Advertisement
No access
Research Articles

The Structural Basis of Ribosome Activity in Peptide Bond Synthesis

Science
11 Aug 2000
Vol 289, Issue 5481
pp. 920-930

Abstract

Using the atomic structures of the large ribosomal subunit fromHaloarcula marismortui and its complexes with two substrate analogs, we establish that the ribosome is a ribozyme and address the catalytic properties of its all-RNA active site. Both substrate analogs are contacted exclusively by conserved ribosomal RNA (rRNA) residues from domain V of 23S rRNA; there are no protein side-chain atoms closer than about 18 angstroms to the peptide bond being synthesized. The mechanism of peptide bond synthesis appears to resemble the reverse of the acylation step in serine proteases, with the base of A2486 (A2451 in Escherichia coli) playing the same general base role as histidine-57 in chymotrypsin. The unusual pK a (where K a is the acid dissociation constant) required for A2486 to perform this function may derive in part from its hydrogen bonding to G2482 (G2447 in E. coli), which also interacts with a buried phosphate that could stabilize unusual tautomers of these two bases. The polypeptide exit tunnel is largely formed by RNA but has significant contributions from proteins L4, L22, and L39e, and its exit is encircled by proteins L19, L22, L23, L24, L29, and L31e.

Get full access to this article

View all available purchase options and get full access to this article.

REFERENCES AND NOTES

1
Traut R. R., Monro R. E., J. Mol. Biol. 10, 63 (1964).
2
Rychlik I., Biochim. Biophys. Acta 114, 425 (1966).
3
Monro R. E., J. Mol. Biol. 26, 147 (1967).
4
Maden B. E. H., Traut R. R., Monro R. E., J. Mol. Biol. 35, 333 (1968).
5
Noller H. F., Annu. Rev. Biochem. 53, 119 (1984).
6
B. Wittmann-Liebold et al., in The Ribosome: Structure, Function, & Genetics, W. E. Hill et al., Eds. (American Society for Microbiology, Washington, DC, 1990), pp. 598–616.
7
J. Ofengand, in Ribosomes: Structure, Function and Genetics, G. Chambliss et al., Eds. (University Park Press, Baltimore, MD, 1980), pp. 497–530.
8
B. S. Cooperman, in (7), pp. 531–554.
9
Guerrier-Takada C., Gardiner K., Marsh T., Pace N., Altman S., Cell 35, 849 (1983).
10
Kruger K., et al., Cell 31, 147 (1982).
11
Crick F. H. C., J. Mol. Biol. 38, 367 (1968).
12
Barta A., Steiner G., Brosius J., Noller H. F., Kuechler E., Proc. Natl. Acad. Sci. U.S.A. 81, 3607 (1984).
13
Vester B., Garrett R. A., EMBO J. 7, 3577 (1988).
14
Noller H. F., Annu. Rev. Biochem. 60, 191 (1991).
15
R. A. Garrett and C. Rodriguez-Fonseca, in Ribosomal RNA: Structure, Evolution, Processing and Function in Protein Biosynthesis, R. A. Zimmermann and A. E. Dahlberg, Eds. (CRC Press, Boca Raton, FL, 1996), pp. 327–355.
16
Noller H. F., Hoffarth V., Zimniak L., Science 256, 1416 (1992).
17
Khaitovich P., Mankin A. S., Green R., Lancaster L., Noller H. F., Proc. Natl. Acad. Sci. U.S.A. 96, 85 (1999).
18
Franceschi F. J., Nierhaus K. H., J. Biol. Chem. 265, 6676 (1990).
19
Green R., Noller H. F., Annu. Rev. Biochem. 66, 679 (1997).
20
Nitta I., Ueda T., Watanabe K., RNA 4, 257 (1998).
21
Nitta I., Kamada Y., Noda H., Ueda T., Watanabe K., Science 281, 666 (1998).
22
Khaitovich P., Ternson T., Mankin A. S., Green R., RNA 5, 605 (1999).
23
Milligan R. A., Unwin P. N. T., Nature 319, 693 (1986).
24
Yonath A., Leonard K. R., Wittmann H. G., Science 236, 813 (1987).
25
Bernabeu C., Lake J. A., Proc. Natl. Acad. Sci. U.S.A. 79, 3111 (1982).
26
Ryabova L. A., Selivano O. M., Baranov V. I., Vasiliev V. D., Spirin A. S., FEBS Lett. 226, 255 (1988).
27
Beckmann R., et al., Science 278, 2123 (1997).
28
Frank J., et al., Nature 376, 441 (1995).
29
Frank J., et al., Biochem. Cell Biol. 73, 757 (1995).
30
Stark H., et al., Cell 88, 19 (1997).
31
Stark H., et al., Structure 3, 815 (1995).
32
Welch M., Chastang J., Yarus M., Biochemistry 34, 385 (1995).
33
Moazed D., Noller H. F., Proc. Natl. Acad. Sci. U.S.A. 88, 3725 (1991).
34
Monro E., Celma M. L., Vazquez D., Nature 222, 356 (1969).
35
Ban N., Nissen P., Hansen J., Moore P. B., Steitz T. A., Science 289, 905 (2000).
36
Moazed D., Noller H. F., Cell 57, 585 (1989).
37
Kim D. F., Green R., Mol. Cell 4, 859 (1999).
38
Crystals of 50S ribosomal subunits were grown and stabilized as described (35). CCdA-p-puromycin (Fig. 1A) was a generous gift from Michael Yarus (32). N-amino-acylated mini-helices (Fig. 1B) were synthesized by Dharmacon. Following deprotection, oligonucleotides were briefly heated to 100°C and snap-cooled on ice to reanneal. Ribosomal 50S subunit crystals were stabilized and then soaked for 24 hours in stabilization buffer plus 100 μM CCdA-p-puromycin or N-amino-acylated mini-helices before cryovitrification in liquid propane and x-ray diffraction data collection. Phases were calculated by density modification (crystallographic and NMR system) beginning with the best experimental phases (35) using 2Fo(analog) – Fo(native) for amplitudes, from 60.0 to 3.2 Å. Native amplitudes were from the most isomorphous native 1 data set, except for those amplitudes that were present only in the more complete native 2 data set. Calculated 2FoFo amplitudes that were less than twice the corresponding calculated σ were replaced by Fo(analog). Maps were then calculated using phases from density modified and 2Fo(analog) – Fo(native) or Fo(analog) – Fo(native) amplitudes.
39
Samaha R. R., Green R., Noller H. F., Nature 377, 309 (1995).
40
Green R., Switzer C., Noller H. F., Science 280, 286 (1998).
41
W. Saenger, Principles of Nucleic Acid Structure, C. R. Cantor, Ed., Springer Advanced Texts in Chemistry (Springer-Verlag, New York, 1984).
42
Muth G. W., Ortoleva-Donnelly L., Strobel S. A., Science 289, 947 (2000).
43
Blow D. M., Birktoft J. J., Hartley B. S., Nature 221, 337 (1969).
44
R. R. Gutell et al., in preparation (data can be found at www.rna.icmb.utexas.edu.)
45
A. Ferre-D'Amare,
Zhou K., Doudna J. A., Nature 395, 567 (1998).
46
Nakano S., Chadalavada D. M., Bevilacqua P. C., Science 287, 1493 (2000).
47
Perrotta A. T., Shih I.-h., Been M. D., Science 286, 123 (1999).
48
Steitz T. A., Shulman R. G., Annu. Rev. Biophys. Bioeng. 11, 419 (1982).
49
Koshland D. E., Cold Spring Harbor Symp. Quant. Biol. 28, 473 (1963).
50
Bennett W. S., Steitz T. A., Proc. Natl. Acad. Sci. U.S.A. 75, 4848 (1978).
51
Cate J. H., Yusupov M. M., Yusupova G. Z., Earnest T. N., Noller H. F., Science 285, 2095 (1999).
52
P. B. Moore, in Ribosomal RNA & Structure, Evolution, Processing and Function in Protein Biosynthesis, R. A. Zimmermann and A. E. Dahlberg, Eds. (CRC Press, Boca Raton, FL, 1996), pp. 199–236.
53
Nissen P., Kjeldgaard M., Thirup S., Clark B. F. C., Nyborg J., Biochimie 78, 921 (1996).
54
Moazed D., Noller H. F., Nature 342, 142 (1989).
55
Picking W. D., Picking W. L, Odonu O. W., Hardesty B., Biochemistry 31, 2368 (1992).
56
Blobel G., Sabatini D. D., J. Cell. Biol. 45, 130 (1970).
57
Chothia C., Janin J., Nature 256, 705 (1975).
58
Xu Z., Sigler P. B., J. Struct. Biol. 124, 129 (1998).
59
Prinz A., Behrens C., Rapoport T. A., Hartmann E., Kalies K.-U., EMBO J. 19, 1900 (2000).
60
B. Dobberstein, personal communication.
61
Zhaug B., Cech T. R., Chem. Biol. 5, 539 (1998).
62
Welch M., Majerfeld I., Yarus M., Biochemistry 36, 6614 (1997).
63
Carson M., Methods Enzymol. 227, 493 (1997).
64
We thank B. Freeborn for her skilled technical assistance in preparing 50S ribosomal subunit material and crystals. We thank M. Yarus for his generous gift of CCdA-p-puromycin, and S. Strobel, J. Steitz, D. Crothers, D. Herschlag, and T. Cech for discussions. We are indebted to R. Sweet and M. Capel for their assistance with data collection at the National Synchrotron Light Source (Brookhaven National Laboratory), and A. Joachimiak and the staff of 19-ID at the Advanced Photon Source (Argonne National Laboratory). Supported by grants from NIH to T.A.S. (GM22778) and P.B.M. (GM54216) and a grant from the Agouron Institute to T.A.S. and P.B.M. N.B. is supported by a Burroughs Welcome Fund Career Award. Coordinates of the ligand-free subunit and of domain V complexed with the two analogs have been deposited in the Protein Data Bank with accession numbers 1FFK, 1FFZ, and 1FG0.

(0)eLetters

eLetters is a forum for ongoing peer review. eLetters are not edited, proofread, or indexed, but they are screened. eLetters should provide substantive and scholarly commentary on the article. Embedded figures cannot be submitted, and we discourage the use of figures within eLetters in general. If a figure is essential, please include a link to the figure within the text of the eLetter. Please read our Terms of Service before submitting an eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

Information & Authors

Information

Published In

Science
Volume 289 | Issue 5481
11 August 2000

Submission history

Received: 10 July 2000
Accepted: 24 July 2000
Published in print: 11 August 2000

Permissions

Request permissions for this article.

Authors

Affiliations

Poul Nissen*
Department of Molecular Biophysics and Biochemistry and
Jeffrey Hansen*
Department of Molecular Biophysics and Biochemistry and
Nenad Ban*
Department of Molecular Biophysics and Biochemistry and
Peter B. Moore
Department of Molecular Biophysics and Biochemistry and
Department of Chemistry, Yale University, and
Thomas A. Steitz
Department of Molecular Biophysics and Biochemistry and
Department of Chemistry, Yale University, and
Howard Hughes Medical Institute, New Haven, CT 06520–8114, USA.

Metrics & Citations

Metrics

Article Usage

Altmetrics

Citations

Cite as

Export citation

Select the format you want to export the citation of this publication.

Cited by

  1. Mapping the in vivo fitness landscape of a tethered ribosome, Science Advances, 9, 17, (2023)./doi/10.1126/sciadv.ade8934
    Abstract
  2. The lost language of the RNA World, Science Signaling, 10, 483, (2021)./doi/10.1126/scisignal.aam8812
    Abstract
  3. Control of potassium homeostasis is an essential function of the second messenger cyclic di-AMP in Bacillus subtilis, Science Signaling, 10, 475, (2021)./doi/10.1126/scisignal.aal3011
    Abstract
  4. Prebiotic synthesis of cysteine peptides that catalyze peptide ligation in neutral water, Science, 370, 6518, (865-869), (2021)./doi/10.1126/science.abd5680
    Abstract
  5. CAT-tailing as a fail-safe mechanism for efficient degradation of stalled nascent polypeptides, Science, 357, 6349, (414-417), (2021)./doi/10.1126/science.aam7787
    Abstract
  6. Mechanism of Ribosomal Peptide Bond Formation, Science, 291, 5502, (203-203), (2021)./doi/10.1126/science.291.5502.203a
    Abstract
  7. A Single Adenosine with a Neutral pKa in the Ribosomal Peptidyl Transferase Center, Science, 289, 5481, (947-950), (2021)./doi/10.1126/science.289.5481.947
    Abstract
  8. The Complete Atomic Structure of the Large Ribosomal Subunit at 2.4 Å Resolution, Science, 289, 5481, (905-920), (2021)./doi/10.1126/science.289.5481.905
    Abstract
  9. The Ribosome Is a Ribozyme, Science, 289, 5481, (878-879), (2021)./doi/10.1126/science.289.5481.878
    Abstract
  10. tRNAs Marked with CCACCA Are Targeted for Degradation, Science, 334, 6057, (817-821), (2021)./doi/10.1126/science.1213671
    Abstract
  11. See more
Loading...

View Options

Check Access

Log in to view the full text

AAAS ID LOGIN

AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.

More options

Purchase digital access to this article

Download and print this article for your personal scholarly, research, and educational use.

Purchase this issue in print

Buy a single issue of Science for just $15 USD.

View options

PDF format

Download this article as a PDF file

Download PDF

Full Text

FULL TEXT

Media

Figures

Multimedia

Tables

Share

Share

Share article link

Share on social media