ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Radio Frequency Transistors Using Aligned Semiconducting Carbon Nanotubes with Current-Gain Cutoff Frequency and Maximum Oscillation Frequency Simultaneously Greater than 70 GHz

View Author Information
Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089, United States
Department of Materials Science and Engineering, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
§ Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
Carbonics Inc., Marina del Rey, California 90292, United States
Cite this: ACS Nano 2016, 10, 7, 6782–6790
Publication Date (Web):June 21, 2016
https://doi.org/10.1021/acsnano.6b02395
Copyright © 2016 American Chemical Society

    Article Views

    1768

    Altmetric

    -

    Citations

    62
    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    In this paper, we report record radio frequency (RF) performance of carbon nanotube transistors based on combined use of a self-aligned T-shape gate structure, and well-aligned, high-semiconducting-purity, high-density polyfluorene-sorted semiconducting carbon nanotubes, which were deposited using dose-controlled, floating evaporative self-assembly method. These transistors show outstanding direct current (DC) performance with on-current density of 350 μA/μm, transconductance as high as 310 μS/μm, and superior current saturation with normalized output resistance greater than 100 kΩ·μm. These transistors create a record as carbon nanotube RF transistors that demonstrate both the current-gain cutoff frequency (ft) and the maximum oscillation frequency (fmax) greater than 70 GHz. Furthermore, these transistors exhibit good linearity performance with 1 dB gain compression point (P1dB) of 14 dBm and input third-order intercept point (IIP3) of 22 dBm. Our study advances state-of-the-art of carbon nanotube RF electronics, which have the potential to be made flexible and may find broad applications for signal amplification, wireless communication, and wearable/flexible electronics.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsnano.6b02395.

    • Transfer curves of self-aligned T-shape gate nanotube radio frequency (RF) transistors under various drain-to-source biases, device de-embedding structure, intrinsic de-embedding structure, and de-embedding process for the two-tone test (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 62 publications.

    1. Jiale Qian, Xiaohan Cheng, Jianshuo Zhou, Juexian Cao, Li Ding. Aligned Carbon Nanotubes-Based Radiofrequency Transistors for Amplitude Amplification and Frequency Conversion at Millimeter Wave Band. ACS Nano 2023, 17 (15) , 14742-14749. https://doi.org/10.1021/acsnano.3c02739
    2. Zhen Zhang, Xin’gang Zhang, Zhi Huang, Yakuan Chang, Hudong Chang, Sen Huang, Honggang Liu, Bing Sun. Aligned Carbon Nanotube Arrays with Germanium Protective Layers for Improving the Performance of Radio Frequency Transistors. ACS Applied Nano Materials 2023, 6 (5) , 3293-3302. https://doi.org/10.1021/acsanm.2c05069
    3. Jianshuo Zhou, Lijun Liu, Huiwen Shi, Maguang Zhu, Xiaohan Cheng, Li Ren, Li Ding, Lian-Mao Peng, Zhiyong Zhang. Carbon Nanotube Based Radio Frequency Transistors for K-Band Amplifiers. ACS Applied Materials & Interfaces 2021, 13 (31) , 37475-37482. https://doi.org/10.1021/acsami.1c07782
    4. Thomaati Haridass Vignesh Kumar, Jerome Rajendran, Ramila D. Nagarajan, Gayathri Jeevanandam, Anatoly N. Reshetilov, Ashok K. Sundramoorthy. Selective Chemistry-Based Separation of Semiconducting Single-Walled Carbon Nanotubes and Alignment of the Nanotube Array Network under Electric Field for Field-Effect Transistor Applications. ACS Omega 2021, 6 (8) , 5146-5157. https://doi.org/10.1021/acsomega.0c04607
    5. Severin Schneider, Jacques Lefebvre, Nicolas J. Diercks, Felix J. Berger, François Lapointe, Juliette Schleicher, Patrick R. L. Malenfant, Jana Zaumseil. Phenanthroline Additives for Enhanced Semiconducting Carbon Nanotube Dispersion Stability and Transistor Performance. ACS Applied Nano Materials 2020, 3 (12) , 12314-12324. https://doi.org/10.1021/acsanm.0c02813
    6. Martin Hartmann, Jana Tittmann-Otto, Simon Böttger, Georg Heldt, Martin Claus, Stefan E. Schulz, Michael Schröter, Sascha Hermann. Gate Spacer Investigation for Improving the Speed of High-Frequency Carbon Nanotube-Based Field-Effect Transistors. ACS Applied Materials & Interfaces 2020, 12 (24) , 27461-27466. https://doi.org/10.1021/acsami.0c01171
    7. Donglai Zhong, Huiwen Shi, Li Ding, Chenyi Zhao, Jingxia Liu, Jianshuo Zhou, Zhiyong Zhang, Lian-Mao Peng. Carbon Nanotube Film-Based Radio Frequency Transistors with Maximum Oscillation Frequency above 100 GHz. ACS Applied Materials & Interfaces 2019, 11 (45) , 42496-42503. https://doi.org/10.1021/acsami.9b15334
    8. Lijun Liu, Li Ding, Donglai Zhong, Jie Han, Shuo Wang, Qinghai Meng, Chenguang Qiu, Xingye Zhang, Lian-Mao Peng, Zhiyong Zhang. Carbon Nanotube Complementary Gigahertz Integrated Circuits and Their Applications on Wireless Sensor Interface Systems. ACS Nano 2019, 13 (2) , 2526-2535. https://doi.org/10.1021/acsnano.8b09488
    9. Rahul Rao, Cary L. Pint, Ahmad E. Islam, Robert S. Weatherup, Stephan Hofmann, Eric R. Meshot, Fanqi Wu, Chongwu Zhou, Nicholas Dee, Placidus B. Amama, Jennifer Carpena-Nuñez, Wenbo Shi, Desiree L. Plata, Evgeni S. Penev, Boris I. Yakobson, Perla B. Balbuena, Christophe Bichara, Don N. Futaba, Suguru Noda, Homin Shin, Keun Su Kim, Benoit Simard, Francesca Mirri, Matteo Pasquali, Francesco Fornasiero, Esko I. Kauppinen, Michael Arnold, Baratunde A. Cola, Pavel Nikolaev, Sivaram Arepalli, Hui-Ming Cheng, Dmitri N. Zakharov, Eric A. Stach, Jin Zhang, Fei Wei, Mauricio Terrones, David B. Geohegan, Benji Maruyama, Shigeo Maruyama, Yan Li, W. Wade Adams, A. John Hart. Carbon Nanotubes and Related Nanomaterials: Critical Advances and Challenges for Synthesis toward Mainstream Commercial Applications. ACS Nano 2018, 12 (12) , 11756-11784. https://doi.org/10.1021/acsnano.8b06511
    10. Liang Zhao, Jichao Fan, Chenchi Gong, Alexis Dyke, Weilu Gao, Bo Li. A Critical Review on Recent Progress of Solution‐Processed Monolayer Assembly of Nanomaterials and Applications. Small 2024, 591 https://doi.org/10.1002/smll.202312268
    11. Daniel Sekyi-Arthur, Samuel Yeboah Mensah, Kofi Wi-Adu, Kwadwo Anokye Dompreh, Raymond Edziah, . Tunable High-Frequency Acoustoelectric Current Oscillations in Fluorine-Doped Single-Walled Carbon Nanotubes. Journal of Nanotechnology 2024, 2024 , 1-17. https://doi.org/10.1155/2024/7426184
    12. Mengnan Chang, Jiale Qian, Zhaohui Li, Xiaohan Cheng, Ying Wang, Ling Fan, Juexian Cao, Li Ding. Ku-Band Mixers Based on Random-Oriented Carbon Nanotube Films. Nanomaterials 2024, 14 (5) , 450. https://doi.org/10.3390/nano14050450
    13. Dahyeon Kim, Sung Jin Yang, Nicolás Wainstein, Simon Skrzypczak, Guillaume Ducournau, Emiliano Pallecchi, Henri Happy, Eilam Yalon, Myungsoo Kim, Deji Akinwande. Emerging memory electronics for non-volatile radiofrequency switching technologies. Nature Reviews Electrical Engineering 2024, 1 (1) , 10-23. https://doi.org/10.1038/s44287-023-00001-w
    14. Manojkumar Annamalai, Michael Schröter. A Physics-Based Compact Model for the Static Drain Current in Heterojunction Barrier CNTFETs—Part II: Scattering, High-Field Effects, and Model Verification. IEEE Transactions on Electron Devices 2024, 71 (1) , 30-36. https://doi.org/10.1109/TED.2023.3327040
    15. Yanan Sun, Jiejie Zhu, Wenhui Yi, Yuxiang Wei, Xuejiao Zhou, Peng Zhang, Yang Liu, Peixian Li, Yimin Lei, Xiaohua Ma. Advances in separation of monochiral semiconducting carbon nanotubes and the application in electronics. Journal of Applied Physics 2023, 134 (23) https://doi.org/10.1063/5.0172970
    16. Yiwen Zhang, Huiqian Zhou, Hongze Li, Tinglang Zou, Wenbo Guo, Jianjun Xie, Zhiyong Guo, Yangbo Wu. Digital Circuit for Fast Scan Voltammetry Based on Dual-Frequency Method. Russian Journal of Electrochemistry 2023, 59 (10) , 809-816. https://doi.org/10.1134/S1023193523100130
    17. Chenwei Fan, Xiaohan Cheng, Lin Xu, Maguang Zhu, Sujuan Ding, Chuanhong Jin, Yunong Xie, Lian‐Mao Peng, Zhiyong Zhang. Monolithic three‐dimensional integration of aligned carbon nanotube transistors for high‐performance integrated circuits. InfoMat 2023, 5 (7) https://doi.org/10.1002/inf2.12420
    18. Jianshuo Zhou, Li Ren, Haitao Li, Xiaohan Cheng, Zipeng Pan, Zhiyong Zhang, Li Ding, Lian-Mao Peng. Carbon Nanotube Radiofrequency Transistors With f T / f MAX of 376/318 GHz. IEEE Electron Device Letters 2023, 44 (2) , 329-332. https://doi.org/10.1109/LED.2022.3227133
    19. Manojkumar Annamalai, Michael Schröter. A compact physical expression for the static drain current in heterojunction barrier CNTFETs. Solid-State Electronics 2023, 199 , 108523. https://doi.org/10.1016/j.sse.2022.108523
    20. Leslie M. Valdez-Sandoval, Armando Cid-Delgado, Aníbal Pacheco-Sánchez, Mauro A. Enciso Aguilar, Manojkumar Annamalai, Michael Schröter, Eloy Ramírez-García. A 5.2 GHz Inductorless CNTFET-Based Amplifier Design Feasible for On-Chip Implementation. IEEE Transactions on Nanotechnology 2023, 22 , 679-683. https://doi.org/10.1109/TNANO.2023.3322966
    21. Aaron D. Franklin, Mark C. Hersam, H.-S. Philip Wong. Carbon nanotube transistors: Making electronics from molecules. Science 2022, 378 (6621) , 726-732. https://doi.org/10.1126/science.abp8278
    22. Lishu Wu, Jiayun Dai, Yuechan Kong, Tangsheng Chen, Tong Zhang. RF characterization of InP double heterojunction bipolar transistors on a flexible substrate under bending conditions. Journal of Semiconductors 2022, 43 (9) , 092601. https://doi.org/10.1088/1674-4926/43/9/092601
    23. Mohammad Jouni, Pavol Fedorko, Caroline Celle, David Djurado, Pascale Chenevier, Jérôme Faure-Vincent. Conductivity vs functionalization in single-walled carbon nanotube films. SN Applied Sciences 2022, 4 (4) https://doi.org/10.1007/s42452-022-05016-w
    24. Yanxia Lin, Shibo Liang, Lin Xu, Lijun Liu, Qianlan Hu, Chenwei Fan, Yifan Liu, Jie Han, Zhiyong Zhang, Lian‐Mao Peng. Enhancement‐Mode Field‐Effect Transistors and High‐Speed Integrated Circuits Based on Aligned Carbon Nanotube Films. Advanced Functional Materials 2022, 32 (11) https://doi.org/10.1002/adfm.202104539
    25. Zhen Li, Katherine R. Jinkins, Dingzhou Cui, Mingrui Chen, Zhiyuan Zhao, Michael S. Arnold, Chongwu Zhou. Air-stable n-type transistors based on assembled aligned carbon nanotube arrays and their application in complementary metal-oxide-semiconductor electronics. Nano Research 2022, 15 (2) , 864-871. https://doi.org/10.1007/s12274-021-3567-9
    26. Yi-Fan Liu, Zhi-Yong Zhang, . Carbon based electronic technology in post-Moore era: progress, applications and challenges. Acta Physica Sinica 2022, 71 (6) , 068503. https://doi.org/10.7498/aps.71.20212076
    27. Boli Peng, Sven Mothes, Manojkumar Annamalai, Michael Schroter. Evaluation of Stacked-CNTFET Structures for High-performance Applications. 2021, 1-4. https://doi.org/10.1109/BCICTS50416.2021.9682469
    28. Nicolas F. Zorn, Jana Zaumseil. Charge transport in semiconducting carbon nanotube networks. Applied Physics Reviews 2021, 8 (4) https://doi.org/10.1063/5.0065730
    29. Katherine R. Jinkins, Sean M. Foradori, Vivek Saraswat, Robert M. Jacobberger, Jonathan H. Dwyer, Padma Gopalan, Arganthaël Berson, Michael S. Arnold. Aligned 2D carbon nanotube liquid crystals for wafer-scale electronics. Science Advances 2021, 7 (37) https://doi.org/10.1126/sciadv.abh0640
    30. Yunong Xie, Donglai Zhong, Chenwei Fan, Xiaosong Deng, Lian‐Mao Peng, Zhiyong Zhang. Highly Temperature‐Stable Carbon Nanotube Transistors and Gigahertz Integrated Circuits for Cryogenic Electronics. Advanced Electronic Materials 2021, 7 (8) https://doi.org/10.1002/aelm.202100202
    31. Wenshan Li, Frank Hennrich, Benjamin S. Flavel, Simone Dehm, Manfred Kappes, Ralph Krupke. Principles of carbon nanotube dielectrophoresis. Nano Research 2021, 14 (7) , 2188-2206. https://doi.org/10.1007/s12274-020-3183-0
    32. Huiwen Shi, Li Ding, Donglai Zhong, Jie Han, Lijun Liu, Lin Xu, Pengkun Sun, Hui Wang, Jianshuo Zhou, Li Fang, Zhiyong Zhang, Lian-Mao Peng. Radiofrequency transistors based on aligned carbon nanotube arrays. Nature Electronics 2021, 4 (6) , 405-415. https://doi.org/10.1038/s41928-021-00594-w
    33. Seungyeob Kim, Geun Woo Baek, Jinheon Jeong, Seung Gi Seo, Sung Hun Jin. Scalable and selective N-type conversion for carbon nanotube transistors via patternable polyvinyl alcohol stacked with hydrophobic layers and their application to complementary logic circuits. Journal of Materials Research and Technology 2021, 12 , 243-256. https://doi.org/10.1016/j.jmrt.2021.02.074
    34. Venkatarao Selamneni, Naveen Bokka, Vivek Adepu, Parikshit Sahatiya. Carbon Nanomaterials for Emerging Electronic Devices and Sensors. 2021, 215-258. https://doi.org/10.1007/978-981-16-1052-3_10
    35. Pankaj B. Agarwal, Sk. Masiul Islam, Ravi Agarwal, Nitin Kumar, Avshish Kumar. Carbon Nanotube Alignment Techniques and Their Sensing Applications. 2021, 307-348. https://doi.org/10.1007/978-981-16-1052-3_13
    36. Martin Hartmann, Sascha Hermann, Phil F. Marsh, Christopher Rutherglen, Dawei Wang, Li Ding, Lian-Mao Peng, Martin Claus, Michael Schroter. CNTFET Technology for RF Applications: Review and Future Perspective. IEEE Journal of Microwaves 2021, 1 (1) , 275-287. https://doi.org/10.1109/JMW.2020.3033781
    37. Javier N. Ramos-Silva, Anibal Pacheco-Sanchez, Eloy Ramirez-Garcia, David Jimenez. Multifunctional High-Frequency Circuit Capabilities of Ambipolar Carbon Nanotube FETs. IEEE Transactions on Nanotechnology 2021, 20 , 474-480. https://doi.org/10.1109/TNANO.2021.3082867
    38. Manojkumar Annamalai, Michael Schroter. Compact Formulation for the Bias Dependent Quasi-Static Mobile Charge in Schottky-Barrier CNTFETs. IEEE Transactions on Nanotechnology 2021, 20 , 754-760. https://doi.org/10.1109/TNANO.2021.3116694
    39. Sean M. Foradori, Katherine R. Jinkins, Michael S. Arnold. Link among array non-uniformity, threshold voltage, and subthreshold swing degradation in aligned array carbon nanotube field effect transistors. Journal of Applied Physics 2020, 128 (23) https://doi.org/10.1063/5.0031082
    40. Mengyu Zhao, Yahong Chen, Kexin Wang, Zhaoxuan Zhang, Jason K. Streit, Jeffrey A. Fagan, Jianshi Tang, Ming Zheng, Chaoyong Yang, Zhi Zhu, Wei Sun. DNA-directed nanofabrication of high-performance carbon nanotube field-effect transistors. Science 2020, 368 (6493) , 878-881. https://doi.org/10.1126/science.aaz7435
    41. Lijun Liu, Jie Han, Lin Xu, Jianshuo Zhou, Chenyi Zhao, Sujuan Ding, Huiwen Shi, Mengmeng Xiao, Li Ding, Ze Ma, Chuanhong Jin, Zhiyong Zhang, Lian-Mao Peng. Aligned, high-density semiconducting carbon nanotube arrays for high-performance electronics. Science 2020, 368 (6493) , 850-856. https://doi.org/10.1126/science.aba5980
    42. Javier N Ramos-Silva, Aníbal Pacheco-Sánchez, Mauro A Enciso-Aguilar, David Jiménez, Eloy Ramírez-García. Small-signal parameters extraction and noise analysis of CNTFETs. Semiconductor Science and Technology 2020, 35 (4) , 045024. https://doi.org/10.1088/1361-6641/ab760b
    43. Anibal Pacheco-Sanchez, Martin Claus. Bias-Dependent Contact Resistance Characterization of Carbon Nanotube FETs. IEEE Transactions on Nanotechnology 2020, 19 , 47-51. https://doi.org/10.1109/TNANO.2019.2958677
    44. Christopher Rutherglen, Alexander A. Kane, Philbert F. Marsh, Tyler A. Cain, Basem I. Hassan, Mohammed R. AlShareef, Chongwu Zhou, Kosmas Galatsis. Wafer-scalable, aligned carbon nanotube transistors operating at frequencies of over 100 GHz. Nature Electronics 2019, 2 (11) , 530-539. https://doi.org/10.1038/s41928-019-0326-y
    45. Yihang Chu, Chunqi Qian, Premjeet Chahal, Changyong Cao. Printed Diodes: Materials Processing, Fabrication, and Applications. Advanced Science 2019, 6 (6) https://doi.org/10.1002/advs.201801653
    46. Jun Hirotani, Yutaka Ohno. Carbon Nanotube Thin Films for High-Performance Flexible Electronics Applications. Topics in Current Chemistry 2019, 377 (1) https://doi.org/10.1007/s41061-018-0227-y
    47. Sven Mothes, Michael Schroter. Three-Dimensional Transport Simulations and Modeling of Densely Packed CNTFETs. IEEE Transactions on Nanotechnology 2018, 17 (6) , 1282-1287. https://doi.org/10.1109/TNANO.2018.2874109
    48. Andrea Perinot, Michele Giorgio, Mario Caironi. Development of Organic Field‐effect Transistors for Operation at High Frequency. 2018, 71-94. https://doi.org/10.1002/9783527804894.ch4
    49. Muthupandian Cheralathan, Martin Claus, Stefan Blawid. Projected Tolerances of Carbon Nanotube Current-Mode Logic to Process Variability. IEEE Transactions on Circuits and Systems II: Express Briefs 2018, 65 (6) , 704-708. https://doi.org/10.1109/TCSII.2017.2781139
    50. Martin Hartmann, René Schubel, Martin Claus, Rainer Jordan, Stefan E Schulz, Sascha Hermann. Polymer-based doping control for performance enhancement of wet-processed short-channel CNTFETs. Nanotechnology 2018, 29 (3) , 035203. https://doi.org/10.1088/1361-6528/aa9d4e
    51. Donglai Zhong, Zhiyong Zhang, Li Ding, Jie Han, Mengmeng Xiao, Jia Si, Lin Xu, Chenguang Qiu, Lian-Mao Peng. Gigahertz integrated circuits based on carbon nanotube films. Nature Electronics 2018, 1 (1) , 40-45. https://doi.org/10.1038/s41928-017-0003-y
    52. James Semple, Dimitra G Georgiadou, Gwenhivir Wyatt-Moon, Gerwin Gelinck, Thomas D Anthopoulos. Flexible diodes for radio frequency (RF) electronics: a materials perspective. Semiconductor Science and Technology 2017, 32 (12) , 123002. https://doi.org/10.1088/1361-6641/aa89ce
    53. Donglai Zhong, Mengmeng Xiao, Zhiyong Zhang, Lian-Mao Peng. Solution-processed carbon nanotubes based transistors with current density of 1.7 mA/μm and peak transconductance of 0.8 mS/μm. 2017, 5.6.1-5.6.4. https://doi.org/10.1109/IEDM.2017.8268335
    54. Mingguang Tuo, Lu Wang, Moh R. Amer, Xiaoju Yu, Stephen B. Cronin, Hao Xin. Suspended individual SWCNT characterization via bottom gate FET configuration. Microwave and Optical Technology Letters 2017, 59 (10) , 2610-2614. https://doi.org/10.1002/mop.30782
    55. Yu Cao, Sen Cong, Xuan Cao, Fanqi Wu, Qingzhou Liu, Moh. R. Amer, Chongwu Zhou. Review of Electronics Based on Single-Walled Carbon Nanotubes. Topics in Current Chemistry 2017, 375 (5) https://doi.org/10.1007/s41061-017-0160-5
    56. Gerald J. Brady, Katherine R. Jinkins, Michael S. Arnold. Channel length scaling behavior in transistors based on individual versus dense arrays of carbon nanotubes. Journal of Applied Physics 2017, 122 (12) https://doi.org/10.1063/1.4996586
    57. Moh R. Amer, Abdulrahman E. Alhussain, Steve B. Cronin. Electron transport of suspended quasi-metallic carbon nanotube transistors in split gate configuration. 2017, 360-363. https://doi.org/10.1109/NANO.2017.8117299
    58. Donglai Zhong, Zhiyong Zhang, Lian-Mao Peng. Carbon nanotube radio-frequency electronics. Nanotechnology 2017, 28 (21) , 212001. https://doi.org/10.1088/1361-6528/aa6a9e
    59. Yei Hwan Jung, Huilong Zhang, Sang June Cho, Zhenqiang Ma. Flexible and Stretchable Microwave Microelectronic Devices and Circuits. IEEE Transactions on Electron Devices 2017, 64 (5) , 1881-1893. https://doi.org/10.1109/TED.2016.2646361
    60. G. Tulevski, A. Afzali. Directed Assembly of Carbon Nanotubes. 2017, 27-45. https://doi.org/10.1016/B978-0-12-409547-2.12635-6
    61. Ravina Singh, Eric Singh, Hari Singh Nalwa. Inkjet printed nanomaterial based flexible radio frequency identification (RFID) tag sensors for the internet of nano things. RSC Adv. 2017, 7 (77) , 48597-48630. https://doi.org/10.1039/C7RA07191D
    62. Gerald J. Brady, Austin J. Way, Nathaniel S. Safron, Harold T. Evensen, Padma Gopalan, Michael S. Arnold. Quasi-ballistic carbon nanotube array transistors with current density exceeding Si and GaAs. Science Advances 2016, 2 (9) https://doi.org/10.1126/sciadv.1601240

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect