Skip to main content

Life Implies Work: A Holistic Account of Our Microbial Biosphere Focussing on the Bioenergetic Processes of Cyanobacteria, the Ecologically Most Successful Organisms on Our Earth

  • Chapter
  • First Online:
Bioenergetic Processes of Cyanobacteria

Abstract

This review analyses and discusses all fundamental aspects of BIOENERGETICS—physical, physicochemical, biochemical, physiological, ecological, and genetic aspects, always in front of, and exemplified by, the CYANOBACTERIA, the nonplus-ultra of microbial bioenergetics and physiology, representing the only organisms on earth uniquely capable of performing all the three bioenergetic processes, viz., (anaerobic) fermentation, (oxygenic) photosynthesis, and (aerobic) respiration in one and the same prokaryotic (=bacterial) cell. Thus the first chapter (Part I) will deal with fundamental bioenergetics. Thereby, also explicitly discussed will be usually rather neglected biological topics such as, e.g., the monophyletic origin of life, Darwinian evolution, Ludwig von Bertalanffy’s inherent flow equilibrium of living matter, Jacques Monod’s Chance and Necessity, reasons for the fundamental, yet still unexplained biochemical dichotomies (“one-sidednesses”, as witnessed, e.g., by the universal bioenergetic use of ATP, not—energetically equivalent—GTP, CTP, or UTP, and of optically active (“chiral”) biochemical monomers such as L-amino acids and D-sugars, as well as the interesting and “self-sustaining”, perpetuum mobile-like syntrophic communities in our biosphere. Naturally, the discussion will occasionally also briefly take us a bit farther away to more philosophical reflections on life per se. The last chapter (Part II) will focus in some more detail on cyanobacterial electron transport, in particular the still by far most-neglected aspect of cyanobacterial bioenergetics, cyanobacterial respiration, both viewed from traditional biochemistry and from the more fashionable in-silico approach of genetics. In respective contexts, the impact of environmental stresses (starvation, temperature, light, salt, pH, heavy metals, etc.) on cyanobacterial bioenergetics, both in general and with respect to specific bioenergetic processes, will also be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Danson MJ, Hough DW and Lunt GG (1992) The archaebacteria: biochemistry and biotechnology. Portland Press, London, UK

    Google Scholar 

  2. Woese CR and Fox GE (1977) Proc Natl Acad Sci U S A 74: 5088

    Google Scholar 

  3. Woese CR, Magrum LJ and Fox GE (1978) J Mol Evol 11: 245

    Google Scholar 

  4. Donker HJL and Kluyver AJ (1926) Die Einheit in der Biochemie. Chem Zelle Gewebe 13: 134

    CAS  Google Scholar 

  5. Schäfer G, Engelhard M and Müller V (1999) Microbiol Mol Biol Rev 63: 570

    Google Scholar 

  6. Starr C, Taggart R and Star L (2001) The unity and diversity of life. Brook and Cole Publishers, USA

    Google Scholar 

  7. Zillig W (1991) Curr Opin Genet Dev 1: 544

    Google Scholar 

  8. Sagan L (1967) J Theoret Biol 14: 125

    Google Scholar 

  9. Gallon JR (1992) New Phytol 122: 571

    Google Scholar 

  10. Schlegel HG (1999) Geschichte der Mikrobiologie. Acta Historica Leopoldina 28, Halle (Saale), Germany

    Google Scholar 

  11. Drews G (2010) Mikrobiologie: Die Entdeckung der unsichtbaren Welt. Springer, Berlin

    Google Scholar 

  12. Margulis L and Sagan D (1986) Microcosmos four billion years of microbial evolution. University of California Press, Berkeley, USA

    Google Scholar 

  13. Mojzsis SJ, Arrhenius G, McKeegan KD, Harrison TM, Nutman A and Friend CRL (1996) Nature 384: 5

    Google Scholar 

  14. Darwin CR (1859, 1872) The origin of species, 1st & 6th ed., John Murray, London, UK

    Google Scholar 

  15. Denton M (1985) Evolution: a theory in crisis. Adler & Adler, London, UK

    Google Scholar 

  16. Illies J (1980) Schöpfung oder Evolution? Interform, Zürich, Switzerland

    Google Scholar 

  17. Junker R and Scherer S (1988) Entstehung und Entwicklung der Lebewesen, 2nd ed., Weyel Biologie Verlag, Gießen, Germany

    Google Scholar 

  18. Atkins PW (1992) Creation revisited. WH Freeman & Co., Oxford, UK

    Google Scholar 

  19. Margulis L (1970) Origin of eukaryotic cells. Yale Univ Press, New Haven, USA

    Google Scholar 

  20. Cavalier-Smith T (2006) Philos Trans R Soc Lond B Biol Sci 361: 969

    Google Scholar 

  21. Knoll AH (1992) Science 256: 622

    Google Scholar 

  22. Stanier RY (1970) Symp Soc Gen Microbiol 20: 1

    Google Scholar 

  23. Dyall SD, Brown MT and Johnson PJ (2003) Science 304: 253

    Google Scholar 

  24. Poole A, Jeffares D and Penny D (1999) Bioessays 21: 880

    Google Scholar 

  25. Margulis L (1996) Proc Natl Acad Sci U S A 93: 1071

    Google Scholar 

  26. Van Valen LM and Maiorana VC (1980) Nature 287: 248

    Google Scholar 

  27. Moreira D and Lopez-Garcia P (1998) J Mol Evol 47: 517

    Google Scholar 

  28. Hackstein JHP and Yarlett N (2005) In: Overmann J (Ed), Molecular Basis of Symbiosis, Springer Verlag, Berlin, Germany, 117–142

    Google Scholar 

  29. Mereschkowsky C (1905) Biol Zentralbl 25: 593

    Google Scholar 

  30. Gray MW and Doolittle WF (1982) Microbiol Rev 46: 1

    Google Scholar 

  31. Cavalier-Smith T (2006) Proc R Soc Lond B Biol Sci 273: 1943

    Google Scholar 

  32. Peschek GA (1996) Biochem Soc Trans 24: 729

    Google Scholar 

  33. Peschek GA, Wastyn M, Trnka M, Molitor V, Fry IV and Packer L (1989) Biochemistry 28: 3057

    Google Scholar 

  34. Peschek GA, Hinterstoisser B, Wastyn M, Pineau B, Missbichler A and Lang J (1989) J Biol Chem 264: 11827

    Google Scholar 

  35. Peschek GA, Hinterstoisser B, Riedler M, Muchl R and Nitschmann WH (1986) Arch Biochem Biophys 247: 40

    Google Scholar 

  36. Peschek GA (1996) Biochim Biophys Acta 1275: 27

    Google Scholar 

  37. Peschek GA (1999) In: Peschek GA, Löffelhardt W and Schmetterer G (Eds), The phototrophic prokaryotes, Kluwer Academic/Plenum Publishers, New York, 201–209

    Google Scholar 

  38. Peschek GA, Wastyn M, Molitor V, Kraushaar H, Obinger C and Matthijs HCP (1989) In: Kotyk A, Skoda J, Paces V and Kosta V (Eds), Highlights of modern biochemistry, 1st vol. VSP Publishers, Zeist, The Netherlands, 893–902

    Google Scholar 

  39. Peschek GA (2000) Plant Physiol Biochem 38: 266

    Google Scholar 

  40. Peschek GA (2005) In: van der Est A and Bruce D (Eds), Photosynthesis: fundamental aspects to global perspectives, The international Society of Photosynthesis, Toronto, CDN, 746–749

    Google Scholar 

  41. Wang Y, Hill K, Singh S and Kari L (2005) Gene 346: 173

    Google Scholar 

  42. Karlin S and Burge C (1995) Trends Genet 11: 283

    Google Scholar 

  43. Gupta RS (1998) Microbiol Mol Biol Rev 62: 1435

    Google Scholar 

  44. Sasikumar R, Jijoy J and Peschek GA (2007) In: Galambos C (Ed), Abstr 10th international colloquium on endocytobiology and symbiosis, Gmunden, Austria, International Society of Endocytobiology (ISE), 51

    Google Scholar 

  45. Broda E (1975) The evolution of the bioenergetic processes. Pergamon Press, Oxford, UK

    Google Scholar 

  46. Broda E and Peschek GA (1979) J Theor Biol 81: 201

    Google Scholar 

  47. Peschek GA (1981) Photosynthetica 15: 543

    Google Scholar 

  48. Lane N (2002) Oxygen: the molecule that made the world. Oxford University Press, Oxford, UK

    Google Scholar 

  49. Wiche G (1998) J Cell Sci 111: 2477

    Google Scholar 

  50. Mikulecky DC (1996) Acta Biotheoretica 44: 179

    Google Scholar 

  51. Brocks JJ, Logan GA, Buick R and Summons RE (1999) Science 285: 1033

    Google Scholar 

  52. Hartman H and Fedorov A (2002) Proc Natl Acad Sci U S A 99: 1420

    Google Scholar 

  53. Kurland CG, Collins LJ and Penny D (2006) Science 312: 1011

    Google Scholar 

  54. Horiike T, Hamada K, Kanaya S and Shinozawa T (2001) Nature Cell Biol 3: 210

    Google Scholar 

  55. Rivera MC and Lake JA (2004) Nature 431: 152

    Google Scholar 

  56. Vellai T, Takacs K and Vida G (1998) J Mol Evol 46: 499

    Google Scholar 

  57. Vellai T and Vida G (1999) Proc R Soc Lond B Biol Sci 266: 1571

    Google Scholar 

  58. Embley TM and Martin W (2006) Nature 440: 623

    Google Scholar 

  59. Davies P (1998) The fifth miracle. The search for the origin of life. Penguin Books, London, UK

    Google Scholar 

  60. Cairns-Smith G (1985) Seven clues to the origin of life. Cambridge University Press, Cambridge, UK

    Google Scholar 

  61. Oparin AI (1924) The origin of life (translated in Bernal JD 1967). Plenum Press, London, UK

    Google Scholar 

  62. Haldane JBS (1954) New Biol 16: 12

    Google Scholar 

  63. Bernal JD (1967) The origin of life. Weidenfel Nicholson, London, UK

    Google Scholar 

  64. Haldane JBS (1970) In: Cloud P (Ed), Adventures in earth history. Freeman WH, San Francisco, USA, 377–384

    Google Scholar 

  65. Albrecht P (1971) Angew Chemie 83: 221

    Google Scholar 

  66. Miller SL and Urey HC (1959) Science 130: 245

    Google Scholar 

  67. Miller SL and Orgel LE (1974) The origins of life on Earth. Prentice Hall, Englewood Cliffs, USA

    Google Scholar 

  68. Urey HC (1952) The planets: their origin and development. New Haven. USA

    Google Scholar 

  69. Zohner A and Broda E (1979) Origins Life 9: 291

    Google Scholar 

  70. Wächtershäuser G (1988) Microbiol Rev 52: 452

    Google Scholar 

  71. Wächtershäuser G (1998) Syst Appl Microbiol 21: 473

    Google Scholar 

  72. Huber C and Wächtershäuser G (1997) Science 276: 245

    Google Scholar 

  73. Martin W and Russell MJ (2003) Phil Trans R Soc Lond B Biol Sci 358: 59

    Google Scholar 

  74. Monod J (1970) Le hasard et la necessite. Editions du Seuil, Paris, France

    Google Scholar 

  75. Hartman H (1998) Orig Life Evol Biosph 28: 515

    Google Scholar 

  76. Schrödinger E (1954) Nature and the greeks. Cambridge University Press, Cambridge, UK

    Google Scholar 

  77. Diels H and Kranz W (1903) Die Fragmente der Vorsokratiker, 1st ed., 1st–3rd vol. Weidemann Verlag, Zürich, Switzerland

    Google Scholar 

  78. Mansfeld J (1983) Die Vorsokratiker (two volumes, Greek/German). Philipp Reclam, Stuttgart, Germany

    Google Scholar 

  79. Gemelli Marciano ML (2007–2010) Die Vorsokratiker (three volumes, Greek/German, Sammlung Tusculum). Artemis und Winkler, Düsseldorf, Germany

    Google Scholar 

  80. Kirk GS, Raven JE and Schofield M (1983) The presocratic philosophers. A critical history with a selection of texts. Cambridge University Press, Cambridge, UK

    Google Scholar 

  81. Eigen M (1994) Ber Bunsenges Phys Chem 98: 135

    Google Scholar 

  82. Heidegger M (1929) Was ist Metaphysik? Inaugural Lecture, University of Freiburg. University Press, Freiburg, Germany

    Google Scholar 

  83. Sartre J-P (1956) Being and nothingness: a phenomenological essay on ontology. Citadel Press, New York (English Translation of “L’Etre et le Neant”, Paris, France 1943)

    Google Scholar 

  84. Camus A (1942) Le Mythe de Sisyphe. Librairie Gallimard, Paris, France

    Google Scholar 

  85. Djerassi C, and Hoffman R (2001) Oxygen. Wiley-VCH, Weinheim, Germany

    Google Scholar 

  86. Paumann M, Regelsberger G, Obinger C and Peschek GA (2005) Biochim Biophys Acta 1707: 231

    Google Scholar 

  87. Pauling L (1931) J Amer Chem Soc 53: 3225

    Google Scholar 

  88. Peschek GA, Obinger C and Paumann M (2004) Physiol Plant 120: 358

    Google Scholar 

  89. Skulachev VP (1996) Q Rev Biophys 29: 169

    Google Scholar 

  90. Schrödinger E (1951) What is Life? Cambridge University Press, Cambridge, UK

    Google Scholar 

  91. von Bertalanffy KL (1972) Theoretische Biologie, Stoffwechsel und Wachstum, 2nd vol. A. Francke Verlag, Bern, Switzerland

    Google Scholar 

  92. von Bertalanffy KL, Beier W and Laue R (1977) Biophysik des Fließgleichgewichts. Zsolnay, Vienna, Austria

    Book  Google Scholar 

  93. Nitschmann WH (1986) J Theor Biol 122: 409

    Google Scholar 

  94. Nitschmann WH and Peschek GA (1986) J Bacteriol 168: 1285

    Google Scholar 

  95. Nitschmann WH and Peschek GA (1985) Arch Microbiol 141: 330

    Google Scholar 

  96. Peschek GA, Nitschmann WH and Czerny T (1988) Methods Enzymol 167: 361

    Google Scholar 

  97. Mitchell P (1961) Nature 191: 144

    Google Scholar 

  98. Mitchell P (1966) Biol Rev 41: 455

    Google Scholar 

  99. Nicholls DG and Ferguson SJ (1992) Bioenergetics, 2nd ed., Academic Press, London, UK

    Google Scholar 

  100. Skulachev VP (1992) In: L Ernster (Ed), Molecular mechanisms in bioenergetics. Elsevier Science Publishers, Amsterdam, The Netherlands, 37–73

    Google Scholar 

  101. Dimroth P (1987) Microbiol Rev 51: 3287

    Google Scholar 

  102. Müller V and Gottschalk G (1994) In: HL Drake (Ed), Acetogenesis. Chapman and Hall, New York, USA, 127–156

    Google Scholar 

  103. Nitschmann WH and Packer L (1996) Biochem Mol Biol Intern 40: 1201

    Google Scholar 

  104. Peschek GA (2008) In: G Renger (Ed), Primary processes of photosynthesis: principles and applications, 2nd vol. European Society of Photobiology, RSC Publishing, Cambridge, UK, 383–415

    Google Scholar 

  105. Marcus RA (1956) J Chem Phys 24: 966

    Google Scholar 

  106. Marcus RA and Sutin N (1985) Biochim Biophys Acta 811: 265

    Google Scholar 

  107. Moser CC, Keske JM, Warncke K, Farid RS and Dutton PL (1992) Nature 355: 796

    Google Scholar 

  108. Moser CC and Dutton PL (1992) Biochim Biophys Acta 1101: 171

    Google Scholar 

  109. Moser CC, Page CC, Chen X and Dutton PL (1997) J Bioinorg Chem 2: 393

    Google Scholar 

  110. Baltscheffsky H and Baltscheffsky M (1974) Annu Rev Biochem 43: 871

    Google Scholar 

  111. Thauer RK, Jungermann K and Decker K (1977) Bacteriol Rev 41: 100

    Google Scholar 

  112. Racker E (1965) Mechanisms in bioenergetics. Academic Press, New York, USA

    Google Scholar 

  113. Gross T, Faull J, Ketteridge S and Springham D (1995) Introductory microbiology. Chapman & Hall, London, UK

    Google Scholar 

  114. Stryer H (1981) Biochemistry. Freeman & Company, San Francisco, USA

    Google Scholar 

  115. Atkinson DE (1969) Annu Rev Microbiol 23: 47

    Google Scholar 

  116. Atkinson DE (1977) Cellular energy metabolism and its regulation. Academic Press, New York, USA

    Google Scholar 

  117. Gest H (1999) In: Peschek GA, Löffelhardt W and Schmetterer G (Eds), The phototrophic prokaryotes, Kluwer Academic/Plenum Publishers, New York, USA, 11–19

    Google Scholar 

  118. Lipmann FA (1941) Advan Enzymol 1: 99

    Google Scholar 

  119. Raven JA and Smith FA (1976) J Theor Biol 57: 301

    Google Scholar 

  120. Wald G (1957) Ann N Y Acad Sci 69: 352

    Google Scholar 

  121. Wald G (1964) Proc Natl Acad Sci U S A 52: 595

    Google Scholar 

  122. Wald G (1966) In: Kaplan NO and Kennedy EP (Eds), Current Aspects of Biochemical Energetics. New York, USA, 119–133

    Google Scholar 

  123. Forterre P (1999) Bioessays 21: 871

    Google Scholar 

  124. Woese CR, Kandler O and Wheelis ML (1990) Proc Natl Acad Sci U S A 87: 4576

    Google Scholar 

  125. Woese CR (1998) Proc Natl Acad Sci U S A 95: 6854

    Google Scholar 

  126. Woese CR (2000) Proc Natl Acad Sci U S A 97: 8392

    Google Scholar 

  127. Doolittle WF and Brown JR (1994) Proc Natl Acad Sci U S A 91: 6728

    Google Scholar 

  128. Doolittle WF (1999) Science 284: 2124

    Google Scholar 

  129. Doolittle WF (2000) Curr Opin Struct Biol 10: 355

    Google Scholar 

  130. Dawkins R (1989) The selfish gene. Oxford University Press. Oxford, UK

    Google Scholar 

  131. Tarnas R (1991) The passion of western mind. Random House, Inc., New York, USA

    Google Scholar 

  132. Peschek GA (1975) Doctoral Thesis, University of Vienna, Austria (in German)

    Google Scholar 

  133. Peschek GA, and Broda E (1973) Naturwissenschaften 60: 479

    Google Scholar 

  134. Peschek GA (1974) In: Avron M (Ed), Proceedings of the 3rd International Congress on Photosynthesis. Elsevier Science Publishers, Amsterdam, The Netherlands, 921

    Google Scholar 

  135. Stal LJ and Moezelaar R (1997) FEMS Microbiol Rev 21: 179

    Google Scholar 

  136. Holm-Hansen O (1968) Annu Rev Microbiol 21: 47

    Google Scholar 

  137. Padan E (1979) Annu Rev Plant Physiol 30: 27

    Google Scholar 

  138. Peschek GA (1978) Arch Mikrobiol 119: 313

    Google Scholar 

  139. Peschek GA (1979) FEBS Lett 106: 34

    Google Scholar 

  140. Anderson S and McIntosh L (1991) J Bacteriol 173: 2761

    Google Scholar 

  141. Peschek GA (1976) In: Codd GA and Stewart WDP (Eds), Phototrophic prokaryotes. Proceedings of the 2nd International Symposium. 209

    Google Scholar 

  142. Peschek GA (1980) Arch Microbiol 125: 123

    Google Scholar 

  143. Rippka R, Deruelles J, Waterbury JB, Herdman M and Stanier RY (1979) J Gen Microbiol 111: 1–120

    Google Scholar 

  144. Rittenberg SC (1972) Antonie van Leeuwenhoek. J Microbiol Serol 38: 457

    CAS  Google Scholar 

  145. Smith AJ and Hoare DS (1977) Bact Rev 41: 419

    Google Scholar 

  146. Benedict CR (1978) Annu Rev Plant Physiol 29: 67

    Google Scholar 

  147. Whittenbury R and Kelly SP (1977) In: Hoddock BA and Hamilton WA (Eds), Microbial Energetics, Symposium 27, Soc Gen Microbiol 121–129

    Google Scholar 

  148. Kelly DP (1971) Annu Rev Microbiol 25: 177

    Google Scholar 

  149. Suzuki I (1974) Annu Rev Microbiol 28: 85

    Google Scholar 

  150. Gest H (1972) Adv Microb Physiol 7: 243

    Google Scholar 

  151. Renthal R (1992) In: Ernster L (Ed), Molecular mechanisms in bioenergetics. Elsevier Science Publishers, Amsterdam, The Netherlands, 75–101

    Google Scholar 

  152. Racker E and Stoeckenius W (1974) J Biol Chem 249: 662

    Google Scholar 

  153. Oesterhelt D and Stoeckenius W (1971) Nat New Biol 233: 149

    Google Scholar 

  154. Ovchinikov YA, Abdulaev NG, Feigina MY, Kiselev AV and Lobanov NA (1979) FEBS Lett 100: 219

    Google Scholar 

  155. Abrahams JP, Leslie AGW, Lutter R and Walker JE (1994) Nature 370: 621

    Google Scholar 

  156. Pedersen PL and Amzel M (1993) J Biol Chem 268: 9937

    Google Scholar 

  157. Peschek GA and Broda E (1980) In: Schopf JW (Ed), An interdisciplinary study of the origin and evolution of earth’s earliest biosphere. UCLA, Los Angeles, USA, 23

    Google Scholar 

  158. Nicholls P (1999) In: S Papa (Ed), Frontiers of cellular bioenergetics. Kluwer Academic/Plenum Publishers, New York, 1–22

    Google Scholar 

  159. Renger G (2001) Biochim Biophys Acta 1503: 210

    Google Scholar 

  160. Renger G (2004) Biochim Biophys Acta 1655: 195

    Google Scholar 

  161. Renger G and Holzwarth AR (2005) In: Wydrzynski T and Satoh K (Eds), Photosystem II: the light-driven water: plastoquinone oxidoreductase. Springer Verlag, The Netherlands, 139–175

    Google Scholar 

  162. Renger G (Ed) (2008) Primary processes of photosynthesis. Principles and applications, 2 vols. European Society of Photobiology, RSC Publishing, Cambridge, UK

    Google Scholar 

  163. Rabinowitch E and Govindjee (1969) Photosynthesis. John Wiley & Sons, New York, USA

    Google Scholar 

  164. Stanier RY (1961) Bacteriol Rev 25: 1

    Google Scholar 

  165. Stanier RY and Van Niel CB (1962) Arch Mikrobiol 42: 17

    Google Scholar 

  166. Asada K (1999) Annu Rev Plant Physiol Plant Mol Biol 50: 601

    Google Scholar 

  167. Van Gemerden H (1967) Ph. D. Thesis, University of Leiden, The Netherlands. (Printed by JH Pasmans, S’Gravenhage)

    Google Scholar 

  168. Babcock GT and Wikström M (1992) Nature 356: 301

    Google Scholar 

  169. Hoganson CW, Pressler MA, Proshlyakov DA and Babcock GT (1998) Biochim Biophys Acta 1365: 170

    Google Scholar 

  170. Crabtree RH (1997) Science 276: 222

    Google Scholar 

  171. Schopf JW (1970) Biol Rev 45: 319

    Google Scholar 

  172. Schopf JW (1999) Cradle of life. Princeton University Press, Princeton, USA

    Google Scholar 

  173. Barghoorn ES and Schopf JW (1965) Science 150: 337

    Google Scholar 

  174. Barghoorn ES and Schopf JW (1966) Science 152: 758

    Google Scholar 

  175. Waterbury JB, Watson SW, Guillard RRL and Brand LE (1979) Nature 277: 293

    Google Scholar 

  176. Chisholm SW, Olson RJ, Zettler FR, Goericke R, Waterbury JB and Welschmeyer NA (1988) Nature 340: 340

    Google Scholar 

  177. Hackstein JHP, Schubert H, Rosenberg J, Mackenstedt U, van den Berg M, Brul S, Derksen J and Matthijs HCP (1997) In: Schenk HEA, Herrmann RG, Jeon KW, Müller NE and Schwemmler W (Eds), Eukaryotism and symbiosis. Intertaxonic combination versus symbiotic adaptation. Endocytobiology VI. Springer Verlag, Berlin, Germany, 49–55

    Google Scholar 

  178. Des Marais DJ (2000) Science 289: 1703

    Google Scholar 

  179. Canfield DE and A Teske (1996) Nature 382: 127

    Google Scholar 

  180. Barber J (2004) Biochim Biophys Acta 1655: 132

    Google Scholar 

  181. Barber J (2008) Philos Trans R Soc Lond B Biol Sci 363: 2665

    Google Scholar 

  182. Dismukes GC, Klimov VV, Baranov SV, Das Gupta J and Tyryshkin A (2001) Proc Natl Acad Sci U S A 98: 2170

    Google Scholar 

  183. Canfield DE (1999) Nature 400: 503

    Google Scholar 

  184. Berner RA (1988) Paleogeogr Paleoclimatol Paleoecol 75: 97

    Google Scholar 

  185. Cloud P Jr (1968) Science 160: 729

    Google Scholar 

  186. Blankenship RE and Hartman H (1998) Trends Biochem Sci 23: 94

    Google Scholar 

  187. Ioannidis N, Schansker G, Barynin VV and Petrouleas V (2000) J Bioinorg Chem 5: 354

    Google Scholar 

  188. Kasting JF, Holland HD and Pinto JP (1985) J Geophys Res 90: 10497

    Google Scholar 

  189. Kasting JF (1993) Science 259: 920

    Google Scholar 

  190. Kasting JF (2006) Nature 443: 643

    Google Scholar 

  191. McKay CP and Hartman H (1991) Orig Life Evol Biosph 21: 157

    Google Scholar 

  192. Rye R and Holland HD (1998) Am J Sci 298: 621

    Google Scholar 

  193. Gerschman R, Gilbert DL, Nye SW, Dwyer P and Fenn WO (1954) Science 119: 623

    Google Scholar 

  194. De la Rosa MA, Molina-Heredia FP, Hervas M and Navarro JA (2006) In: JH Golbeck (Ed), The Light-Driven Plastocyanin: Ferredoxin Oxidoreductase. Springer Verlag, The Netherlands, 683–696

    Google Scholar 

  195. Towe KM (1978) Nature 274: 657

    Google Scholar 

  196. Barynin VV, Whittaker MM, Antonyuk SV, Lamzin VS, Harrison PM, Artymiuk PJ and Whittaker JW (2001) Structure 9: 725

    Google Scholar 

  197. Kono A and Fridovich I (1983) J Biol Chem 258: 6015

    Google Scholar 

  198. Ferreira KN, Iverson TM, Maghlaoui K, Barber J and Iwata S (2004) Science 303: 1831

    Google Scholar 

  199. Biesiadka J, Loll B, Kern J, Irrgang K-D and Zouni A (2004) Phys Chem Chem Phys 6: 4733

    Google Scholar 

  200. Loll B, Kern J, Saenger W, Zouni A and Biesiadka J (2005) Nature 438: 1040

    Google Scholar 

  201. Sidler WA (1994) In: Bryant DA (Ed), The molecular biology of cyanobacteria. Kluwer Academic Publishers, Dordrecht, The Netherlands, 139–216

    Google Scholar 

  202. Morand LZ, Cheng RH, Krogmann DW and Ho KK (1994) In: Bryant DA (Ed), The molecular biology of cyanobacteria. Kluwer Academic, Dordrecht, The Netherlands, 381–407

    Google Scholar 

  203. Gilbert DL (Ed) (1981) Oxygen and living processes. An interdisciplinary approach. Springer Verlag, New York, USA

    Book  Google Scholar 

  204. Hill R (1937) Nature 139: 281

    Google Scholar 

  205. Hill R and Bendall F (1960) Nature 186: 136

    Google Scholar 

  206. Nitschke W and Rutherford AW (1991) Trends Biochem Sci 16: 241

    Google Scholar 

  207. Xiong J, Fischer WM, Inoue K, Nakahara M and Bauer CE (2000) Science 289: 1724

    Google Scholar 

  208. Jordan T, Fromme P, Witt HT, Klukas O, Saenger W and Krauß N (2001) Nature 411: 909

    Google Scholar 

  209. Krauß N, Schubert WD, Klukas O, Fromme P, Witt HT and Saenger W (1996) Nat Struct Biol 3: 965

    Google Scholar 

  210. Ben-Shem A, Frolow F and Nelson N (2003) Nature 426: 630

    Article  PubMed  CAS  Google Scholar 

  211. Zouni A, Witt HT, Kern J, Fromme P, Krauß N, Saenger W and Orth P (2001) Nature 409: 739

    Google Scholar 

  212. Kamiya N and Shen JR (2003) Proc Natl Acad Sci U S A 100: 98

    Google Scholar 

  213. Kurisu G, Zhang H, Smith JL and Cramer WA (2003) Science 302: 1009

    Google Scholar 

  214. Stroebel D, Choquet Y, Popot J-L and Picot D (2003) Nature 426: 413

    Google Scholar 

  215. Schubert WD, Klukas O, Saenger HT, Witt HT, Fromme P and Krauß N (1998) J Mol Biol 280: 297

    Google Scholar 

  216. Morris JG (1975) Adv Microb Physiol 12: 169

    Google Scholar 

  217. Cole JA (1976) Adv Microb Physiol 14: 1

    Google Scholar 

  218. Cadenas E (1989) Annu Rev Biochem 58: 79

    Google Scholar 

  219. Higgins IJ, Best DJ, Hammond RC and Scott D (1981) Microbiol Rev 45: 556

    Google Scholar 

  220. Haber CL, Allen LN, Zhao S and Hanson RS (1983) Science 221: 1147

    Google Scholar 

  221. Balch WE, Fox GE, Magrum LJ, Woese CR and Wolfe RS (1979) Microbiol Rev 43: 260.

    Google Scholar 

  222. Hall JB (1971) J Theor Biol 30: 429

    Google Scholar 

  223. Obinger C, Regelsberger G, Strasser G, Burner U and Peschek GA (1997) Biochem Biophys Res Commun 235: 545

    Google Scholar 

  224. Obinger C, Regelsberger G, Pircher A, Sevcik-Klöckler A, Strasser G and Peschek GA (1999) In: Peschek GA, Löffelhardt W, Schmetterer G (Eds) The phototrophic prokaryotes. Kluwer Academic/Plenum Publishers, New York, USA, 719–731

    Google Scholar 

  225. Regelsberger G, Obinger C, Zoder R, Altmann F and Peschek GA (1999) FEMS Microbiol Lett 170: 1

    Google Scholar 

  226. Regelsberger G, Jacopitsch C, Rüker F, Krois D, Peschek GA and Obinger C (2000) J Biol Chem 275: 22854

    Google Scholar 

  227. Regelsberger G, Jakopitsch C, Plasser L, Schwaiger H, Furtmüller PG, Peschek GA, Zamocky M and Obinger C (2002) Plant Physiol Biochem 40: 479

    Google Scholar 

  228. Regelsberger G, Atzenhofer W, Rüker F, Peschek GA, Jacopitsch C, Paumann M, Furtmüller PG and Obinger CJ (2002) Biol Chem 277: 43615

    Google Scholar 

  229. Regelsberger G, Laaha U, Ditmann D, Rüker F, Canini A, Grilli-Caiola M, Furtmüller PG, Jakopitsch C, Peschek GA and Obinger C (2004) J Biol Chem 279: 44384

    Google Scholar 

  230. Jakopitsch C, Regelsberger G, Furtmüller PG, Rüker F, Peschek GA and Obinger C (2002) J Inorg Biochem 91: 78

    Google Scholar 

  231. Atzenhofer W, Regelsberger G, Jacob U, Peschek GA, Furtmüller PG, Huber R and Obinger C (2002) J Mol Biol 321: 479

    Google Scholar 

  232. Bernroitner M, Zamocky M, Furtmüller PG, Peschek GA and Obinger C (2009) J Exp Bot 60: 423

    Google Scholar 

  233. Rippka R, Waterbury JB, Cohen-Bazire G (1974) Arch Mikrobiol 100: 419

    Google Scholar 

  234. Grossman AR (2003) Photosynth Res 76: 207

    Google Scholar 

  235. Bibby TS, Mary I, Nield J, Partensky F and Barber J (2003) Nature 424: 1051

    Google Scholar 

  236. Hillier W and Babcock GT (2001) Plant Physiol 125: 33

    Google Scholar 

  237. DeRuyter YS and Fromme P (2008) In: Herrero A and Flores E (Eds), The cyanobacteria: molecular biology and evolution. Caister Academic Press, Norfolk

    Google Scholar 

  238. Blankenship RE (1992) Photosynth Res 33: 91

    Google Scholar 

  239. Hauska G, Nitschke W and Herrmann RG (1988) J Bioenerg Biomemb 20: 211

    Google Scholar 

  240. Dworsky A, Mayer B, Regelsberger G, Fromwald S and Peschek GA (1995) Bioelectrochem Bioenerg 38: 35

    Google Scholar 

  241. Dzelzkalns VA, Obinger C, Regelsberger G, Niederhauser H, Kamensek M, Peschek GA and Bogorad L (1994) Plant Physiol 105: 1435

    Google Scholar 

  242. Berry EA, Guergova-Kuras M, Huang L and Crofts AR (2000) Annu Rev Biochem 69: 1005

    Google Scholar 

  243. Nitschke W, Schoepp B, Floss B, Schricker A, Rutherford AW Liebl U (1996) Eur J Biochem 242: 695

    Google Scholar 

  244. Bertini I, Ciurli S, Dikiy A, Fernandez CO, Luchinat C, Safarov N, Shumilin S and Vila AJ (2001) J Am Chem Soc 123: 2405

    Google Scholar 

  245. Frazao C, Soares CM, Carrondo MA, Pohl E, Dauter Z, Wilson KS, Hervas M, Navarro MA, De la Rosa MA and Sheldrick GM (1995) Structure 3: 1159

    Google Scholar 

  246. Kerfeld CA, Anwar HP, Interrante R, Merchant S and Yeates TO (1995) J Mol Biol 250: 627

    Google Scholar 

  247. Ubbink M, Ejdebäck M, Karlsson BG and Bendall DS (1998) Structure 6: 323

    Google Scholar 

  248. Duran V, Hervas MA, De la Rosa MA and Navarro JA (2004) J Biol Chem 279: 7229

    Google Scholar 

  249. Moser D, Nicholls P, Wastyn M and Peschek GA (1991) Biochem Int 24: 757

    Google Scholar 

  250. Bernroitner M, Zamocky M, Pairer M, Furtmüller PG, Peschek GA and Obinger C (2008) Chem Biodivers 5: 1927

    Google Scholar 

  251. Schlarb-Ridley BG, Bendall DS and Howe CJ (2002) Biochemistry 41: 3279

    Google Scholar 

  252. Schlarb-Ridley BG, Navarro JA, Spencer M, Bendall DS, Hervas M, Howe CJ and De la Rosa MA (2002) Eur J Biochem 269: 5893

    Google Scholar 

  253. Schlarb-Ridley BG, Bendall DS and Howe CJ (2003) Biochemistry 42: 4057

    Google Scholar 

  254. Karplus PA, Daniels MJ and Herriott JR (1991) Science 251: 60

    Google Scholar 

  255. Saraste M and Castresana J (1994) FEBS Lett 341: 1

    Google Scholar 

  256. Castresana J and Saraste M (1995) Trends Biochem Sci 20: 443

    Google Scholar 

  257. Castresana J, Lübben M and Saraste M (1995) J Mol Biol 250: 202

    Google Scholar 

  258. Viebrock A and Zumft W (1988) J Bacteriol 170: 4658

    Google Scholar 

  259. Scott RA, Zumft WG, Coyle CL and Dooley DM (1989) Proc Natl Acad Sci U S A 86: 4082

    Google Scholar 

  260. Egami F (1974) Orig Life 5: 405

    Google Scholar 

  261. Fenchel T and Blackburn TH (1979) Bacteria and mineral cycling. Academic Press, London, UK

    Google Scholar 

  262. Jakowitsch J, Neumann-Spallart C, Ma Y, Steiner J, Schenk HEA, Bohnert HJ and Löffelhardt W (1996) FEBS Lett 381: 153

    Google Scholar 

  263. Löffelhardt W and Bohnert HJ (1994) In: Bryant DA (Ed), The molecular biology of cyanobacteria. Kluwer Academic Publishers, Dordrecht, The Netherlands, 65–89

    Google Scholar 

  264. Pfanzagl B, Zenker A, Pittenauer E, Allmaier G, Martinez-Torrecuadrada J, Schmid ER, De Pedro MA and Löffelhardt W (1996) J Bacteriol 178: 332

    Google Scholar 

  265. Peschek GA and Zoder R (2001) In: Rai LC and Gaur JP (Eds), Algal adaptation to environmental stresses. Physiological, biochemical, and molecular mechanisms. Springer Verlag, Berlin, Germany, 203–258

    Google Scholar 

  266. Biggins J (1969) J Bacteriol 99: 570

    Google Scholar 

  267. Wolk CP (1973) Bacteriol Rev 37: 32

    Google Scholar 

  268. Binder A (1982) J Bioenerg Biomemb 14: 271

    Google Scholar 

  269. Peschek GA (1981) Biochim Biophys Acta 635: 470

    Google Scholar 

  270. Peschek GA (1981) Biochem Biophys Res Commun 98: 72

    Google Scholar 

  271. Peschek GA, Schmetterer G, Lockau W and Sleytr UB (1981) In: Akoyunoglu G (Ed), Photosynthesis V. chloroplast development. Balaban International Science Services, Philadelphia, USA, 707–719

    Google Scholar 

  272. Molitor V and Peschek GA (1986) FEBS Lett 195: 145

    Google Scholar 

  273. Trnka M and Peschek GA (1986) Biochem Biophys Res Commun 136: 235

    Google Scholar 

  274. Molitor V, Trnka M and Peschek GA (1987) Curr Microbiol 14: 263

    Google Scholar 

  275. Peschek GA, Molitor V, Trnka M, Wastyn M and Erber W (1988) In: Rogers LJ and Gallon JR (Eds), Biochemistry of the algae and cyanobacteria. Clarendon Press, Oxford, UK, 178

    Google Scholar 

  276. Peschek GA, Molitor V, Trnka M, Wastyn M and Erber W (1988) Methods enzymol. 167: 437

    Google Scholar 

  277. Peschek GA, Schmetterer G, Muchl R, Nitschmann WH and Riedler M (1984) In: Sybesma C (Ed), Advances in Photosynthesis Research, 3rd vol. Martinus Nijhoff/Dr. W. Junk Publishers, The Hague, The Netherlands, 335–339

    Google Scholar 

  278. Peschek GA (1987) In: Fay P and van Baalen C (Eds), The cyanobacteria. Elsevier Science Publishers, Amsterdam, The Netherlands, 119–161

    Google Scholar 

  279. Fry IV, Peschek GA, Huflejt M and Packer L (1985) Biochem Biophys Res Commun 129: 109

    Google Scholar 

  280. Fry IV and Peschek GA (1988) Methods Enzymol 167: 450

    Google Scholar 

  281. Molitor V, Erber W and Peschek GA (1986) FEBS Lett 204: 251

    Google Scholar 

  282. Rivière M-E, Arrio B, Steffan I, Molitor V, Kuntner O and Peschek GA (1990) Arch Biochem Biophys 280: 159

    Google Scholar 

  283. Molitor V, Trnka M, Erber W, Steffan I, Riviere M-E, Arrio B, Springer-Lederer H and Peschek GA (1990) Arch Microbiol 154: 112

    Google Scholar 

  284. Molitor V, Kuntner O, Sleytr UB and Peschek GA (1990) Protoplasma 157: 112

    Google Scholar 

  285. Fry IV, Huflejt M, Erber WWA, Peschek GA and Packer L (1986) Arch Biochem Biophys 244: 686

    Google Scholar 

  286. Erber WWA, Nitschmann WH, Muchl R and Peschek GA (1986) Arch Biochem Biophys 247: 28

    Google Scholar 

  287. Peschek GA, Hinterstoisser B, Riedler M, Muchl R and Nitschmann WH (1986) Arch Biochem Biophys 247: 40

    Google Scholar 

  288. Peschek GA, Czerny T, Schmetterer G and Nitschmann WH (1985) Plant Physiol 79: 278

    Google Scholar 

  289. Peschek GA, Wastyn M, Fromwald S and Mayer B (1995) FEBS Lett 371: 89

    Google Scholar 

  290. Peschek GA, Alge D, Fromwald S and Mayer B (1995) J Biol Chem 270: 27937

    Google Scholar 

  291. Auer G, Mayer B, Wastyn M, Fromwald S, Eghbalzad K, Alge D and Peschek GA (1995) Biochem Mol Biol Int 37: 1173

    Google Scholar 

  292. Fromwald S, Zoder R, Wastyn M, Lübben M and Peschek GA (1999) Arch Biochem Biophys 367: 122

    Google Scholar 

  293. Alge D, Wastyn M, Mayer C, Jungwirth C, Zimmermann U, Zoder R, Fromwald S and Peschek GA (1999) IUBMB Life 48: 187

    Google Scholar 

  294. Arnold S and Kadenbach B (1997) Eur J Biochem 249: 350

    Google Scholar 

  295. Omata T and Murata N (1984) Biochim Biophys Acta 766: 395

    Google Scholar 

  296. Omata T and Murata N (1985) Biochim Biophys Acta 810: 354

    Google Scholar 

  297. Bisalputra T, Brown DL and Weier TE (1969) J Ultrastruct Res 27: 182

    Google Scholar 

  298. Peschek GA, Schmetterer G and Sleytr UB (1981) FEMS Microbiol Lett 11: 121

    Google Scholar 

  299. Scherer S, Almon H and Böger P (1988) Photosynth Res 15: 95

    Google Scholar 

  300. Peschek GA, Obinger C, Fromwald S and Bergman B (1994) FEMS Microbiol Lett 124: 431

    Google Scholar 

  301. Peschek GA, Obinger C, Sherman DM and Sherman LA (1994) Biochim Biophys Acta 1187: 369

    Google Scholar 

  302. Oelze J and Drews G (1972) Biochim Biophys Acta 265: 209

    Google Scholar 

  303. Oelze J (1981) Subcell Biochem 8: 1

    Google Scholar 

  304. Lübben M (1994) Biochim Biophys Acta 1229: 1

    Google Scholar 

  305. Lübben M and Morand J (1994) J Biol Chem 269: 21473

    Google Scholar 

  306. Walker JE and Dickson VK (2006) Biochim Biophys Acta 1757: 286

    Google Scholar 

  307. Hausrath AC, Capaldi RA and Matthews BW (2001) J Biol Chem 276: 47227

    Google Scholar 

  308. Rubinstein JL, Walker JE and Henderson R (2003) EMBO J 22: 6182

    Google Scholar 

  309. Kohlbrenner WE and Boyer PD (1983) J Biol Chem 258: 10881

    Google Scholar 

  310. Peschek GA (1979) Biochim Biophys Acta 548: 203

    Google Scholar 

  311. Peschek GA (1979) Biochim Biophys Acta 548: 187

    Google Scholar 

  312. Peschek GA (1979) Arch Microbiol 123: 81

    Google Scholar 

  313. Schmitz O, Boison G, Hilscher R, Hundeshagen B, Zimmer W, Lottspeich F and Bothe H (1995) Eur J Biochem 233: 266

    Google Scholar 

  314. Bothe H, Boison G and Schmitz O (1999) In: Peschek GA, Löffelhardt W and Schmetter G (Eds), The phototrophic prokaryotes. Kluwer Academic/Plenum Publishers, New York, USA, 589–601

    Google Scholar 

  315. Houchins P (1984) Biochim Biophys Acta 768: 227

    Google Scholar 

  316. Tamagnini P, Axelsson R, Lindberg P, Oxelfelt F, Wünschiers R and Lindblad P (2002) Microbiol Mol Biol Rev 66: 1

    Google Scholar 

  317. Jensen BJ (1983) J Gen Microbiol 129: 2633

    Google Scholar 

  318. Broda E and Peschek GA (1980) Biosystems 13: 47

    Google Scholar 

  319. Broda E and Peschek GA (1983) Biosystems 16: 1

    Google Scholar 

  320. Broda E and Peschek GA (1984) Orig Life 14: 653

    Google Scholar 

  321. Berger S, Ellersiek U and Steinmüller K (1991) FEBS Lett 286: 129

    Google Scholar 

  322. Friedrich T, Steinmüller K and Weiss H (1995) FEBS Lett 367: 107

    Google Scholar 

  323. Friedrich T and Weiss H (1997) J Theor Biol 187: 529

    Google Scholar 

  324. Friedrich T and Böttcher B (2004) Biochim Biophys Acta 1608: 1

    Google Scholar 

  325. Leif H, Sled VD, Ohnishi T, Weiss H and Friedrich T (1995) Eur J Biochem 230: 538

    Google Scholar 

  326. Weiss H, Friedrich T, Hofhaus G and Preis D (1991) Eur J Biochem 197: 563

    Google Scholar 

  327. Yagi T (1993) Biochim Biophys Acta 1141: 1

    Google Scholar 

  328. Boison G, Bothe H, Hansel A and Lindblad P (1999) FEMS Microbiol Lett 174: 159

    Google Scholar 

  329. Scherer S, Alpes I, Sadowski H and Böger P (1988) Arch Biochem Biophys 267: 228

    Google Scholar 

  330. Alpes I, Scherer S and Böger P (1989) Biochim Biophys Acta 973: 41

    Google Scholar 

  331. Melo AMP, Bandeiras TM and Teixeira M (2004) Microbiol Mol Biol Rev 68: 603

    Google Scholar 

  332. Ohkawa H, Pakrasi HB and Ogawa T (2000) J Biol Chem 275: 31630

    Google Scholar 

  333. Festetics T (2004) Diploma Thesis, University of Vienna, Austria

    Google Scholar 

  334. Flasch H (1997) Diploma Thesis, University of Vienna, Austria

    Google Scholar 

  335. Peschek GA, Karner A-H, Zeitler G, Festetics T, Flasch H, Özcelik M and Ruppert J (2006) In: Teixeira M (Ed), Abstr. EUROBIC 8, Aveiro, Portugal, PS 5.49.

    Google Scholar 

  336. Ohkawa H, Price GD, Badger MR and Ogawa T (2000) J Bacteriol 182: 2591

    Google Scholar 

  337. Malkin R (1992) Photosynth Res 33: 121

    Google Scholar 

  338. Trumpower BL (1990) Microbiol Rev 54: 101

    Google Scholar 

  339. Trumpower BL (1990) J Biol Chem 265: 11409

    Google Scholar 

  340. Cooley JW, Howitt CA and Vermaas WFJ (2000) J Bacteriol 182: 714

    Google Scholar 

  341. Cooley W and Vermaas WFJ (2001) J Bacteriol 183: 4251

    Google Scholar 

  342. Lancaster CR, Kröger A, Auer M and Michel H (1999) Nature 402: 377

    Google Scholar 

  343. Lancaster CR (2001) In: Messerschmidt A, Huber R, Poulos T and Wieghart K (Eds), Handbook of metalloproteins. John Wiley & Sons Ltd, Chichester, UK, 379–388

    Google Scholar 

  344. Lancaster CR (2002) Biochim Biophys Acta 1565: 215

    Google Scholar 

  345. Lancaster CR (2003) FEBS Lett 555: 21

    Google Scholar 

  346. Hägerhäll C (1997) Biochim Biophys Acta 1320: 107

    Google Scholar 

  347. Yankovskaya V, Horsefield R, Törnroth S, Lunba-Chavez C, Miyoshi H, Leger C, Byrne B, Cecchini G and Iwata S (2003) Science 299: 700

    Google Scholar 

  348. Peschek GA (1980) Biochem J 186: 515

    Google Scholar 

  349. Peschek GA and Kuntner O (1987) In: Favre A, Tyrrell R, Cadet J (Eds), From photophysics to Photobiology. Elsevier, Amsterdam, 157–166

    Google Scholar 

  350. Sone N, Sawa G, Sone N and Noguchi S (1995) J Biol Chem 270: 10612

    Google Scholar 

  351. Kraushaar H, Hager S, Wastyn M and Peschek GA (1990) FEBS Lett 273: 227

    Google Scholar 

  352. Sherman DM, Troyan TA and Sherman LA (1994) Plant Physiol 106: 251

    Google Scholar 

  353. Klughammer C, Hager V, Padan E, Schütz W, Schreiber U, Shahak Y and Hauska G (1995) Photosynth Res 43: 27

    Google Scholar 

  354. Zhang L, Pakrasi HB and Whitmarsh J (1994) J Biol Chem 269: 5036

    Google Scholar 

  355. Nicholls P, Obinger C, Niederhauser H and Peschek GA (1991) Biochem Soc Trans 19: 252S

    Google Scholar 

  356. Nicholls P, Obinger C, Niederhauser H and Peschek GA (1992) Biochim Biophys Acta 1098: 184

    Google Scholar 

  357. Hart SEE, Schlarb-Ridley BG, Bendall DS and Howe CJ (2005) Biochem Soc Trans 33: 832

    Google Scholar 

  358. Pereira MM, Santana M and Teixeira M (2001) Biochim Biophys Acta 1505: 185

    Google Scholar 

  359. Pereira MM, Gomes CM and Teixeira M (2002) FEBS Lett 522: 14

    Google Scholar 

  360. Pereira MM and Teixeira M (2004) Biochim Biophys Acta 1665: 340

    Google Scholar 

  361. Musser SM, Stowell HB and Chan SI (1993) FEBS Lett 327: 131

    Google Scholar 

  362. Howitt CA and Vermaas WFJ (1998) Biochemistry 37: 17944

    Google Scholar 

  363. Kienzl PF and Peschek GA (1982) Plant Physiol 69: 580

    Google Scholar 

  364. Peschek GA, Schmetterer G and Kienzl PF (1981) FEBS Lett 131: 11

    Google Scholar 

  365. Peschek GA (1983) J Bacteriol 153: 539

    Google Scholar 

  366. Peschek GA, Schmetterer G, Lauritsch G, Muchl R, Kienzl PF and Nitschmann WH (1983) In: Papageorgiou GC and Packer L (Eds), Photosynthetic prokaryotes: cell differentiation and Function. Elsevier Science Publishers, Amsterdam, The Netherlands, 147–162

    Google Scholar 

  367. Peschek GA, Czerny T, Schmetterer G and Nitschmann WH (1985) Plant Physiol 79: 278

    Google Scholar 

  368. Peschek GA (2000) Plant Cell Physiol 41 (Suppl): 14

    Google Scholar 

  369. Peschek GA, Schmetterer G, Lauritsch G, Nitschmann WH, Kienzl PF and Muchl R (1982) Arch Microbiol 131: 261

    Google Scholar 

  370. Alge D and Peschek GA (1993) Biochem Mol Biol Int 29: 511

    Google Scholar 

  371. Alge D and Peschek GA (1993) Biochem Biophys Res Commun 191: 9

    Google Scholar 

  372. Alge D, Schmetterer G and Peschek GA (1994) Gene 138: 127

    Google Scholar 

  373. Iwata S, Ostermeier C, Ludwig B and Michel H (1995) Nature 376: 660

    Google Scholar 

  374. Malatesta F, Nicoletti F, Zickermann V, Ludwig B and Brunori M (1998) FEBS Lett 434: 322

    Google Scholar 

  375. Svensson-Ek M, Abramson J, Larrson G, Törnroth S, Brzezinski P and Iwata S (2002) J Mol Biol 321: 329

    Google Scholar 

  376. Lockau W (1981) Arch Microbiol 128: 336

    Google Scholar 

  377. Sandmann G and Böger P (1980) Plant Sci Lett 17: 417

    Google Scholar 

  378. Siegelman H, Rasched IR, Kunert K-J, Kroneck P and Böger P (1976) Eur J Biochem 64: 131

    Google Scholar 

  379. Peikert R (1995) Diploma Thesis, University of Vienna, Austria

    Google Scholar 

  380. Paumann M, Lubura B, Regelsberger G, Feichtinger M, Köllensberger G, Jakopitsch C, Furtmüller PG, Obinger C and Peschek GA (2004) J Biol Chem 27: 10293

    Google Scholar 

  381. Paumann M, Feichtinger M, Bernroitner M, Goldfuhs J, Jakopitsch C, Furtmüller PG, Regelsberger G, Peschek GA and Obinger C (2004) FEBS Lett 576: 101

    Google Scholar 

  382. Paumann M, Bernroitner M, Lubura B, Peer M, Jakopitsch C, Furtmüller PGG, Regelsberger G, Peschek GA and Obinger C (2004) FEMS Microbiol Lett 239: 301

    Google Scholar 

  383. Navarro JA, Duran RV, De la Rosa MA and Hervas M (2005) FEBS Lett 579: 3565

    Google Scholar 

  384. Obinger C, Knepper J-C, Zimmermann U and Peschek GA (1990) Biochim Biophys Res Commun 169: 492

    Google Scholar 

  385. Serrano A, Gimenez P, Scherer S and Böger P (1990) Arch Microbiol 154: 614

    Google Scholar 

  386. Schmetterer G, Alge D and Gregor W (1994) Photosynth Res 42: 43

    Google Scholar 

  387. Abramson J, Riistama S, Larrson G, Jasaitis A, Svensson-Ek M, Laakkonen L, Puustinen A, Iwata S and Wikström M (2000) Nat Struct Biol 7: 910

    Google Scholar 

  388. Bergman B, Siddiqui PJA, Carpenter EJ and Peschek GA (1993) Appl Environ Microbiol 59: 3239

    Google Scholar 

  389. Turner JS and Brittain EG (1962) Biol Rev 37: 170

    Google Scholar 

  390. Jones LW and Myers J (1963) Nature 199: 670

    Google Scholar 

  391. Peschek GA and Schmetterer G (1982) Biochem Biophys Res Commun 108: 1188

    Google Scholar 

  392. Peschek GA (1983) Biochem J 210: 269

    Google Scholar 

  393. Pils D and Schmetterer G (2001) FEMS Microbiol Lett 203: 217

    Google Scholar 

  394. Peschek GA (1984) Plant Physiol 75: 968

    Google Scholar 

  395. Erber W, Nitschmann WH, Muchl R and Peschek GA (1986) Arch Biochem Biophys 247: 28

    Google Scholar 

  396. Inaba M, Sakamoto A and Murata N (2001) J Bacteriol 183: 1376

    Google Scholar 

  397. Padan E and Schuldiner S (1996) In: Konings WN, Kaback HR and Lolkema JS (Eds), Handbook of biological physics, 2nd vol. Elsevier Science Publishers, Amsterdam, The Netherlands, 501–531

    Google Scholar 

  398. Nomura CT, Persson S, Shen G, Inoue-Sakamoto K and Bryant DA (2006) Photosynth Res 87: 215

    Google Scholar 

  399. Bernroitner M, Tangl D, Lucini C, Furtmüller PG, Peschek GA and Obinger C (2009) Biochim Biophys Acta 1787: 135

    Google Scholar 

  400. Malakhov MP, Malakhova OA and Murata N (1999) FEBS Lett 444: 281

    Google Scholar 

  401. Fay P (1992) Microbiol Rev 56: 340

    Google Scholar 

  402. Peschek GA, Villgrater K and Wastyn M (1991) Plant Soil 127: 17

    Google Scholar 

  403. Wastyn M, Achatz A, Molitor V and Peschek GA (1988) Biochim Biophys Acta 935: 217

    Google Scholar 

  404. Wastyn M, Achatz A, Trnka M and Peschek GA (1987) Biochem Biophys Res Commun 149: 102

    Google Scholar 

  405. Zehr JP, Mellon MT and Zani S (1998) Appl Environ Microbiol 64: 3444

    Google Scholar 

  406. Rai AN, Borthakur M and Bergman B (1992) J Gen Microbiolol 138: 481

    Google Scholar 

  407. Jones KM, Buikema WJ and Haselkorn R (2003) J Bacteriol 185: 2306

    Google Scholar 

  408. Peschek GA, Niederhauser H and Obinger C (1992) EBEC Short Reports, Elsevier Science Publishers, Amsterdam, The Netherlands, 7: 48

    Google Scholar 

  409. Nitschmann WH and Peschek GA (1982) FEBS Lett 139: 77

    Google Scholar 

  410. Nitschmann WH, Schmetterer G and Peschek GA (1982) Biochim Biophys Acta 682: 293

    Google Scholar 

  411. Fromwald S, Dworsky A and Peschek GA (1995) In: Mathis P (Ed) Photosynthesis: from light to biosphere, 3rd vol. Kluwer Academic Publishers, Dordrecht, The Netherlands, 47–50

    Google Scholar 

  412. Neisser A, Fromwald S, Schmatzberger A and Peschek GA (1994) Biochem Biophys Res Commun 200: 884

    Google Scholar 

  413. Nierzwicki-Bauer SA, Balkwill DL and Stevens SE (1983) J Cell Biol 97: 713

    Google Scholar 

  414. Liberton M, Berg H, Heuser J, Roth R and Pakrasi HB (2006) Protoplasma 227: 129

    Google Scholar 

  415. Peschek GA and Sleytr UB (1983) J Ultrastruct Res 82: 233

    Google Scholar 

  416. Schmetterer G, Peschek GA and Sleytr UB (1983) Protoplasma 115: 202

    Google Scholar 

  417. Douce R, Block A, Dorne AJ and Joyard J (1984) Subcell Biochem 10: 1

    Google Scholar 

  418. de Duve C (2005) Singularities. Cambridge University Press, New York

    Book  Google Scholar 

  419. Born M (1964) Die Relativitätstheorie Einsteins, 4th ed., (328 pp.), Heidelberger Taschenbücher. Springer Verlag, Berlin etc., Germany

    Google Scholar 

  420. Einstein A (1965) Vier Vorlesungen über Relativitätstheorie, 6th ed., Fr. Vieweg & Sohn, Braunschweig, Germany

    Google Scholar 

  421. Einstein A (1963) Über die spezielle und die allgemeine Relativitätstheorie, 19th ed., Fr. Vieweg & Sohn, Braunschweig, Germany

    Book  Google Scholar 

  422. Fraser JT (1987) Time—The familiar stranger. The University of Massachusetts Press, Amherst, USA

    Google Scholar 

  423. Davies P (1987) About time. Einstein’s Unfinished Revolution, 3rd ed., Simon and Schuster, New York

    Google Scholar 

  424. Hawking S (1988) A brief history of time: From the big bang to black holes. Bantham Books, New York

    Google Scholar 

  425. Hawking S (1993) Black holes and baby universes and other essays. Bantham Books, New York

    Google Scholar 

  426. Hawking S and Mlodinov L (2010) The grand design. Bantham Books, New York

    Google Scholar 

  427. Rutten GM (1966) Paleogeogr Paleoclimatol Paleooecol 2: 47

    Google Scholar 

  428. Schidlowski M (1971) Geol Rundsch 60: 1351

    Google Scholar 

  429. Rhoads DC and Morse JW (1970) Lethaia 4: 413

    Google Scholar 

  430. Schlegel HG (1976) In: Kinne O (Ed), Marine ecology, 2nd vol. part 1, Wiley and Sons, London, UK, 9–60

    Google Scholar 

  431. Schlegel HG (1976) Antonie van Leeuwenhoek 42: 181

    Google Scholar 

  432. Meyer O and Schlegel HG (1983) Annu Rev Microbiol 37: 277

    Google Scholar 

  433. Geisler M, Richter J and Schumann J (1993) J Mol Biol 234: 1284

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Austrian Science Funds (FWF-project P17928 at present). Devoted and invaluable technical assistance has always been provided by Mr. Otto Kuntner.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Günter A. Peschek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Peschek, G.A., Bernroitner, M., Sari, S., Pairer, M., Obinger, C. (2011). Life Implies Work: A Holistic Account of Our Microbial Biosphere Focussing on the Bioenergetic Processes of Cyanobacteria, the Ecologically Most Successful Organisms on Our Earth. In: Peschek, G., Obinger, C., Renger, G. (eds) Bioenergetic Processes of Cyanobacteria. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0388-9_1

Download citation

Publish with us

Policies and ethics