ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

A Simple Glycol Nucleic Acid

View Author Information
Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104
Cite this: J. Am. Chem. Soc. 2005, 127, 12, 4174–4175
Publication Date (Web):March 4, 2005
https://doi.org/10.1021/ja042564z
Copyright © 2005 American Chemical Society

    Article Views

    4273

    Altmetric

    -

    Citations

    255
    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    A glycol nucleic acid (GNA) with an acyclic propylene glycol phosphodiester backbone forms stable antiparallel duplexes following the Watson−Crick base pairing rules.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    *

    In papers with more than one author, the asterisk indicates the name of the author to whom inquiries about the paper should be addressed.

    Supporting Information Available

    ARTICLE SECTIONS
    Jump To

    Experimental procedures for the synthesis of (S)-4, (R)-4, (S)-5, (R)-5, and their incorporation into oligonucleotides, UV melting curves and CD spectra. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 255 publications.

    1. Pradeep S. Pallan, Terry P. Lybrand, Eriks Rozners, Mikhail Abramov, Guy Schepers, Elena Eremeeva, Piet Herdewijn, Martin Egli. Conformational Morphing by a DNA Analogue Featuring 7-Deazapurines and 5-Halogenpyrimidines and the Origins of Adenine-Tract Geometry. Biochemistry 2023, 62 (19) , 2854-2867. https://doi.org/10.1021/acs.biochem.3c00327
    2. Hikari Okita, Shuto Kondo, Keiji Murayama, Hiroyuki Asanuma. Rapid Chemical Ligation of DNA and Acyclic Threoninol Nucleic Acid (aTNA) for Effective Nonenzymatic Primer Extension. Journal of the American Chemical Society 2023, 145 (32) , 17872-17880. https://doi.org/10.1021/jacs.3c04979
    3. Giulia Iadevaia, Christopher A. Hunter. Recognition-Encoded Synthetic Information Molecules. Accounts of Chemical Research 2023, 56 (6) , 712-727. https://doi.org/10.1021/acs.accounts.3c00029
    4. Suchismita Rath, Biswajit Mohanty, Subhabrata Sen. “All-Aqueous” Tandem Boc-Deprotection and Alkylation of N-Bocbenzimidazole Derivatives under Visible Light with Alkyl Aryl Diazoacetates: Application to Site-Selective Insertion of Carbenes into the N–H Bond of Purines. The Journal of Organic Chemistry 2023, 88 (2) , 1036-1048. https://doi.org/10.1021/acs.joc.2c02467
    5. Tanushree Mana, Budhaditya Bhattacharya, Hiya Lahiri, Rupa Mukhopadhyay. XNAs: A Troubleshooter for Nucleic Acid Sensing. ACS Omega 2022, 7 (18) , 15296-15307. https://doi.org/10.1021/acsomega.2c00581
    6. Eric Largy, Alexander König, Anirban Ghosh, Debasmita Ghosh, Sanae Benabou, Frédéric Rosu, Valérie Gabelica. Mass Spectrometry of Nucleic Acid Noncovalent Complexes. Chemical Reviews 2022, 122 (8) , 7720-7839. https://doi.org/10.1021/acs.chemrev.1c00386
    7. Yanglingzhi Chen, Ryuya Nagao, Keiji Murayama, Hiroyuki Asanuma. Orthogonal Amplification Circuits Composed of Acyclic Nucleic Acids Enable RNA Detection. Journal of the American Chemical Society 2022, 144 (13) , 5887-5892. https://doi.org/10.1021/jacs.1c12659
    8. Trevor W. Manning, Abigail J. Van Riesen, Richard A. Manderville. Screening Internal Donor–Acceptor Biaryl Nucleobase Surrogates for Turn-On Fluorescence Affords an Aniline–Carboxythiophene Probe for Protein Detection by G-Quadruplex DNA. Bioconjugate Chemistry 2021, 32 (8) , 1791-1801. https://doi.org/10.1021/acs.bioconjchem.1c00270
    9. Li Wang, Shuai Huang, Meng Wang, Zhi-Yang Liu, Xu-Man Chen, Hong Yang. Synthesis and Self-Assembly of Alternating Heterodinucleoside Polytriazoles. Macromolecules 2021, 54 (1) , 341-350. https://doi.org/10.1021/acs.macromol.0c02276
    10. Micaela D. Gray, Prashant S. Deore, Andrew J. Chung, Abigail J. Van Riesen, Richard A. Manderville, Preethi Seelam Prabhakar, Stacey D. Wetmore. Lighting Up the Thrombin-Binding Aptamer G-Quadruplex with an Internal Cyanine-Indole-Quinolinium Nucleobase Surrogate. Direct Fluorescent Intensity Readout for Thrombin Binding without Topology Switching. Bioconjugate Chemistry 2020, 31 (11) , 2596-2606. https://doi.org/10.1021/acs.bioconjchem.0c00530
    11. Scott A. Sandford, Michel Nuevo, Partha P. Bera, Timothy J. Lee. Prebiotic Astrochemistry and the Formation of Molecules of Astrobiological Interest in Interstellar Clouds and Protostellar Disks. Chemical Reviews 2020, 120 (11) , 4616-4659. https://doi.org/10.1021/acs.chemrev.9b00560
    12. Michał Piotrowicz, Aleksandra Kowalczyk, Damian Trzybiński, Krzysztof Woźniak, Konrad Kowalski. Redox-Active Glycol Nucleic Acid (GNA) Components: Synthesis and Properties of the Ferrocenyl-GNA Nucleoside, Phosphoramidite, and Semicanonical Dinucleoside Phosphate. Organometallics 2020, 39 (6) , 813-823. https://doi.org/10.1021/acs.organomet.9b00851
    13. Henderson James Cleaves, II, Christopher Butch, Pieter Buys Burger, Jay Goodwin, Markus Meringer. One Among Millions: The Chemical Space of Nucleic Acid-Like Molecules. Journal of Chemical Information and Modeling 2019, 59 (10) , 4266-4277. https://doi.org/10.1021/acs.jcim.9b00632
    14. Min Luo, Elisabetta Groaz, Mathy Froeyen, Valérie Pezo, Faten Jaziri, Piotr Leonczak, Guy Schepers, Jef Rozenski, Philippe Marlière, Piet Herdewijn. Invading Escherichia coli Genetics with a Xenobiotic Nucleic Acid Carrying an Acyclic Phosphonate Backbone (ZNA). Journal of the American Chemical Society 2019, 141 (27) , 10844-10851. https://doi.org/10.1021/jacs.9b04714
    15. Hiya Lahiri, Sourav Mishra, Rupa Mukhopadhyay. Nanoscale Nucleic Acid Recognition at the Solid–Liquid Interface Using Xeno Nucleic Acid Probes. Langmuir 2019, 35 (27) , 8875-8888. https://doi.org/10.1021/acs.langmuir.8b02770
    16. Keiji Murayama, Yuuhei Yamano, Hiroyuki Asanuma. 8-Pyrenylvinyl Adenine Controls Reversible Duplex Formation between Serinol Nucleic Acid and RNA by [2 + 2] Photocycloaddition. Journal of the American Chemical Society 2019, 141 (24) , 9485-9489. https://doi.org/10.1021/jacs.9b03267
    17. Li Wang, Meng Wang, Ling-Xiang Guo, Ying Sun, Xue-Qin Zhang, Bao-Ping Lin, Hong Yang. Oligodeoxynucleosides with Olefin Bridges. Macromolecules 2019, 52 (2) , 649-659. https://doi.org/10.1021/acs.macromol.8b02115
    18. Xun Han, Dylan W. Domaille, Benjamin D. Fairbanks, Liangcan He, Heidi R. Culver, Xinpeng Zhang, Jennifer N. Cha, Christopher N. Bowman. New Generation of Clickable Nucleic Acids: Synthesis and Active Hybridization with DNA. Biomacromolecules 2018, 19 (10) , 4139-4146. https://doi.org/10.1021/acs.biomac.8b01164
    19. Jonathan A. Swain, Giulia Iadevaia, Christopher A. Hunter. H-Bonded Duplexes based on a Phenylacetylene Backbone. Journal of the American Chemical Society 2018, 140 (36) , 11526-11536. https://doi.org/10.1021/jacs.8b08087
    20. Lei Liang, Ming-Sheng Xie, Tao Qin, Man Zhu, Gui-Rong Qu, and Hai-Ming Guo . Regio- and Enantioselective Synthesis of Chiral Pyrimidine Acyclic Nucleosides via Rhodium-Catalyzed Asymmetric Allylation of Pyrimidines. Organic Letters 2017, 19 (19) , 5212-5215. https://doi.org/10.1021/acs.orglett.7b02482
    21. Alexander E. Stross, Giulia Iadevaia, Diego Núñez-Villanueva, and Christopher A. Hunter . Sequence-Selective Formation of Synthetic H-Bonded Duplexes. Journal of the American Chemical Society 2017, 139 (36) , 12655-12663. https://doi.org/10.1021/jacs.7b06619
    22. Koji Nakano, Junichi Tanabe, Ryoich Ishimatsu, and Toshihiko Imato . Monolithic Peptide–Nucleic Acid Hybrid Functioning as an Artificial Microperoxidase. Bioconjugate Chemistry 2017, 28 (8) , 2031-2034. https://doi.org/10.1021/acs.bioconjchem.7b00216
    23. Mark K. Schlegel, Donald J. Foster, Alexander V. Kel’in, Ivan Zlatev, Anna Bisbe, Muthusamy Jayaraman, Jeremy G. Lackey, Kallanthottathil G. Rajeev, Klaus Charissé, Joel Harp, Pradeep S. Pallan, Martin A. Maier, Martin Egli, and Muthiah Manoharan . Chirality Dependent Potency Enhancement and Structural Impact of Glycol Nucleic Acid Modification on siRNA. Journal of the American Chemical Society 2017, 139 (25) , 8537-8546. https://doi.org/10.1021/jacs.7b02694
    24. Abhishek Singhal, Valentina Bagnacani, Roberto Corradini, and Peter E. Nielsen . Toward Peptide Nucleic Acid (PNA) Directed Peptide Translation Using Ester Based Aminoacyl Transfer. ACS Chemical Biology 2014, 9 (11) , 2612-2620. https://doi.org/10.1021/cb5005349
    25. Vanesa Vaquero-Vara, Di Zhang, Brian C. Dian, David W. Pratt, and Timothy S. Zwier . Delicate Balance of Hydrogen Bonding Forces in d-Threoninol. The Journal of Physical Chemistry A 2014, 118 (35) , 7267-7273. https://doi.org/10.1021/jp410859n
    26. RuoWen Wang, Guizhi Zhu, Lei Mei, Yan Xie, Haibin Ma, Mao Ye, Feng-Ling Qing, and Weihong Tan . Automated Modular Synthesis of Aptamer–Drug Conjugates for Targeted Drug Delivery. Journal of the American Chemical Society 2014, 136 (7) , 2731-2734. https://doi.org/10.1021/ja4117395
    27. Tao Wei, Ming-Sheng Xie, Gui-Rong Qu, Hong-Ying Niu, and Hai-Ming Guo . A New Strategy To Construct Acyclic Nucleosides via Ag(I)-Catalyzed Addition of Pronucleophiles to 9-Allenyl-9H-purines. Organic Letters 2014, 16 (3) , 900-903. https://doi.org/10.1021/ol4036566
    28. Joel R. Morgan, David V. X. Nguyen, Angela R. Frohman, Sara R. Rybka, and John A. Zebala . Reversible Metal-Dependent Destabilization and Stabilization of a Stem-Chelate-Loop Probe Binding to an Unmodified DNA Target. Bioconjugate Chemistry 2012, 23 (10) , 2020-2024. https://doi.org/10.1021/bc3003293
    29. Emil Wierzbinski, Arnie de Leon, Xing Yin, Alexander Balaeff, Kathryn L. Davis, Srinivas Reppireddy, Ravindra Venkatramani, Shahar Keinan, Danith H. Ly, Marcela Madrid, David N. Beratan, Catalina Achim, and David H. Waldeck . Effect of Backbone Flexibility on Charge Transfer Rates in Peptide Nucleic Acid Duplexes. Journal of the American Chemical Society 2012, 134 (22) , 9335-9342. https://doi.org/10.1021/ja301677z
    30. Andrew T. Johnson, Mark K. Schlegel, Eric Meggers, Lars-Oliver Essen, and Olaf Wiest . On the Structure and Dynamics of Duplex GNA. The Journal of Organic Chemistry 2011, 76 (19) , 7964-7974. https://doi.org/10.1021/jo201469b
    31. Hiroyuki Asanuma, Takasuke Toda, Keiji Murayama, Xingguo Liang, and Hiromu Kashida . Unexpectedly Stable Artificial Duplex from Flexible Acyclic Threoninol. Journal of the American Chemical Society 2010, 132 (42) , 14702-14703. https://doi.org/10.1021/ja105539u
    32. Eric Meggers and Lilu Zhang. Synthesis and Properties of the Simplified Nucleic Acid Glycol Nucleic Acid. Accounts of Chemical Research 2010, 43 (8) , 1092-1102. https://doi.org/10.1021/ar900292q
    33. Robert Häner, Florian Garo, Daniel Wenger and Vladimir L. Malinovskii. Oligopyrenotides: Abiotic, Polyanionic Oligomers with Nucleic Acid-like Structural Properties. Journal of the American Chemical Society 2010, 132 (21) , 7466-7471. https://doi.org/10.1021/ja102042p
    34. Filbert Totsingan, Vipul Jain, W. Clay Bracken, Andrea Faccini, Tullia Tedeschi, Rosangela Marchelli, Roberto Corradini, Neville R. Kallenbach and Mark M. Green . Conformational Heterogeneity in PNA:PNA Duplexes. Macromolecules 2010, 43 (6) , 2692-2703. https://doi.org/10.1021/ma902797f
    35. Jan Štambaský, Michal Hocek and Pavel Kočovský. C-Nucleosides: Synthetic Strategies and Biological Applications. Chemical Reviews 2009, 109 (12) , 6729-6764. https://doi.org/10.1021/cr9002165
    36. Sanchita Biswas, Kevin D. Belfield, Ritesh K. Das, Siddhartha Ghosh and Arthur F. Hebard . Block Copolymer-Mediated Formation of Superparamagnetic Nanocomposites. Chemistry of Materials 2009, 21 (23) , 5644-5653. https://doi.org/10.1021/cm902854d
    37. Mark K. Schlegel and Eric Meggers. Improved Phosphoramidite Building Blocks for the Synthesis of the Simplified Nucleic Acid GNA. The Journal of Organic Chemistry 2009, 74 (12) , 4615-4618. https://doi.org/10.1021/jo900365a
    38. Harleen Kaur, Amit Arora, K. Gogoi, P. Solanke, Anita D. Gunjal, Vaijayanti A. Kumar and Souvik Maiti. Effects for the Incorporation of Five-atom Thioacetamido Nucleic Acid (TANA) Backbone on Hybridization Thermodynamics and Kinetics of DNA Duplexes. The Journal of Physical Chemistry B 2009, 113 (9) , 2944-2951. https://doi.org/10.1021/jp808747g
    39. Jesse J. Chen, Xin Cai and Jack W. Szostak . N2′→P3′ Phosphoramidate Glycerol Nucleic Acid as a Potential Alternative Genetic System. Journal of the American Chemical Society 2009, 131 (6) , 2119-2121. https://doi.org/10.1021/ja809069b
    40. Marc-Olivier Ebert, Christian Mang, Ramanarayanan Krishnamurthy, Albert Eschenmoser and Bernhard Jaun. The Structure of a TNA−TNA Complex in Solution: NMR Study of the Octamer Duplex Derived from α-(l)-Threofuranosyl-(3′-2′)-CGAATTCG. Journal of the American Chemical Society 2008, 130 (45) , 15105-15115. https://doi.org/10.1021/ja8041959
    41. Jhimli Sengupta and Anup Bhattacharjya. Synthesis of Ether-Linked Oligoribo- and Xylonucleosides from 3,5′-Ether-Linked Pseudosaccharides. The Journal of Organic Chemistry 2008, 73 (17) , 6860-6863. https://doi.org/10.1021/jo8007429
    42. Yasuhiro Doi, Junya Chiba, Tomoyuki Morikawa and Masahiko Inouye. Artificial DNA Made Exclusively of Nonnatural C-Nucleosides with Four Types of Nonnatural Bases. Journal of the American Chemical Society 2008, 130 (27) , 8762-8768. https://doi.org/10.1021/ja801058h
    43. Mark K. Schlegel, Lars-Oliver Essen and Eric Meggers. Duplex Structure of a Minimal Nucleic Acid. Journal of the American Chemical Society 2008, 130 (26) , 8158-8159. https://doi.org/10.1021/ja802788g
    44. Richard S. Zhang, Elizabeth O. McCullum and John C. Chaput. Synthesis of Two Mirror Image 4-Helix Junctions Derived from Glycerol Nucleic Acid. Journal of the American Chemical Society 2008, 130 (18) , 5846-5847. https://doi.org/10.1021/ja800079j
    45. Allen T. Horhota, Jack W. Szostak, and Larry W. McLaughlin . Glycerol Nucleoside Triphosphates:  Synthesis and Polymerase Substrate Activities. Organic Letters 2006, 8 (23) , 5345-5347. https://doi.org/10.1021/ol062232u
    46. Pradeep S. Pallan,, Peter von Matt,, Christopher J. Wilds,, Karl-Heinz Altmann, and, Martin Egli. RNA-Binding Affinities and Crystal Structure of Oligonucleotides Containing Five-Atom Amide-Based Backbone Structures,. Biochemistry 2006, 45 (26) , 8048-8057. https://doi.org/10.1021/bi060354o
    47. Saman Alavi. Simple Ethers as Models of Sugar Molecules in Calculations of Vertical Excitation Energies of DNA and RNA Nucleosides. The Journal of Physical Chemistry A 2005, 109 (42) , 9536-9541. https://doi.org/10.1021/jp052238l
    48. Siddhant Sethi, Hailili Zumila, Yasuha Watanabe, Junling Mo, Kenzo Fujimoto. UltraFast PhotoInduced double duplex DNA invasion into a 400-mer dsDNA target. Bioorganic & Medicinal Chemistry Letters 2024, 98 , 129597. https://doi.org/10.1016/j.bmcl.2023.129597
    49. Konrad Kowalski. Synthesis and chemical transformations of glycol nucleic acid (GNA) nucleosides. Bioorganic Chemistry 2023, 141 , 106921. https://doi.org/10.1016/j.bioorg.2023.106921
    50. Divita Mathur, Sebastián A. Díaz, Niko Hildebrandt, Ryan D. Pensack, Bernard Yurke, Austin Biaggne, Lan Li, Joseph S. Melinger, Mario G. Ancona, William B. Knowlton, Igor L. Medintz. Pursuing excitonic energy transfer with programmable DNA-based optical breadboards. Chemical Society Reviews 2023, 52 (22) , 7848-7948. https://doi.org/10.1039/D0CS00936A
    51. Keiji Murayama, Hikari Okita, Hiroyuki Asanuma. Highly Functional Acyclic Xeno Nucleic Acids. Bulletin of the Chemical Society of Japan 2023, 96 (10) , 1179-1187. https://doi.org/10.1246/bcsj.20230188
    52. Daniele Rosa-Gastaldo, Andrea Dalla Valle, Tommaso Marchetti, Luca Gabrielli. Sequence-selective duplex formation and template effect in recognition-encoded oligoanilines. Chemical Science 2023, 14 (33) , 8878-8888. https://doi.org/10.1039/D3SC00880K
    53. Yusuke Kawamoto, You Wu, Yuki Takahashi, Yoshinobu Takakura. Development of nucleic acid medicines based on chemical technology. Advanced Drug Delivery Reviews 2023, 199 , 114872. https://doi.org/10.1016/j.addr.2023.114872
    54. Martin Egli, Mark K. Schlegel, Muthiah Manoharan. Acyclic ( S )-glycol nucleic acid ( S -GNA) modification of siRNAs improves the safety of RNAi therapeutics while maintaining potency. RNA 2023, 29 (4) , 402-414. https://doi.org/10.1261/rna.079526.122
    55. Anna Graczyk, Ewa Radzikowska-Cieciura, Renata Kaczmarek, Roza Pawlowska, Arkadiusz Chworos. Modified Nucleotides for Chemical and Enzymatic Synthesis of Therapeutic RNA. Current Medicinal Chemistry 2023, 30 (11) , 1320-1347. https://doi.org/10.2174/0929867330666221014111403
    56. Guilherme Pavão, Isabela Sfalcin, Diego Bonatto. Biocontainment Techniques and Applications for Yeast Biotechnology. Fermentation 2023, 9 (4) , 341. https://doi.org/10.3390/fermentation9040341
    57. Hermann Neitz, Irene Bessi, Valentin Kachler, Manuela Michel, Claudia Höbartner. Tailored Tolane‐Perfluorotolane Assembly as Supramolecular Base Pair Replacement in DNA. Angewandte Chemie 2023, 135 (1) https://doi.org/10.1002/ange.202214456
    58. Hermann Neitz, Irene Bessi, Valentin Kachler, Manuela Michel, Claudia Höbartner. Tailored Tolane‐Perfluorotolane Assembly as Supramolecular Base Pair Replacement in DNA. Angewandte Chemie International Edition 2023, 62 (1) https://doi.org/10.1002/anie.202214456
    59. Hui-Ting Lee, Alexander Lushnikov, Luis A. Marky. Interaction of Poly(Ethylene Glycol)-b-Poly-L-Lysine Copolymers with DNA Structures: A Thermodynamic Investigation. 2023, 1-22. https://doi.org/10.1007/978-981-16-1313-5_35-1
    60. Hui-Ting Lee, Alexander Lushnikov, Luis A. Marky. Interaction of Poly(Ethylene Glycol)-b-Poly-L-Lysine Copolymers with DNA Structures: A Thermodynamic Investigation. 2023, 995-1016. https://doi.org/10.1007/978-981-19-9776-1_35
    61. Klaus Paschek, Dmitry A. Semenov, Ben K. D. Pearce, Kevin Lange, Thomas K. Henning, Ralph E. Pudritz. Meteorites and the RNA World: Synthesis of Nucleobases in Carbonaceous Planetesimals and the Role of Initial Volatile Content. The Astrophysical Journal 2023, 942 (1) , 50. https://doi.org/10.3847/1538-4357/aca27e
    62. Gleb S. Ivanov, Vyacheslav G. Tribulovich, Nikolay B. Pestov, Temitope I. David, Abdul-Saleem Amoah, Tatyana V. Korneenko, Nikolai A. Barlev. Artificial genetic polymers against human pathologies. Biology Direct 2022, 17 (1) https://doi.org/10.1186/s13062-022-00353-7
    63. Yifan Guo, Lianwei Li, Jinxian Yang. Intrachain and interchain complexation of polyacrylic acids bottlebrush chains with Ca2+ in aqueous solutions. Polymer 2022, 260 , 125353. https://doi.org/10.1016/j.polymer.2022.125353
    64. Yongshu Li, Bihui Huang, Zhichao Xue, Yunhua Gao, Zhenjian Zhuo. Nucleic acid therapy in pediatric cancer. Pharmacological Research 2022, 184 , 106441. https://doi.org/10.1016/j.phrs.2022.106441
    65. Kirk M. Brown, Jayaprakash K. Nair, Maja M. Janas, Yesseinia I. Anglero-Rodriguez, Lan T. H. Dang, Haiyan Peng, Christopher S. Theile, Elena Castellanos-Rizaldos, Christopher Brown, Donald Foster, Jeffrey Kurz, Jeffrey Allen, Rajanikanth Maganti, Jing Li, Shigeo Matsuda, Matthew Stricos, Tyler Chickering, Michelle Jung, Kelly Wassarman, Jeff Rollins, Lauren Woods, Alex Kelin, Dale C. Guenther, Melissa W. Mobley, John Petrulis, Robin McDougall, Timothy Racie, Jessica Bombardier, Diana Cha, Saket Agarwal, Lei Johnson, Yongfeng Jiang, Scott Lentini, Jason Gilbert, Tuyen Nguyen, Samantha Chigas, Sarah LeBlanc, Urjana Poreci, Anne Kasper, Arlin B. Rogers, Saeho Chong, Wendell Davis, Jessica E. Sutherland, Adam Castoreno, Stuart Milstein, Mark K. Schlegel, Ivan Zlatev, Klaus Charisse, Mark Keating, Muthiah Manoharan, Kevin Fitzgerald, Jing-Tao Wu, Martin A. Maier, Vasant Jadhav. Expanding RNAi therapeutics to extrahepatic tissues with lipophilic conjugates. Nature Biotechnology 2022, 40 (10) , 1500-1508. https://doi.org/10.1038/s41587-022-01334-x
    66. Aleksandra Kowalczyk, Michał Piotrowicz, Magdalena Gapińska, Damian Trzybiński, Krzysztof Woźniak, Taryn M. Golding, Tameryn Stringer, Gregory S. Smith, Rafał Czerwieniec, Konrad Kowalski. Chemistry of glycol nucleic acid (GNA): Synthesis, photophysical characterization and insight into the biological activity of phenanthrenyl GNA constituents. Bioorganic Chemistry 2022, 125 , 105847. https://doi.org/10.1016/j.bioorg.2022.105847
    67. Mark K Schlegel, Maja M Janas, Yongfeng Jiang, Joseph D Barry, Wendell Davis, Saket Agarwal, Daniel Berman, Christopher R Brown, Adam Castoreno, Sarah LeBlanc, Abigail Liebow, Tara Mayo, Stuart Milstein, Tuyen Nguyen, Svetlana Shulga-Morskaya, Sarah Hyde, Sally Schofield, John Szeto, Lauren Blair Woods, Vedat O Yilmaz, Muthiah Manoharan, Martin Egli, Klaus Charissé, Laura Sepp-Lorenzino, Patrick Haslett, Kevin Fitzgerald, Vasant Jadhav, Martin A Maier. From bench to bedside: Improving the clinical safety of GalNAc–siRNA conjugates using seed-pairing destabilization. Nucleic Acids Research 2022, 50 (12) , 6656-6670. https://doi.org/10.1093/nar/gkac539
    68. Jonathan K. Watts. Nucleic Acid Therapeutics. 2022, 350-402. https://doi.org/10.1039/9781837671328-00350
    69. Keiji Murayama, Hiromu Kashida, Hiroyuki Asanuma. Methyl group configuration on acyclic threoninol nucleic acids ( a TNAs) impacts supramolecular properties. Organic & Biomolecular Chemistry 2022, 20 (20) , 4115-4122. https://doi.org/10.1039/D2OB00266C
    70. Yuichiro Aiba, Masanari Shibata, Osami Shoji. Sequence-Specific Recognition of Double-Stranded DNA by Peptide Nucleic Acid Forming Double-Duplex Invasion Complex. Applied Sciences 2022, 12 (7) , 3677. https://doi.org/10.3390/app12073677
    71. Hiroyuki Asanuma, Yukiko Kamiya, Hiromu Kashida, Keiji Murayama. Xeno nucleic acids (XNAs) having non-ribose scaffolds with unique supramolecular properties. Chemical Communications 2022, 58 (25) , 3993-4004. https://doi.org/10.1039/D1CC05868A
    72. Akinori Kuzuya. Molecular Material for Molecular Robots. 2022, 215-245. https://doi.org/10.1007/978-981-19-3987-7_6
    73. Keiji Murayama, Hikari Okita, Takumi Kuriki, Hiroyuki Asanuma. Nonenzymatic polymerase-like template-directed synthesis of acyclic l-threoninol nucleic acid. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-21128-0
    74. Agnieszka Tomaszewska-Antczak, Piotr Guga. Acyclic Nucleic Acids with Phosphodiester Linkages—Synthesis, Properties and Potential Applications. Applied Sciences 2021, 11 (24) , 12125. https://doi.org/10.3390/app112412125
    75. Mark K Schlegel, Shigeo Matsuda, Christopher R Brown, Joel M Harp, Joseph D Barry, Daniel Berman, Adam Castoreno, Sally Schofield, John Szeto, Muthiah Manoharan, Klaus Charissé, Martin Egli, Martin A Maier. Overcoming GNA/RNA base-pairing limitations using isonucleotides improves the pharmacodynamic activity of ESC+ GalNAc-siRNAs. Nucleic Acids Research 2021, 49 (19) , 10851-10867. https://doi.org/10.1093/nar/gkab916
    76. Keiji Murayama, Hiroyuki Asanuma. Design and Hybridization Properties of Acyclic Xeno Nucleic Acid Oligomers. ChemBioChem 2021, 22 (15) , 2507-2515. https://doi.org/10.1002/cbic.202100184
    77. Joanna Skiba, Aleksandra Kowalczyk, Damian Trzybiński, Krzysztof Woźniak, Valerije Vrček, Magdalena Gapińska, Konrad Kowalski. Stereo‐Defined Ferrocenyl Glycol Nucleic Acid (Fc‐GNA) Constituents: Synthesis, Electrochemistry, Mechanism of Formation, and Anticancer Activity Studies. European Journal of Inorganic Chemistry 2021, 2021 (22) , 2171-2181. https://doi.org/10.1002/ejic.202100193
    78. Syed Azmal Ali, Deepti Mittal, Gurjeet Kaur. In-situ monitoring of xenobiotics using genetically engineered whole-cell-based microbial biosensors: recent advances and outlook. World Journal of Microbiology and Biotechnology 2021, 37 (5) https://doi.org/10.1007/s11274-021-03024-3
    79. Luke K. McKenzie, Roberto El-Khoury, James D. Thorpe, Masad J. Damha, Marcel Hollenstein. Recent progress in non-native nucleic acid modifications. Chemical Society Reviews 2021, 50 (8) , 5126-5164. https://doi.org/10.1039/D0CS01430C
    80. Marie Flamme, Chiara Figazzolo, Gilles Gasser, Marcel Hollenstein. Enzymatic construction of metal-mediated nucleic acid base pairs. Metallomics 2021, 13 (4) https://doi.org/10.1093/mtomcs/mfab016
    81. Resat Aksakal, Chiel Mertens, Matthieu Soete, Nezha Badi, Filip Du Prez. Applications of Discrete Synthetic Macromolecules in Life and Materials Science: Recent and Future Trends. Advanced Science 2021, 8 (6) https://doi.org/10.1002/advs.202004038
    82. Asem Alenaizan, Joshua L Barnett, Nicholas V Hud, C David Sherrill, Anton S Petrov. The proto-Nucleic Acid Builder: a software tool for constructing nucleic acid analogs. Nucleic Acids Research 2021, 49 (1) , 79-89. https://doi.org/10.1093/nar/gkaa1159
    83. Shilpa R. Rao, Shelby L. Schettler, W. Seth Horne. Metal‐Binding Foldamers. ChemPlusChem 2021, 86 (1) , 137-145. https://doi.org/10.1002/cplu.202000730
    84. Chandrasekar Selvaraj, Srinivas B.T.V, Hai Xiong. Developing Trends in DNA Biosensor and Their Applications. 2021, 245-284. https://doi.org/10.1007/978-3-030-63791-0_8
    85. Claudia Riccardi, Ettore Napolitano, Chiara Platella, Domenica Musumeci, Daniela Montesarchio. G-quadruplex-based aptamers targeting human thrombin: Discovery, chemical modifications and antithrombotic effects. Pharmacology & Therapeutics 2021, 217 , 107649. https://doi.org/10.1016/j.pharmthera.2020.107649
    86. Christopher Liczner, Kieran Duke, Gabrielle Juneau, Martin Egli, Christopher J Wilds. Beyond ribose and phosphate: Selected nucleic acid modifications for structure–function investigations and therapeutic applications. Beilstein Journal of Organic Chemistry 2021, 17 , 908-931. https://doi.org/10.3762/bjoc.17.76
    87. Samuel C. Leguizamon, Timothy F. Scott. Sequence-selective dynamic covalent assembly of information-bearing oligomers. Nature Communications 2020, 11 (1) https://doi.org/10.1038/s41467-020-14607-3
    88. Yukiko Kamiya, Tadashi Satoh, Atsuji Kodama, Tatsuya Suzuki, Keiji Murayama, Hiromu Kashida, Susumu Uchiyama, Koichi Kato, Hiroyuki Asanuma. Intrastrand backbone-nucleobase interactions stabilize unwound right-handed helical structures of heteroduplexes of L-aTNA/RNA and SNA/RNA. Communications Chemistry 2020, 3 (1) https://doi.org/10.1038/s42004-020-00400-2
    89. Masatoshi Sunaga, Dai Motegi, Yuya Motegi, Kazuo Shinozuka, Tomohisa Moriguchi. Systematic Evaluation of Hybridization Property and Photo-Crosslinking Ability of Modified Oligonucleotides Containing Benzophenone-Bearing Glycol Nucleoside Analogs. Advanced Engineering Forum 2020, 38 , 57-62. https://doi.org/10.4028/www.scientific.net/AEF.38.57
    90. Kasper M. Beck, Marie B. Krogh, Mick Hornum, Paul T. Ludford, Yitzhak Tor, Poul Nielsen. Double-headed nucleotides as xeno nucleic acids: information storage and polymerase recognition. Organic & Biomolecular Chemistry 2020, 18 (36) , 7213-7223. https://doi.org/10.1039/D0OB01426E
    91. Peng Nie, Yanfen Bai, Hui Mei. Synthetic Life with Alternative Nucleic Acids as Genetic Materials. Molecules 2020, 25 (15) , 3483. https://doi.org/10.3390/molecules25153483
    92. Luca Gabrielli, Christopher A. Hunter. Supramolecular catalysis by recognition-encoded oligomers: discovery of a synthetic imine polymerase. Chemical Science 2020, 11 (28) , 7408-7414. https://doi.org/10.1039/D0SC02234A
    93. Masaki Hibino, Yuichiro Aiba, Osami Shoji. Cationic guanine: positively charged nucleobase with improved DNA affinity inhibits self-duplex formation. Chemical Communications 2020, 56 (17) , 2546-2549. https://doi.org/10.1039/D0CC00169D
    94. Philip M. Punt, Lukas M. Stratmann, Sinem Sevim, Lena Knauer, Carsten Strohmann, Guido H. Clever. Heteroleptic Coordination Environments in Metal-Mediated DNA G-Quadruplexes. Frontiers in Chemistry 2020, 8 https://doi.org/10.3389/fchem.2020.00026
    95. Keiji Murayama, Hiroyuki Asanuma. A Quencher‐Free Linear Probe from Serinol Nucleic Acid with a Fluorescent Uracil Analogue. ChemBioChem 2020, 21 (1-2) , 120-128. https://doi.org/10.1002/cbic.201900498
    96. Luca Gabrielli, Diego Núñez-Villanueva, Christopher A. Hunter. Two-component assembly of recognition-encoded oligomers that form stable H-bonded duplexes. Chemical Science 2020, 11 (2) , 561-566. https://doi.org/10.1039/C9SC04250D
    97. Kim A. Lennox, Mark A. Behlke. Chemical Modifications in RNA Interference and CRISPR/Cas Genome Editing Reagents. 2020, 23-55. https://doi.org/10.1007/978-1-0716-0290-4_2
    98. Vivek K. Sharma, Balaji Olety, Ashok K. Prasad. N-acetylgalactosamine (GalNAc)-conjugates: Delivering oligonucleotide drugs to the liver. 2020, 641-667. https://doi.org/10.1016/B978-0-12-816675-8.00016-6
    99. Hidenori Okamura, Antony Crisp, Sarah Hübner, Sidney Becker, Petra Rovó, Thomas Carell. Proto‐Urea‐RNA (Wöhler RNA) Containing Unusually Stable Urea Nucleosides. Angewandte Chemie 2019, 131 (51) , 18864-18869. https://doi.org/10.1002/ange.201911746
    100. Hidenori Okamura, Antony Crisp, Sarah Hübner, Sidney Becker, Petra Rovó, Thomas Carell. Proto‐Urea‐RNA (Wöhler RNA) Containing Unusually Stable Urea Nucleosides. Angewandte Chemie International Edition 2019, 58 (51) , 18691-18696. https://doi.org/10.1002/anie.201911746
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect