated Circuits. IEEE Circuits and Systems Magazine 2017, 17 (2) , 47-62. https://doi.org/10.1109/MCAS.2017.2689538
    44. Yu Cao, Yuchi Che, Jung-Woo T. Seo, Hui Gui, Mark C. Hersam, Chongwu Zhou. High-performance radio frequency transistors based on diameter-separated semiconducting carbon nanotubes. Applied Physics Letters 2016, 108 (23) https://doi.org/10.1063/1.4953074
    45. Yu Cao, Yuchi Che, Hui Gui, Xuan Cao, Chongwu Zhou. Radio frequency transistors based on ultra-high purity semiconducting carbon nanotubes with superior extrinsic maximum oscillation frequency. Nano Research 2016, 9 (2) , 363-371. https://doi.org/10.1007/s12274-015-0915-7
    46. Chahrazed Dridi, Mourad Zaabat, Azeddine Boudine. The EBG structure with a forest metallic carbon nanotubes analysed by iterative method WCIP. International Journal of Hydrogen Energy 2015, 40 (39) , 13759-13763. https://doi.org/10.1016/j.ijhydene.2015.04.038
    47. Irina I. Nefedova, Dmitry V. Lioubtchenko, Igor S. Nefedov, Antti V. Raisanen. Dielectric Constant Estimation of a Carbon Nanotube Layer on the Dielectric Rod Waveguide at Millimeter Wavelengths. IEEE Transactions on Microwave Theory and Techniques 2015, 63 (10) , 3265-3271. https://doi.org/10.1109/TMTT.2015.2470254
    48. Suzanne Lane, Andreas Karatsolis, Lily Bui. Graphical abstracts. 2015, 1-9. https://doi.org/10.1145/2775441.2775465
    49. G Ulisse, F Brunetti, C Ciceroni, F Gemma, M Dispenza, A M Fiorello, F Ricci, A Di Carlo. A multifinger microtriode with carbon nanotubes field emission cathode operating at GHz frequency. Nanotechnology 2015, 26 (21) , 215204. https://doi.org/10.1088/0957-4484/26/21/215204
    50. Michael Ridley, Angus MacKinnon, Lev Kantorovich. Current through a multilead nanojunction in response to an arbitrary time-dependent bias. Physical Review B 2015, 91 (12) https://doi.org/10.1103/PhysRevB.91.125433
    51. Christophe Brun, Chin Chong Yap, Dominique Baillargeat, Beng Kang Tay. Designing Carbon Nanotube Interconnects for Radio Frequency Applications. 2015, 137-154. https://doi.org/10.1007/978-3-319-21194-7_9
    52. Muhammad Zahir Iqbal, Jordi Pérez‐Puigdemont, Jonghwa Eom, Nuria Ferrer‐Anglada. High‐frequency impedance of single‐walled carbon nanotube networks on transparent flexible substrate. physica status solidi (b) 2014, 251 (12) , 2461-2465. https://doi.org/10.1002/pssb.201451233
    53. Afaf M. A. Saeed, S. S. A. Obayya. Quantum waveguides discontinuities analysis. 2014, 139-140. https://doi.org/10.1109/NUSOD.2014.6935395
    54. R R Hartmann, J Kono, M E Portnoi. Terahertz science and technology of carbon nanomaterials. Nanotechnology 2014, 25 (32) , 322001. https://doi.org/10.1088/0957-4484/25/32/322001
    55. Yuchi Che, Haitian Chen, Hui Gui, Jia Liu, Bilu Liu, Chongwu Zhou. Review of carbon nanotube nanoelectronics and macroelectronics. Semiconductor Science and Technology 2014, 29 (7) , 073001. https://doi.org/10.1088/0268-1242/29/7/073001
    56. Jinyoung Kim, Jaeyoung Jung, Youngbae Jung, Changwon Jung. Analysis of a Dipole Antenna Using Maxwell-SCHRÖDINGER Equation. Journal of the Korea Academia-Industrial cooperation Society 2014, 15 (5) , 3107-3113. https://doi.org/10.5762/KAIS.2014.15.5.3107
    57. Tun Wang, Bin Liu, Shusen Jiang, Hao Rong, Miao Lu. A local bottom-gate structure with low parasitic capacitance for dielectrophoresis assembly and electrical characterization of suspended nanomaterials. Journal of Micromechanics and Microengineering 2014, 24 (5) , 055025. https://doi.org/10.1088/0960-1317/24/5/055025
    58. Henri Happy, Kamel Haddadi, Didier Theron, Tuami Lasri, Giles Dambrine. Measurement Techniques for RF Nanoelectronic Devices: New Equipment to Overcome the Problems of Impedance and Scale Mismatch. IEEE Microwave Magazine 2014, 15 (1) , 30-39. https://doi.org/10.1109/MMM.2013.2288710
    59. David Glay, Abdelhatif El Fellahi, Tuami Lasri. High reference impedance reflectometer for nonresonant matching of near‐field microwave microscope tip probe. Microwave and Optical Technology Letters 2014, 56 (1) , 64-69. https://doi.org/10.1002/mop.28018
    60. J. Kim, S. Jandhyala. Atomic layer deposition of dielectrics for carbon-based electronics. Thin Solid Films 2013, 546 , 85-93. https://doi.org/10.1016/j.tsf.2013.03.078
    61. Bao Q. Ta, Einar Halvorsen, Nils Hoivik, Knut E. Aasmundtveit. Diameter dependency for the electric-field-assisted growth of carbon nanotubes. Applied Physics Letters 2013, 103 (12) https://doi.org/10.1063/1.4821437
    62. Antonio Pantano, Giuseppe Muratore, Nicola Montinaro. Electrical conductance of carbon nanotubes with misaligned ends. Journal of Nanoparticle Research 2013, 15 (9) https://doi.org/10.1007/s11051-013-1885-x
    63. Qiu Yang, Zhiyi Lu, Junfeng Liu, Xiaodong Lei, Zheng Chang, Liang Luo, Xiaoming Sun. Metal oxide and hydroxide nanoarrays: Hydrothermal synthesis and applications as supercapacitors and nanocatalysts. Progress in Natural Science: Materials International 2013, 23 (4) , 351-366. https://doi.org/10.1016/j.pnsc.2013.06.015
    64. Deep Jariwala, Vinod K. Sangwan, Lincoln J. Lauhon, Tobin J. Marks, Mark C. Hersam. Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing. Chem. Soc. Rev. 2013, 42 (7) , 2824-2860. https://doi.org/10.1039/C2CS35335K
    65. Bilu Liu, Chuan Wang, Jia Liu, Yuchi Che, Chongwu Zhou. Aligned carbon nanotubes: from controlled synthesis to electronic applications. Nanoscale 2013, 5 (20) , 9483. https://doi.org/10.1039/c3nr02595k
    66. Rui Liu, Haiyan Ding, Jian Lin, Fangping Shen, Zheng Cui, Ting Zhang. Fabrication of platinum-decorated single-walled carbon nanotube based hydrogen sensors by aerosol jet printing. Nanotechnology 2012, 23 (50) , 505301. https://doi.org/10.1088/0957-4484/23/50/505301
    67. Balaji Panchapakesan. Science and Applications of Photomechanical Actuation of Carbon Nanostructures. 2012, 177-236. https://doi.org/10.1201/b13892-9
    68. Dazhen Gu, T M Wallis, P Kabos, P Blanchard, K A Bertness, N A Sanford. Microwave measurements and systematic circuit-model extraction of nanowire metal semiconductor field-effect transistors. Measurement Science and Technology 2012, 23 (10) , 105602. https://doi.org/10.1088/0957-0233/23/10/105602
    69. Lei Zhang, Bin Wang, Jian Wang. First-principles investigation of alternating current density distribution in molecular devices. Physical Review B 2012, 86 (16) https://doi.org/10.1103/PhysRevB.86.165431
    70. T. E. Arutyunova, G. I. Mironov, A. I. Murzashev. Energy spectrum and correlation functions of clusters of carbon nanotubes with the (5, 5) chirality. Physics of the Solid State 2012, 54 (9) , 1917-1929. https://doi.org/10.1134/S106378341209003X
    71. Mathias Steiner, Michael Engel, Yu-Ming Lin, Yanqing Wu, Keith Jenkins, Damon B. Farmer, Jefford J. Humes, Nathan L. Yoder, Jung-Woo T. Seo, Alexander A. Green, Mark C. Hersam, Ralph Krupke, Phaedon Avouris. High-frequency performance of scaled carbon nanotube array field-effect transistors. Applied Physics Letters 2012, 101 (5) , 053123. https://doi.org/10.1063/1.4742325
    72. Suresh Kumar, Harsimran Kaur, Harkiran Kaur, Inderpreet Kaur, Keya Dharamvir, Lalit M. Bharadwaj. Magnetic field-guided orientation of carbon nanotubes through their conjugation with magnetic nanoparticles. Journal of Materials Science 2012, 47 (3) , 1489-1496. https://doi.org/10.1007/s10853-011-5934-5
    73. Janice L. Musfeldt. Optical Properties of Nanoscale Transition Metal Oxides. 2012, 87-126. https://doi.org/10.1007/978-1-4419-9931-3_5
    74. T. Wallis, Kichul Kim, Dejan Filipovic, Pavel Kabos. Nanofibers for RF and Beyond. IEEE Microwave Magazine 2011, 12 (7) , 51-61. https://doi.org/10.1109/MMM.2011.942763
    75. Siyuranga O. Koswatta, Alberto Valdes-Garcia, Mathias B. Steiner, Yu-Ming Lin, Phaedon Avouris. Ultimate RF Performance Potential of Carbon Electronics. IEEE Transactions on Microwave Theory and Techniques 2011, 59 (10) , 2739-2750. https://doi.org/10.1109/TMTT.2011.2150241
    76. T. Mitch Wallis, Dazhen Gu, Atif Imtiaz, Christopher S. Smith, Chin-Jen Chiang, Pavel Kabos, Paul T. Blanchard, Norman A. Sanford, Kris A. Bertness. Electrical Characterization of Photoconductive GaN Nanowires from 50 MHz to 33 GHz. IEEE Transactions on Nanotechnology 2011, 10 (4) , 832-838. https://doi.org/10.1109/TNANO.2010.2084588
    77. Zhou Fang, Zhou Fang. Transmission line model of carbon nanotubes: through the Boltzmann transport equation. Journal of Semiconductors 2011, 32 (6) , 062002. https://doi.org/10.1088/1674-4926/32/6/062002
    78. Daniel F. Santavicca, Joel D. Chudow, Daniel E. Prober, Meninder S. Purewal, Philip Kim. Bolometric and nonbolometric radio frequency detection in a metallic single-walled carbon nanotube. Applied Physics Letters 2011, 98 (22) https://doi.org/10.1063/1.3593500
    79. Meiyong Liao, Yasuo Koide. Carbon-Based Materials: Growth, Properties, MEMS/NEMS Technologies, and MEM/NEM Switches. Critical Reviews in Solid State and Materials Sciences 2011, 36 (2) , 66-101. https://doi.org/10.1080/10408436.2011.572748
    80. William Cheung, Huixin He. Carbon Nanotubes: In Vitro and In Vivo Sensing and Imaging. 2011, 127-159. https://doi.org/10.1002/9783527635160.ch7
    81. Julio R. Pinzón, Adrián Villalta-Cerdas, Luis Echegoyen. Fullerenes, Carbon Nanotubes, and Graphene for Molecular Electronics. 2011, 127-174. https://doi.org/10.1007/128_2011_176
    82. Yuehua Xu, Rui Liu, San-Huang Ke. High-Frequency Electric Transport through Nano-Junctions. Integrated Ferroelectrics 2011, 128 (1) , 110-117. https://doi.org/10.1080/10584587.2011.576609
    83. Chuan Wang, Koungmin Ryu, Lewis Gomez De Arco, Alexander Badmaev, Jialu Zhang, Xue Lin, Yuchi Che, Chongwu Zhou. Synthesis and device applications of high-density aligned carbon nanotubes using low-pressure chemical vapor deposition and stacked multiple transfer. Nano Research 2010, 3 (12) , 831-842. https://doi.org/10.1007/s12274-010-0054-0
    84. Hiroyuki Ishii, Nobuhiko Kobayashi, Kenji Hirose. Order- N electron transport calculations from ballistic to diffusive regimes by a time-dependent wave-packet diffusion method: Application to transport properties of carbon nanotubes. Physical Review B 2010, 82 (8) https://doi.org/10.1103/PhysRevB.82.085435
    85. Frank Schwierz. Graphene transistors. Nature Nanotechnology 2010, 5 (7) , 487-496. https://doi.org/10.1038/nnano.2010.89
    86. Navid Paydavosi, Mohammad Meysam Zargham, Kyle David Holland, Curtis Michael Dublanko, Mani Vaidyanathan. Nonquasi-Static Effects and the Role of Kinetic Inductance in Ballistic Carbon-Nanotube Transistors. IEEE Transactions on Nanotechnology 2010, 9 (4) , 449-463. https://doi.org/10.1109/TNANO.2009.2032918
    87. Serin Park, Sohee Park, Hye-Mi So, Eun-Kyoung Jeon, Dong-Won Park, Ju-Jin Kim, Beom Soo Kim, Ki-jeong Kong, Hyunju Chang, Jeong-O. Lee. Computer-aided design and growth of single-walled carbon nanotubes on 4 in. wafers for electronic device applications. Carbon 2010, 48 (8) , 2218-2224. https://doi.org/10.1016/j.carbon.2010.02.030
    88. San-Huang Ke, Rui Liu, Weitao Yang, Harold U. Baranger. Time-dependent transport through molecular junctions. The Journal of Chemical Physics 2010, 132 (23) https://doi.org/10.1063/1.3435351
    89. D A Jack, C-S Yeh, Z Liang, S Li, J G Park, J C Fielding. Electrical conductivity modeling and experimental study of densely packed SWCNT networks. Nanotechnology 2010, 21 (19) , 195703. https://doi.org/10.1088/0957-4484/21/19/195703
    90. Peter Russer, Nikolaus Fichtner. Nanoelectronics in Radio-Frequency Technology. IEEE Microwave Magazine 2010, 11 (3) , 119-135. https://doi.org/10.1109/MMM.2010.936077
    91. William Cheung, Francesco Pontoriero, Oleh Taratula, Alex M. Chen, Huixin He. DNA and carbon nanotubes as medicine. Advanced Drug Delivery Reviews 2010, 62 (6) , 633-649. https://doi.org/10.1016/j.addr.2010.03.007
    92. Carissa S. Jones, Xuejun Lu, Mike Renn, Mike Stroder, Wu-Sheng Shih. Aerosol-jet-printed, high-speed, flexible thin-film transistor made using single-walled carbon nanotube solution. Microelectronic Engineering 2010, 87 (3) , 434-437. https://doi.org/10.1016/j.mee.2009.05.034
    93. S.M. Fontana, M.D. Dadmun, D.H. Lowndes. Long-range order of cylinders in diblock copolymer thin films using graphoepitaxy. Thin Solid Films 2010, 518 (10) , 2783-2792. https://doi.org/10.1016/j.tsf.2009.10.161
    94. Diego Kienle, Mani Vaidyanathan, François Léonard. Self-consistent ac quantum transport using nonequilibrium Green functions. Physical Review B 2010, 81 (11) https://doi.org/10.1103/PhysRevB.81.115455
    95. M. Cadek, Otto Vostrowsky, Andreas Hirsch. Carbon, 7. Fullerenes and Carbon Nanomaterials. 2010https://doi.org/10.1002/14356007.n05_n06
    96. Guangcun Shan, Miao Zhang, Wei Huang. A model for THz silicon nanotube transistor. 2010, 181-182. https://doi.org/10.1109/INEC.2010.5424615
    97. Chris Rutherglen, Dheeraj Jain, Peter Burke. Nanotube electronics for radiofrequency applications. Nature Nanotechnology 2009, 4 (12) , 811-819. https://doi.org/10.1038/nnano.2009.355
    98. Hui Pan, Yinghui Zhao. Time-dependent quantum transport behavior through T-shaped double quantum dots. Journal of Physics: Condensed Matter 2009, 21 (26) , 265501. https://doi.org/10.1088/0953-8984/21/26/265501
    99. Diego Kienle, François Léonard. Terahertz Response of Carbon Nanotube Transistors. Physical Review Letters 2009, 103 (2) https://doi.org/10.1103/PhysRevLett.103.026601
    100. Alireza Nojeh. Nanoscale Devices: Applications and Modeling. 2009, 31-65. https://doi.org/10.1002/9780470429983.ch2
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect