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ABSTRACT 

Multilevel models (MLMs) are frequently used in social and health sciences where data are typically hierarchical in 
nature. However, the commonly used hierarchical linear models (HLMs) are only appropriate when the outcome of 
interest is normally distributed; when dealing with outcomes that are not normally distributed (i.e., binary, categorical, 
ordinal), a transformation and an appropriate error distribution for the response variable needs to be incorporated into 
the model and therefore, hierarchical generalized linear models (HGLMs) need to be used. This paper provides an 
introduction to specifying HGLMs using PROC GLIMMIX, following the structure of the primer for HLMs previously 
presented by Bell, Ene, Smiley, and Schoeneberger (2013). A brief introduction into the field of multilevel modeling 
and HGLMs with both dichotomous and polytomous outcomes is followed by a discussion of the model building 
process and appropriate ways to assess the fit of these models. Next, the paper provides a discussion of PROC 
GLIMMIX statements and options as well as concrete examples of how PROC GLIMMIX can be used to estimate (a) 
two-level organizational models with a dichotomous outcome and (b) two-level organizational models with a 
polytomous outcome. These examples use data from High School and Beyond (HS&B), a nationally-representative 
longitudinal study of American youth. For each example, narrative explanations accompany annotated examples of 
the GLIMMIX code and corresponding output.   
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INTRODUCTION  

Hierarchically organized data are commonplace in educational, clinical, and other research settings. For example, 
students are nested within classrooms or teachers, and teachers are nested within schools. Alternatively, service 
recipients are nested within social workers providing services, who may in turn be nested within local civil service 
entities. Conducting research at any of these levels while ignoring the more detailed levels (e.g., students) or 
contextual levels (e.g., schools) can lead to erroneous conclusions. More specifically, research has shown that 
ignoring a level of nesting in data can impact estimated variances and the available power to detect treatment or 
covariate effects (Donner & Klar, 2000; Julian, 2001; Moerbeek, 2004; Murray, 1998; Shadish, Cook & Campbell, 
2002), can seriously inflate Type I error rates (Wampold & Serlin, 2000), and can lead to substantive errors in 
interpreting the results of statistical significance tests (Goldstein, 2003; Nich & Caroll, 1997). Multilevel models have 
been developed to properly account for the hierarchical (correlated) nesting of data (Heck & Thomas, 2000; Hox, 
2002; Klein & Kozlowski, 2000; Raudenbush & Bryk, 2002; Snijders & Bosker, 1999) and are frequently used in social 
and health sciences where data are typically hierarchical in nature. 
 
Whereas these models are often named generically as multilevel models or hierarchical linear models, there are 
many types of multilevel models. More specifically, these models could differ in terms of the number of levels [e.g., 2-
level (students nested within schools), 3-level (students nested within schools nested within districts)], type of design 
(e.g., cross-sectional, longitudinal with repeated measures, cross-classified), scale of the outcome variable (e.g., 
continuous, categorical), and number of outcomes (e.g., univariate, multivariate). However, some of these models 
such as those with normally distributed outcomes are more commonly discussed in the literature than the models with 
non-normal outcomes. Also, even when considered, models with dichotomous outcomes (e.g., pass/fail) are more 
often discussed than those with polytomous outcomes (e.g., below basic, basic, proficient), the latter ones being 
considered a natural extension of the binary version. While this is indeed the case in terms of conceptualizing the 
models, there are certain particularities of the models with polytomous outcomes (e.g., syntax, output, interpretation) 
that may pose challenges for the researcher who is not familiar with this type of model. Therefore, this paper aims to 
introduce the reader to multilevel models with non-normal outcomes (i.e., hierarchical generalized linear models), to 
explain the differences between the models with dichotomous and polytomous outcomes, and to provide concrete 
examples of how to estimate and interpret these models using PROC GLIMMIX.  
 

HIERARCHICAL GENERALIZED LINEAR MODELS (HGLMs) 

In contrast with HLMs that have continuous, approximately normally distributed outcomes, HGLMs are appropriate to 
use for categorical, non-normally distributed response variables including binary, proportions, count, or ordinal data. 
When dealing with this type of model, the assumptions of normally distributed, homoscedastic errors are violated 
(Hox, 2002; O’Connell, Goldstein, Rogers, & Peng, 2008). Therefore, the transformation of the outcome using a 
nonlinear link function and the choice of the appropriate non-normal error distribution need to be incorporated into the 
models so the model building strategies and the interpretations used for HLMs will still be applicable (Luke, 2004).  
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In the case of multilevel models with dichotomous outcomes, the binomial distribution (i.e., Bernoulli) and the logit link 
are most commonly used to estimate for example, the odds of success and the impact of various characteristics at 
different levels on these odds (i.e., odds ratio). Similarly, the models with polytomous, ordinal-type outcomes use a 
multinomial distribution and a cumulative logit link to compute the cumulative odds for each category of response, or 
the odds that a response would be at most, in that category (O’Connell et al., 2008). Although a detailed discussion 
regarding the theoretical reasons behind these choices is beyond the purpose of this paper, we will mention these 
distributions and link functions throughout the paper as they represent key elements when estimating HGLMs.  
 
Understanding the conceptualization of these models in a hierarchical generalized linear framework also requires 
knowledge of the mathematical equations used to estimate the models. For example, a researcher might be 
interested in modeling the math achievement of individual students (level-1) nested within schools (level-2). In the 
dichotomous case (e.g., pass/fail), the researcher might be interested in exploring the pass rate at a typical school 
and the influence of student and school characteristics on the chance of passing the math test. The equations 
necessary for estimating this model are presented below. 
 

                                                                                                                                             (Eq. 1) 

 

Equation 1 represents a simple level-1 model with one student-level predictor, where     represents the log odds of 

passing the math test for student i in school j,     is the intercept or the average log odds of passing the math test at 

school j,      is a student-level predictor for student i in school j, and     represents the slope associated with 

      showing the relationship between the student-level variable and the log odds of passing the math test. It is 

important to notice that unlike hierarchical linear models, this model has no error variance at level-1. This is not 
estimated separately when dealing with hierarchical generalized linear models with binary outcomes because in this 
case, the variance is a function of the population mean and is directly determined by this mean (Luke, 2004).  
 

                                                                                                                         (Eq. 2) 

 

          

 

Equation 2 represents a simple level-2 model with one school-level predictor, where     provides the log odds of 

passing the math test at a typical school,    is a school-level predictor for school j,      is the slope associated with 

this predictor,     is the level-2 error term representing a unique effect associated with school j, and     is the average 

effect of the student-level predictor. As the effect of the student-level predictor is modeled as fixed or constant across 
schools, this represents a random intercept-only model. 
 

                                                                                                                       (Eq. 3) 

 

Next, the combined level-1 and level-2 model (Equation 3) is created by substituting the values of     and     as 

shown in Equation 2 into the level-1 equation represented in Equation 1. As presented in this combined model, the 

log odds of passing the math test for student i in school j (     ) is determined by the log odds of passing the math test 

of a typical student at a typical school (     ), the effect of the student-level (         ) and school-level predictor 

(       ), as well as the school-level error                        . To be more meaningful for the researcher, the log 

odds of success could be converted into probabilities of success (Equation 4). 
 

                                                           
 

    

   
                          (Eq. 4) 

 

where e takes a value of approximately 2.72,      represents the log odds of success,     is the probability of success, 

and       is the probability of failure. In addition, odds ratios could also be calculated to reflect for instance, the 

predicted change in odds between students with various values of the student-level predictor. 

 

In the polytomous case (e.g., below basic, basic, proficient) the researcher might be interested in the probability of 
being at or below a proficiency level and similar with the dichotomous model, in the influence of student and school 
characteristics on this probability for each category. When dealing with polytomous outcomes, multiple logits are 
simultaneously estimated (M-1 logits, where M = the number of response categories). Therefore, in this situation with 
three categories of response, there will be two logits and their corresponding intercepts simultaneously estimated, 
each of them indicating the probability of responding in or below a particular category. The equations necessary for 
estimating this model are presented below. 
 

            
        

          
                                                                             (Eq. 5) 
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Equation 5 represents the level-1 model with one student-level predictor, where      is the log odds of being at or 

below a proficiency level for student i in school j. Compared to the level-1 model for dichotomous outcomes 

previously presented, this model consists of two equations instead of one. More specifically,       corresponds to the 

log odds of being at or below the lowest proficiency level (i.e., below basic) for student i in school j,          

represents the probability of responding at or below this lowest proficiency level, and            corresponds to 

the probability of responding above this lowest proficiency level for student i in school j. Next,     is the intercept or 

the average log odds of being at or below the below basic level in math at school j,      is a student-level predictor for 

student i in school j, and     represents the slope associated with       showing the relationship between the student-

level variable and the log odds of scoring at or below this level in math. Similarly,      represents the log odds of 

being at or below the next proficiency level (i.e., basic) for student i in school j. Notice that, for the ease of estimation 

and interpretation, the intercept for this proficiency level is represented by a common intercept (    ) and an extra 

term,    , representing the difference between this category and the preceding one. However, there is only one slope 

(    ) associated with the student-level predictor (    ) that remains constant across logits.  

 

                                                                                           (Eq. 6) 
 

         

 

      

 
In the level-2 model with one school-level predictor (Equation 6),     represents the log odds of being at or below the 

below basic level in math at a typical school,    is a school-level predictor for school j,      is the slope associated 

with this predictor,     is the level-2 error term representing a unique effect associated with school j, and     is the 

average effect of the student-level predictor. Similar with the dichotomous model, the effect of the student-level 
predictor is modeled as fixed or constant across schools, therefore this equation represents a random intercept-only 
model. Also, whereas this model allows the common intercept (    ) to vary across schools, the difference between 

the logits ( ) remains fixed across schools.  

 
Similar with the dichotomous example, the combined level-1 and level-2 model (Equation 7) can be created by 
substituting the values of     ,     , and    as shown in Equation 6 into the level-1 equation represented in Equation 5. 

As a result, the log odds of being at or below the lowest proficiency level in math for student i in school j (      ) will be 

determined by the log odds of being at or below that proficiency level of a typical student at a typical school (     ), the 

effect of the student-level (         ) and school-level predictor (       ), as well as the school-level error 

                       . In addition, the log odds of being at or below the next proficiency level (      ) will also include 

the difference between the intercepts corresponding to this category and the preceding one ( ). For the ease of 

interpretation, the log odds could be converted in odds or probabilities as described for the dichotomous model. 
 

                                                             
        

          
                                                  (Eq. 7) 

                                                                            
        

          
                                 

 

MODEL BUILDING PROCESS  

The transformation of the dependent variable in HGLM via a non-linear link function and the choice of an appropriate 
non-normal error distribution allow researchers to engage in the standard model building strategies used with HLMs 
(O’Connell et al., 2008). While different sources provide different guidelines on the model building process when 
estimating multilevel models, the eventual goal is the same – to estimate the most parsimonious models that best fit 
the data. Other common elements of the different model building strategies include (a) always starting with an 
unconditional model (i.e., a model containing no predictors) as this model is used to calculate the intraclass 
correlation coefficient (ICC) which estimates how much variation in the outcome exists between level-2 units and (b) 
gradually estimating more complex models while checking for improvement in model fit after each model is estimated.  
 
As researchers build their models by adding in additional parameters to be estimated model by model, fit 
statistics/indices are used to assess model fit. In multilevel linear modeling, estimating the model parameters via 
maximum likelihood (ML) estimation allows the researcher to assess model fit using one of two common procedures: 
(1) conducting a likelihood ratio test when examining differences in the -2 log likelihood (-2LL) when models are 
nested (i.e., models that have been fit using the same data and where one model is a subset of the other), also 
known as a deviance test or (2) investigating the change in Akaike’s Information Criterion (AIC) and Bayesian 
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Information Criterion (BIC) when the models are either nested or not nested and differ in both fixed and random 
effects. Given the non-normal nature of the outcome variables in HGLMs, the use of ML estimation is not appropriate. 
However, there are several available estimation techniques for HGLM that are approximate to ML or are “quasi-
likelihood” strategies. While a detailed discussion about the various estimation techniques available for HGLMs is 
beyond the scope of this paper, our examples utilize a common estimation technique available with PROC GLIMMIX, 
the Laplace estimation. By using Laplace estimation, the researcher is able to assess model fit using the same 
strategies applied with multilevel linear modeling. In the examples presented in this paper, all models examined are 
nested models, therefore we will assess model fit by examining the change in the -2LL between models.  
 
The model building process that we will use in the examples provided below is a relatively simple and straightforward 
approach to obtain the best fitting and most parsimonious model for a given set of data and specific research 
questions (see Table 1). In addition to listing what effects are included in each of the models, we have also included 
information about what the output from the various models provides. It is important to note that the models listed in 
Table 1 are general in nature. It is possible for more complex models to be examined, given the nature of the 
researcher’s questions. For example, our examples are for random intercept only models. It is also possible for 
researchers to examine how level-1 variables vary between level-2 units (i.e., the addition of random slopes) or 
examine relationships at more than two levels. For a more detailed discussion about more complex multilevel models, 
please see Bell, Ene, Smiley, and Schoeneberger (2013).  
 

Model  
1 

Model  
2 

Model  
3 

No predictors, just random effect 
for the intercept 

Model 1 + level-1 fixed effects Model 2 + level-2 fixed effects 

   
Output used to calculate ICC – 

provides information on how 
much variation in the outcome 

exists between level-2 units 

Results indicate the relationship 
between level-1 predictors and 

the outcome 

Level-2 fixed effect results 
indicate the relationship between 

level-2 predictors and the 
outcome. Rest of the results 

provide the same information as 
listed for Model 2 

Table 1. Model building process for 2-level generalized linear models with random intercepts only 

 
As you progress through the suggested model building process outlined in Table 1, you also examine model fit as 
measured by change in the -2LL. Lower deviance implies better fit; however, models with more parameters will 
always have lower deviance. Researchers can use a likelihood ratio test to investigate whether or not the change in 
the -2LL is statistically significant. This likelihood ratio test is analogous to a chi-square difference test, where χ

2
 is 

equal to the difference in the -2LL of the more simple model (i.e., the model with fewer parameters to be estimated) 
minus the -2LL of the more complex model, and with degrees of freedom (df) equal to the difference in the number of 

parameters between the two nested models.    
 

PROC GLIMMIX STATEMENTS AND OPTIONS  

Before explaining the PROC GLIMMIX statements and options, we would like to address an important data 
management issue – the centering of all predictor variables used in a model. As with other forms of regression 
models, the analysis of multilevel data should incorporate the centering of predictor variables to yield the correct 
interpretation of intercept values and predictors of interest (Enders & Tofighi, 2007; Hofmann & Gavin, 1998). 
Predictor variables can be group-mean or grand-mean centered, depending on the primary focus of the research 
question. For a well-written discussion on the pros and cons of the two approaches to centering predictor variables, 
we refer readers to Enders and Tofighi (2007). In the examples presented in our paper, we utilized both binary and 
standardized predictors, therefore, our variables already had a “meaningful zero” value for interpretation of the 
intercept and other predictors of interest.  
 
PROC GLIMMIX is similar to PROC MIXED (used with multilevel linear models), as well as other modeling 
procedures in SAS, in that the researcher is required to specify a CLASS, MODEL, and RANDOM statement. In 
addition, PROC GLIMMIX also requires the researcher to specify a COVTEST statement which will generate 
hypothesis tests for the variance and covariance components (i.e., the random effects).   
 
Below are two example codes for PROC GLIMMIX. The first example is code used to estimate a simple random 
intercept only model with one level-1 predictor (x1) and one level-2 predictor (w1) with a dichotomous outcome (y). 
The second example is code used to estimate a simple random intercept only model with one level-1 predictor (x1) 
and one level-2 predictor (w1) with a polytomous outcome (y). 
 
PROC GLIMMIX DATA=SESUG2014 METHOD=LAPLACE NOCLPRINT; 

CLASS L2_ID; 

MODEL Y (EVENT=LAST) = X1 W1/ CL DIST=BINARY LINK=LOGIT SOLUTION ODDSRATIO (DIFF=FIRST 

LABEL); 
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RANDOM INTERCEPT / SUBJECT=L2_ID TYPE=VC SOLUTION CL; 

COVTEST / WALD; 

 
PROC GLIMMIX DATA=SESUG2014 METHOD=LAPLACE NOCLPRINT; 

CLASS L2_ID; 

MODEL Y = X1 W1/ CL DIST=MULTI LINK=CLOGIT SOLUTION ODDSRATIO (DIFF=FIRST LABEL); 

RANDOM INTERCEPT / SUBJECT=L2_ID TYPE=VC SOLUTION CL; 

COVTEST / WALD; 

 
On the PROC GLIMMIX statement for both the dichotomous and polytomous outcome examples, in addition to listing 
the data set to use for the analysis, we have requested METHOD and NOCLPRINT options; the NOCLPRINT option 
is requesting SAS to not print the CLASS level identification information, and the METHOD=OPTION is required to 
tell SAS to estimate the models using the Laplace estimation method. The default estimation method in PROC 
GLIMMIX is METHOD=RSPL, a residual pseudo-likelihood estimation technique. However, the Laplace estimation is 
approximate to maximum likelihood (ML) estimation and will allow the researcher to compare and select the best 
fitting model via a deviance test. While a detailed discussion about the various estimation methods available with 
PROC GLIMMIX is beyond the scope of this paper, we encourage readers to read the SAS documentation for PROC 
GLIMMIX for more technical information.  
 
The CLASS statement is used to indicate the clustering/grouping variable(s); in the example codes above, you can 
see that L2_ID is the clustering variable in the analysis. Another way to think about this is that the CLASS statement 
is where you list the variable in your data that identifies the higher level units.  
 
The MODEL statement is used to specify the fixed effects to be included in the model whereas the RANDOM 
statement is used to specify the random effects to be estimated. The EVENT=LAST option provided on the MODEL 
statement requests that the predicted log of the odds of success (i.e., the variable coded as “1”) be modeled. This is 
not required when there are more than two response categories; therefore, it has been removed from the example for 
a polytomous outcome model. For these models, the default option in SAS is to model the log odds of lower levels of 
the ordinal outcome, in the sequence encountered in the data. The CL option requests SAS to print confidence limits 
for fixed effect parameters. The DIST=OPTION and LINK=OPTION are required for HGLMs in order to transform the 
outcome variable into an approximately linear variable with normally distributed errors. In our examples we have 
chosen two options that are common for both dichotomous outcomes (a binary distribution and the logit link) and 
polytomous outcomes (the multinomial distribution and the cumulative logit link). The SOLUTION option on the 
MODEL statement asks SAS to print the estimates for the fixed effects in the output. Also, the ODDSRATIO option on 
the MODEL statement asks SAS to print the odds ratios (OR) of the predicted value in the output. The DIFF=FIRST 
option tells SAS to generate odds ratios comparing the first level of the predictor variables. 
 
The example codes above are for random intercept only models, therefore, only the intercept is specified on the 
RANDOM statement. Please note that if you wanted to allow level-1 variables to vary between level-2 units (i.e., 
random slopes), you would specify this here by also including any or all of your level-1 variables on the RANDOM 
statement. The SUBJECT=OPTION on the RANDOM statement corresponds with the CLASS statement. The next 
option TYPE= is used to specify what covariance structure to use when estimating the random effects. Again, 
although a discussion of the many covariance structure options available in PROC GLIMMIX is beyond the scope of 
this paper, in the examples above and throughout the examples used in this paper, we use the TYPE=VC option, the 
default in SAS. This is the most simple structure as the covariance matrix for level-2 errors (referred to in SAS as the 
G-matrix) is estimated to have separate variances but no covariance. When specifying random effects, the 
covariance structures can get quite complicated rather quickly. Thus, it is critical for users to remember to check their 
log when estimating random intercept and slope models – it is not uncommon to receive a “non-positive definite G-
matrix” error. When this happens, the results for the random effects are not valid and the covariance part of the model 
needs to be simplified. 
 
The COVTEST statement is required to generate hypothesis tests for the variance and covariance components (i.e., 
the random effects).  In our examples, we have specified the WALD option, which tells SAS to produce Wald Z tests 
for the covariance parameters.  
 

DATA SOURCE FOR ILLUSTRATED EXAMPLES  

The data for the dichotomous and polytomous logit model examples originate from High School and Beyond (HS&B; 
n.d.), a nationally-representative data set in which students are nested within schools.  The HS&B study is part of the  
National Education Longitudinal Studies (NELS) program of the U.S. Department of Education, National Center for 
Education Statistics (NCES; www.nces.gov), and was established to investigate the life trajectories of the nation’s 
youth, starting with their high school years and following them into adulthood.  HS&B data is publicly-available on the 
NCES website, and consists of survey results from two cohorts, surveyed bi-annually.  
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EXAMPLE 1: ESTIMATING TWO-LEVEL ORGANIZATIONAL MODELS WITH DICHOTOMOUS 
OUTCOMES  

The use of PROC GLIMMIX will be demonstrated on a hierarchical data set with students nested in schools.  Our 
sample comes from the aforementioned HS&B data set and includes 7185 students nested within 160 schools.  To 
illustrate HGLM with dichotomous outcomes, we use three student level variables and two school level variables.  
Specifically, to represent student’s socioeconomic status (SES), we used a standardized score calculated as a 
composite of family poverty, parental education, and parental occupation. In addition, two binary variables were used 
to represent students’ minority status (minority = 1) and students’ gender (female = 1). Also, for the purpose of this 
study, we created a dichotomous outcome (i.e., fail = 0, pass = 1) based on a math achievement scaled score 
ranging from -2.83 to 24.99. Lastly, school level variables used in this study include school SES, calculated as a 
mean standardized score based on the same variables as the student level measure, and school sector, based on 
whether the school was classified as public or Catholic (Catholic = 1).   
 
The primary interest of the current study is to investigate the impact of certain student- and school-level variables on 
a student’s likelihood of passing a math achievement test.  Therefore, using student level data (level-1) and school 
level data (level-2), we build two-level hierarchical models to investigate the relationship between math achievement 
and predictor variables at both levels. The specific research questions examined in this example include:  
 

1. What is the pass rate of the math test for students at a typical school? 
2. Do pass rates of the math test vary across schools? 
3. What is the relationship between student SES and the likelihood of passing the math test while controlling 

for student and school characteristics? 
4. What is the relationship between school sector and the likelihood of passing the math test while controlling 

for student and school characteristics? 
 

The model building process begins with the empty, unconditional model with no predictors. This model provides an 
overall estimate of the pass rate for students at a typical school, as well as providing information about the variability 
in pass rates between schools.  The PROC GLIMMIX syntax for the unconditional model is shown below.   
 
PROC GLIMMIX DATA=SESUG2014 METHOD=LAPLACE NOCLPRINT; 

CLASS SCHOOL_ID; 

MODEL MATHPASS (EVENT=LAST)=/CL DIST=BINARY LINK=LOGIT SOLUTION;  

RANDOM INTERCEPT / SUBJECT=SCHOOL_ID S CL TYPE=VC; 

COVTEST /WALD; 

 
The SAS PROC GLIMMIX syntax generated the Solutions for Fixed Effects table shown below.  The estimate 
provided in this table (-0.6459) represents the log odds of passing the math test at a typical school (i.e., a school 
where u0j = 0) and helps us answer the first research question addressed in this study.   
 

Solutions for Fixed Effects 

Effect Estimate Standard Error DF t Value Pr > |t| Alpha Lower Upper 

Intercept -0.6459 0.06818 159 -9.47 <.0001 0.05 -0.7805 -0.5112 

 
To be more meaningful, these initial results could be transformed into predicted probabilities (PP). This 
transformation can be computed using the formula previously provided in Equation 4. To exemplify, the probabilities 
of success/failure at a typical school from our sample are calculated below.  
 
 
 
 
 
 
 
 
The PROC GLIMMIX syntax also provides a Covariance Parameter Estimates table, as shown below.  Using the 
estimates presented in the table, we can compute the intraclass correlation coefficient (ICC) that indicates how much 
of the total variation in the probability of passing the math test is accounted for by the schools. In HGLMs, there is 
assumed to be no error at level-1, therefore, a slight modification is needed to calculate the ICC. This modification 
assumes the dichotomous outcome comes from an unknown latent continuous variable with a level-1 residual that 
follows a logistic distribution with a mean of 0 and a variance of 3.29 (Snijders & Bosker, 1999 as cited in O’Connell 
et al., 2008). Therefore, 3.29 will be used as our level-1 error variance in calculating the ICC.   
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Covariance Parameter Estimates 

Cov Parm Subject Estimate Standard Error Z Value Pr > Z 

Intercept SCHOOL_ID 0.6165 0.08870 6.95 <.0001 

 

     
   

         
 

 

     
      

            
        

 
This indicates that approximately 16% of the variability in the pass rate for the math test is accounted for by the 
schools in our study, leaving 84% of the variability to be accounted for by the students or other unknown factors. The 
output also indicates that there is a statistically significant amount of variability in the log odds of passing the math 
test between the schools in our sample [     =.6165; z(159) = 6.95, p<.0001], providing response to our second 
research question. In summary, the unconditional model results revealed that the probability of passing the math 
exam at a typical school is .344. However, the probability of passing (or the pass rate), varies considerably across 
schools. 
 
PROC GLIMMIX also produces output containing model fit information for all models estimated. For illustration 
purposes, partial output containing the -2LL value for the unconditional model is shown below. 
 

Fit Statistics 

-2 Log Likelihood 8906.74 

 

In order to answer the other research questions addressed by this study, we continued the model building process by 
first including student variables as fixed effects. More specifically, our next step in the model building process was to 
include students’ SES, Minority status (minority=1), and Gender (female=1), as fixed effects in a level-1 model with 
random intercept only (Model 2). The PROC GLIMMIX syntax for this model is shown below. Notice that this is the 
same code as used for Model 1 with the addition of the student-level predictors SES, MINORITY, and FEMALE 
included on the MODEL statement as well as the ODDSRATIO and (DIFF = FIRST LABEL).   
 
PROC GLIMMIX DATA=LIB.SESUG2014 METHOD=LAPLACE NOCLPRINT; 

CLASS SCHOOL_ID; 

MODEL MATHPASS (EVENT=LAST) = SES MINORITY FEMALE/ CL DIST=BINARY LINK=LOGIT SOLUTION 

ODDSRATIO (DIFF=FIRST LABEL); 

RANDOM INTERCEPT / SUBJECT=SCHOOL_ID TYPE=VC SOLUTION CL; 

COVTEST / WALD; 

 

Partial Solutions from the Fixed Effects table generate by this PROC GLIMMIX code is shown below. Note that due to 
space limitation we have not included the portion of the output that contains the ORs for each predictor.  
 

Solutions for Fixed Effects 

Effect Estimate 
Standard 

Error DF t Value Pr > |t| Alpha Lower Upper 

Intercept -0.2537 0.06124 159 -4.14 <.0001 0.05 -0.3746 -0.1327 

SES 0.6431 0.04139 7022 15.54 <.0001 0.05 0.5620 0.7243 

MINORITY -0.8753 0.08009 7022 -10.93 <.0001 0.05 -1.0324 -0.7183 

FEMALE -0.3739 0.06013 7022 -6.22 <.0001 0.05 -0.4918 -0.2561 

 

Next, In order to address the impact of the school variables, mean school SES and School Sector (Catholic=1), we 
continued the model building process by adding the school level variables to our model. The PROC GLIMMIX syntax 
and fixed effects output for this level-1 and level-2 model with random intercept only is shown below.  Again, we have 
not included the OR portion of the output due to space limitations.  
 
PROC GLIMMIX DATA=LIB.SESUG2014 METHOD=LAPLACE NOCLPRINT; 

CLASS SCHOOL_ID; 

MODEL MATHPASS (EVENT=LAST) = SES MINORITY FEMALE MEANSES SECTOR / CL DIST=BINARY 

LINK=LOGIT SOLUTION ODDSRATIO (DIFF=FIRST LABEL); 

RANDOM INTERCEPT / SUBJECT=SCHOOL_ID TYPE=VC SOLUTION CL; 

COVTEST / WALD; 
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Solutions for Fixed Effects 

Effect Estimate 
Standard 

Error DF t Value Pr > |t| Alpha Lower Upper 

Intercept -0.4567 0.06553 157 -6.97 <.0001 0.05 -0.5862 -0.3273 

SES 0.5675 0.04236 7022 13.40 <.0001 0.05 0.4844 0.6505 

MINORITY -0.8361 0.07853 7022 -10.65 <.0001 0.05 -0.9901 -0.6822 

FEMALE -0.3833 0.05887 7022 -6.51 <.0001 0.05 -0.4987 -0.2679 

MEANSES 0.6010 0.1188 7022 5.06 <.0001 0.05 0.3681 0.8340 

SECTOR 0.4197 0.08787 7022 4.78 <.0001 0.05 0.2475 0.5920 

 

Now that we have estimated all of our models, we have compiled the output into a single summary table – see Table 
2. We are now ready to evaluate the models and select the best fitting model by conducting a deviance test. This is a 
chi-square difference test in which we will compare the difference in the -2LL values between two models, with 
degrees of freedom equal to the difference in the number of parameters estimated between the models. A deviance 
test can only be conducted when models are nested; therefore, we will first compare Model 1 to Model 2 and then 
Model 2 to Model 3 to assess model fit.  
 
The calculations for conducting the deviance test between Model 1 and Model 2 is provided below. 
 

     
                            

 

     
                            

 
After determining that Model 2 was indeed a better fitting model than Model 1, next we compared Model 3 to Model 2.  
Thus, we were examining if the addition of school level variables improved model fit. Through this process, we 
determined that Model 3, a model containing both level-1 and level-2 fixed effects was the best fitting model, 
therefore we will use the parameter estimates generated by this model to answer our remaining research questions.  
 
Table 2. Estimates from a Two-Level Generalized Linear Model Predicting Probability of Passing a Math Test (N=7185) 

 Model 1 Model 2 Model 3
a 

Fixed Effects    
Intercept -0.65* (0.07) -0.25* (0.06)               -0.46* (0.06) 
Student SES   0.64* (0.04)   0.57* (0.04) 
Minority Status  -0.87* (0.08)  -0.84* (0.08) 
Gender  -0.37* (0.06)  -0.38* (0.06) 
Mean School SES      0.60* (0.12) 
Sector 
 

     0.42* (0.09) 

Error Variance    
Level-2 Intercept   0.62* (0.09)  0.26* (0.05)    0.14* (0.03) 

 
Model Fit    
-2LL              8906.74              8432.39** 8368.59** 
Note: *p< .05; **=likelihood ratio test significant; ICC = .158; Values based on SAS PROC GLIMMIX. Entries show parameter 
estimates with standard errors in parentheses; Estimation Method = Laplace. 
a
Best fitting model 

 
Our third research question asks about the relationship between student SES and the likelihood of passing the math 
test, controlling for other student and school level characteristics. To answer this question, we examine the parameter 
estimate for Student SES generated by Model 3. This relationship is both significant and positive (b = 0.57, p<.05), 

indicating that as student SES increases, the predicted log odds of the student passing the math test also increases. 
For a more intuitive interpretation, it is most common to report the ORs and/or PP when describing the relationship 
between predictors and the outcome. From the OR output (details not shown) it appears that for every one unit 
increase in student SES the odds of passing the exam increase by 1.76. That is, for students with personal SES one 
standard deviation above the mean, their odds of passing the math test is 1.76 times greater than students with 
average SES. Or, using the same equations described with the first model, we can also calculate the PP of passing 
the exam for students with different SES levels.  
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It is important to remember that all of the output, whether it is the raw regression coefficients, ORs, or PP, is 
interpreted based on all variables in the model being equal to 0. For example, the PP for a student with average SES, 
who is both male and White, and attends a public school with average school-wide SES is .388 whereas the PP for a 
white male student who attends a public school with average school-wide SES but who has a slightly above average 
personal SES (e.g., SES = 1) is .528.  
 
Our fourth research question asked about the relationship between school sector (public versus Catholic school), and 
the likelihood of passing the math test. To answer this question, we examine the fixed effect coefficient for Sector in 
Table 2. This coefficient is both significant and positive (b = 0.42, p<.05), indicating that students who attend Catholic 
school (i.e., where Sector = 1) have a higher predicted log odds of passing the math test compared to students who 
attend public school. Again, to provide more meaningful results, one would examine the OR output and/or calculate 
the PP for this relationship. Using the same PP formulas as before results indicate that holding all other student and 
school level variables constant, the predicted probability that a student attending a Catholic school will pass the math 
test is .491, compared to .388 for a student who attends public school, controlling for all other student and school 
level variables in the model.   
 

EXAMPLE 2: ESTIMATING TWO-LEVEL ORGANIZATIONAL MODELS WITH POLYTOMOUS 
OUTCOMES 

In order to exemplify the use of PROC GLIMMIX in estimating two-level organizational models with polytomous 
outcomes, we created a polytomous version of the math achievement score, by splitting the sample in three 
categories (i.e., 1 = below basic, 2 = basic, 3 = proficient). The purpose of this example is to investigate the 
probability of students being at or below a proficiency level and similar with the dichotomous model, the influence of 
student and school characteristics on this probability for each category. However, for simplicity, we only explored the 
impact of one student-level variable (SES) and one school-level variable (MEANSES) on the likelihood of students 
being at or below a math proficiency level. 
 
More specifically, the research questions examined in this example include: 
 

1. What is the likelihood of being at or below each proficiency level in math for students at a typical school? 
2. Does this likelihood of being at or below each math proficiency level vary across schools? 
3. What is the relationship between students’ socioeconomic status and their likelihood of being at or below a 

proficiency level in math? 
4. What is the relationship between schools’ socioeconomic status and the likelihood of students being at or 

below a proficiency level in math? 
 

Similar with the dichotomous example, the model building process started by examining the unconditional model with 
no predictors (Model 1), followed by the level-1 model including student SES (Model 2), and lastly, by the combined 
level-1 and level-2 model which added school-level SES (Model 3). All models estimated were random intercept only, 
so similar with the dichotomous example, student- and school-level characteristics were included in the models as 
fixed effects. For brevity, in this section we will mostly focus on highlighting the differences between the dichotomous 
and the polytomous models in terms of syntax, output, and interpretation. 
 
The PROC GLIMMIX syntax for the unconditional model estimated for this example is presented below. The key 
difference between this syntax and the syntax used to estimate the unconditional dichotomous model consists in the 
options used to specify the link and the distribution type on the MODEL statement. More specifically, this example 
uses MULTI as the DIST option and CLOGIT as the LINK option to appropriately specify a multinomial distribution 
and a cumulative logit link necessary for the polytomous model.  
 
PROC GLIMMIX DATA=LIB.POLYTOMOUS METHOD=LAPLACE NOCLPRINT; 

CLASS SCHOOLID; 

MODEL MATHORDINAL= / DIST=MULTI LINK=CLOGIT SOLUTION CL; 

RANDOM INTERCEPT/ SUBJECT=SCHOOLID TYPE=VC SOLUTION CL; 

COVTEST/WALD; 

 
The major difference in terms of the output generated for this unconditional model consists in the Solution for Fixed 
Effects table. Compared to the output generated for the dichotomous example where there is only one intercept 
estimated, the output below contains estimates for two intercepts. These are simultaneously estimated and in this 
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case, represent the log odds of being at or below the first two math proficiency levels (i.e., below basic and basic) of 
students at a typical school.  
 
These fixed effects estimates are useful for answering our first research question regarding the likelihood of being at 
or below each proficiency level in math for students at a typical school. More specifically, these log odds can be used 
to calculate the PP of being at or below each proficiency level in math, using the same formula as in the dichotomous 
example. The only difference is that now, the formula is applied for each of the intercept values. As results indicate, 
the log odds of being at or below the below basic math proficiency level at a typical school is -0.4244, resulting in PP 
of 0.3955. Similarly, the log odds of being at or below the basic math proficiency level is 0.9902, resulting in a 
cumulative probability of 0.7291. Finally, the cumulative probability of being at or below the proficient level in math 
adds to 1. Notice that in the polytomous case, these are cumulative probabilities. To calculate the actual probabilities 
of being at each proficiency level, we need to take a step further and subtract the cumulative probabilities of adjacent 
categories from one another. As a result, the PP of being at the below basic math proficiency level at a typical school 
is .3955, at the basic level is .3336 (.7291 - .3955), and at the proficiency level is .2709 (1 - .7291). 
 

Solutions for Fixed Effects 

Effect MATHORDINAL Estimate 
Standard 

Error DF t Value Pr > |t| Alpha Lower Upper 

Intercept 1 -0.4244 0.06829 159 -6.22 <.0001 0.05 -0.5593 -0.2896 

Intercept 2 0.9902 0.06916 159 14.32 <.0001 0.05 0.8536 1.1268 

 
Another important piece of the output generated for this model is the Covariance Parameter Estimates table shown 
below. Similar with the dichotomous example, results presented in this table help us answer the second research 
question of our study regarding the variability across schools of the likelihood of being at or below each math 
proficiency level. Results indicate that these relationships significantly vary across schools [     = .6334, z(159) = 
7.50, p<.0001].  Also, using the intercept variance estimate provided in this table (.6334), the ICC for this model could 
be calculated in the same way as described for the dichotomous example. However, for brevity, the ICC calculations 
are not included in this section. 
 

Covariance Parameter Estimates 

Cov Parm Subject Estimate 
Standard 

Error 
Z 

Value Pr > Z 

Intercept SCHOOLID 0.6334 0.08449 7.50 <.0001 

 
 
Next, the syntax for estimating the level-1 model and its corresponding output for fixed effect estimates are presented 
below. As with the dichotomous example, the level-1 model uses the same code as previously used for the 
unconditional model, with the addition of student SES as a fixed effect on the MODEL statement. However, in this 
case, the SES estimate illustrates to relationship between this student characteristic and the log odds of being at or 
below a math proficiency level. To be noted in the output that although there are two estimates for the intercepts, only 
one slope associated with student SES is estimated for this model. This suggests that the value of the SES estimate 
remains constant across logits/ intercepts. Also, as shown in the syntax, the user can request ORs as part of the 
output. But, again, space limitations prevent us from including that portion of the output.  
 
PROC GLIMMIX DATA=LIB.POLYTOMOUS METHOD=LAPLACE NOCLPRINT; 

CLASS SCHOOLID; 

MODEL MATHORDINAL=SES/ DIST=MULTI LINK=CLOGIT SOLUTION CL ODDSRATIO(DIFF=FIRST LABEL); 

RANDOM INTERCEPT/ SUBJECT=SCHOOLID TYPE=VC SOLUTION CL; 

COVTEST/WALD; 

 

Solutions for Fixed Effects 

Effect MATHORDINAL Estimate 
Standard 

Error DF t Value Pr > |t| Alpha Lower Upper 

Intercept 1 -0.4447 0.05392 159 -8.25 <.0001 0.05 -0.5512 -0.3382 

Intercept 2 1.0249 0.05509 159 18.60 <.0001 0.05 0.9161 1.1337 

SES  -0.7152 0.03535 7023 -20.23 <.0001 0.05 -0.7845 -0.6459 
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Last, the syntax for estimating the combined level-1 and level-2 model would be identical to the syntax for Model 2 
with the addition of MEANSES on the MODEL statement.  The output generated for this model is not included; 
however, similar with the output presented for the level-1 model, the output generated for this combined model only 
includes one slope estimate for MEANSES, thus being constant across both logits.  
 
PROC GLIMMIX DATA=LIB.POLYTOMOUS METHOD=LAPLACE NOCLPRINT; 

CLASS SCHOOLID; 

MODEL MATHORDINAL=SES MEANSES/ DIST=MULTI LINK=CLOGIT SOLUTION CL ODDSRATIO 

(DIFF=FIRST LABEL); 

RANDOM INTERCEPT/ SUBJECT=SCHOOLID TYPE=VC SOLUTION CL; 

COVTEST/WALD; 

 
Table 3 presents a summary of the results obtained for this example, including estimates for all three models 
considered in the model building process as well as model fit information. As with the dichotomous example, the 
three models are compared in terms of fit in order to decide on the best fitting model for these data. Specifically, 
based on the changes in the -2LL between nested models, the level-1 model (Model 2) appears to fit significantly 
better than the unconditional model (Model 1) (χ

2
(1) = 419.89, p < .0001). Similarly, the combined level-1 and level-2 

model (Model 3) fits significantly better than the level-1 model (Model 2) (χ
2
(1) = 74.55, p < .0001), therefore, this 

appears to be the best fitting model for our data.  
 
Table 3. Estimates for Two-level Generalized Linear Polytomous Models of Math Achievement (N = 7,185) 

    Model 1    Model 2    Model 3
a 

Fixed Effects    
Intercept 1 (Below Basic) 
Intercept 2 (Basic) 

-0.42* (0.07) 
 0.99* (0.07) 

  -0.44* (0.05) 
   1.02* (0.06) 

  -0.44* (0.04) 
   1.03* (0.05) 

Student SES    -0.72* (0.04)   -0.64* (0.04) 
Mean School SES   

 
  -1.03* (0.11) 
 

Error Variance    
Intercept  0.63* (0.08)    0.35* (0.05) 

 
   0.20* (0.03) 
 

Model Fit      
-2LL 14890.88    14470.99**    14396.44** 
Note: *p< .05; **=likelihood ratio test significant; ICC = .161; Values based on SAS PROC GLIMMIX. Entries show parameter 
estimates with standard errors in parentheses; Estimation Method = Laplace. 
a
Best fitting model 

 
Now, similar with the dichotomous example, parameter estimates from the best fitting model (Model 3), will be used 
to answer our final research questions. More specifically, our third research question refers to the relationship 
between students’ socioeconomic status and their likelihood of being at or below a proficiency level in math. To 
answer this question, we use the parameter estimate for student SES (b = -0.64, p < .05) indicating that there is a 
negative, statistically significant relationship between students’ SES and their probability of being at or below a math 
proficiency level. More specifically, as students’ SES increases, their likelihood of being at the lowest math 
performance level (i.e., below basic) decreases. Similarly, to answer our last research question, we use the estimate 
for school SES (b = -1.03, p < .05) which also indicates a negative, statistically significant relationship between school 
average SES and the probability of students being at or below a math proficiency level. Specifically, as school 
average SES increases, the likelihood of students being at the below basic math level decreases. To make more 
meaningful interpretations, the ORs portion of the output could be consulted and/or the log odds could be 
transformed into PP as shown for the dichotomous example.  
 

CONCLUSIONS  

This paper provides researchers with an introduction to estimating hierarchical generalized linear models with both 
dichotomous and polytomous outcomes via PROC GLIMMIX. Focused on relatively simple and straightforward 
models to exemplify the use of the GLIMMIX procedure, this paper also presents key elements and issues to 
consider when dealing with these models. These include but are not limited to the distribution of errors and link 
function appropriate for both dichotomous and polytomous cases, estimation methods preferred, model building, 
appropriate evaluation of model fit, and interpretation of GLIMMIX output. Although more advanced aspects regarding 
these models (e.g., random slopes, cross-level interactions, various estimation methods, options for more complex or 
more stable variance structures) are not included in this paper, we truly hope that applied researchers who are new to 
multilevel modeling and in particular to hierarchical generalized linear models, will find this introduction helpful! 
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