Skip to main content Accessibility help
×
  • Cited by 92
Publisher:
Cambridge University Press
Online publication date:
January 2010
Print publication year:
2005
Online ISBN:
9780511614736

Book description

Erwin Schrödinger's What is Life? published 60 years ago, influenced much of the development of molecular biology. In this new book Christian De Duve, Nobel Laureate and pioneer of modern cell biology, presents a contemporary response to this classic, providing a sophisticated consideration of the key steps or bottlenecks that constrain the origins and evolution of life. De Duve surveys the entire history of life, including insights into the conditions that may have led to its emergence. He uses as landmarks the many remarkable singularities along the way, such as the single ancestry of all living beings, the universal genetic code, and the monophyletic origin of eukaryotes. The book offers a brief guided tour of biochemistry and phylogeny, from the basic molecular building blocks to the origin of humans. Each successive singularity is introduced in a sequence paralleling the hypothetical development of features and conditions on the primitive earth, explaining how and why each transition to greater complexity occurred.

Reviews

'… fine, incisive prose. … [De Duve] takes us on a dazzling trip within a cell, providing a beautiful exposition of life's biochemical cycles, their elegance, equilibrium and evolution.'

Source: New Scientist

'Christian de Duve gives his readers generous transparency in laying bare his reasoning and in the aesthetics of his current attempt at hard and beautiful problems concerning the unitary features of life and their origin. Few books allow this continuity of thinking over sucha broad range of interrekated problems.'

Source: BioEssays

'… we should always be alert to the great problems, such as understanding the processes leading to the origin of life. Given past experience, such great questions will be solved - not by chance but by the prepared mind. This book is a start to preparing that mind.'

Source: Nature

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

Bibliography
Bibliography
, A. Akhmanova, , F. Voncken, , T. van Halen, , A. van Hoek, , B. Boxma, , G. Vogels, , M. Veenhuis, and , H. H. P. Hackstein (1998). A hydrogenosome with a genome. Nature, 396, 527–528
, A. D. Anbar and , A. H. Knoll (2002). Proterozoic ocean chemistry and evolution: A bioinorganic bridge. Science, 297, 1137–1142
, J. O. Andersson, , A. M. Sjögren, , L. A. M. Davis, , T. M. Embley, and , A. J. Roger (2003). Phylogenetic analyses of diplomonad genes reveal frequent lateral gene transfers affecting eukaryotes. Curr. Biol., 13, 94–104
, L. Aravind, , R. L. Tatusov, , Y. I. Wolf, , D. R. Walker, and , E. V. Koonin (1998). Evidence for massive gene exchange between archaeal and bacterial hyperthermophiles. Trends Genet., 14, 442–444
, G. L. Arnold, , A. D. Anbar, , J. Barling, and , T. W. Lyons (2004). Molybdenum isotope evidence for widespread anoxia in mid-proterozoic oceans. Science, 304, 87–90
G. Arrhenius, B. Gedulin, and S. Mojzsis (1993). Phosphate in models for chemical evolution. In Chemical Evolution and Origin of Life (, C. Ponnamperuma and , J. Chela-Flores, eds.), 25–50. Hampton VA: A. Deepak Publishers
, M. Balter (2000). Evolution on life's fringes. Science, 289, 1866–1867
M. Baltscheffsky and H. Baltscheffsky (1992). Inorganic pyrophosphate and inorganic pyrophosphatases. In Molecular Mechanisms in Bioenergetics (, L. Ernster, ed.), 331–348. Amsterdam: Elsevier
, A. Bar-Nun, , E. Kochavi, and , S. Bar-Nun (1994). Assemblies of free amino acids as possible prebiotic catalysts. J. Mol. Evol., 39, 116–122
, A. D. Baughn and , M. H. Malamy (2004). The strict anaerobe Bacteroides fragilis grows in and benefits from nanomolar concentrations of oxygen. Nature, 427, 441–444
, A. Bekker, , H. D. Holland, , P.-L. Wang, , D. Rumble III, , H. J. Stein, , J. L. Hannah, , L. L. Coetzee, and , N. J. Beukes (2004). Dating the rise of atmospheric oxygen. Nature, 427, 117–120
, M. P. Bernstein, , J. P. Dworkin, , S. A. Sandford, , G. W. Cooper, and , L. J. Allamandola (2002). Racemic amino acids from the ultraviolet photolysis of interstellar ice analogues. Nature, 416, 401–403
, O. Botta and , J. L. Bada (2002). Extraterrestrial organic compounds in meteorites. Surv. Geophys., 23, 411–467
, O. Botta, , D. P. Glavin, , G. Kminek, and , J. L. Bada (2002). Relative amino acid concentrations as a signature for parent body processes of carbonaceous chondrites. Orig. Life Evol. Biosph., 32, 143–164
, Y. Boucher, , M. Kamekura, and , W. F. Doolittle (2004). Origins and evolution of isoprenoid lipid biosynthesis in archaea. Mol. Microbiol., 52 (No. 2), 515–527
A. Brack (2003). La chimie de l'origine de la vie. In Les Traces du Vivant (, M. Gargaud, , D. Despois, , J.-P. Parisot, and , J. Reisse, eds.), 61–81. Pessac: Presses Universitaires de Bordeaux
, M. D. Brasier, , O. R. Green, , A. P. Jephcoat, , A. K. Kleppe, , M. J. Van Kranendonk, , J. F. Lindsay, , A. Steele, and , N. V. Grassineau (2002). Questioning the evidence for Earth's oldest fossils. Nature, 416, 76–81
, J. J. Brocks, , G. A. Logan, , R. Buick, and , R. E. Summons (1999). Archaean molecular fossils and the early rise of eukaryotes. Science, 285, 1033–1036
, P. Brown, , T. Sutikna, , M. J. Morwood, , R. P. Soejono, , E. Wayhu Saptomo, and , R. Awe Due (2004). A new small-bodied hominin from the late Pleistocene of Flores, Indonesia. Nature, 431, 1055–1061
, R. Cammack (1983). Evolution and diversity in the iron–sulfur proteins. Chem. Scr., 21, 87–95
, D. E. Cane (1997). Polyketide and nonribosomal polypeptide biosynthesis. Chem. Rev., 97, 2463–2706. (includes 13 papers on the topic.)
, D. E. Canfield (1998). A new model for Proterozoic ocean chemistry. Nature, 396, 450–453
, L. H. Caporale (2003). Foresight in genome evolution. Am. Sci., 91, 234–241
, D. Caramelli, , C. Lalueza-Fox, , C. Vernes, , M. Lari, , A. Casoli, , F. Mallegni, , B. Chiarelli, , I. Dupanloup, , J. Bertranpetit, , G. Barbujani, and , G. Bertorelle (2003). Evidence for a genetic discontinuity between Neandertals and 24,000-year-old anatomically modern Europeans. Proc. Nat. Acad. Sci. U.S.A., 100, 6593–6597
, S. B. Carroll (2003). Genetics and the making of Homo sapiens. Nature, 422, 849–857
, J. Castresana and , M. Saraste (1995). Evolution of energetic metabolism: The respiration early hypothesis. Trends Biol. Sci., 20, 443–448
, T. Cavalier-Smith (1975). The origin of nuclei and eukaryotic cells. Nature, 256, 463–468
, T. Cavalier-Smith (2002). The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa. Int. J. Syst. Evol. Microbiol., 52, 297–354
, T. R. Cech (1986). RNA as an enzyme. Sci. Am., 255 (No. 5), 64–75
, A. Chakrabarti, , R. R. Breaker, , G. F. Joyce, and , D. W. Deamer (1994). Production of RNA by a polymerase protein encapsulated within phospholipid vesicles. J. Mol. Evol., 39, 555–559
, S. Conway Morris (1998). The Crucible of Creation. Oxford: Oxford University Press
, S. Conway Morris (2003). Life's Solution. Cambridge: Cambridge University Press
, J. R. Cronin and , S. Pizzarello (1997). Enantiomeric excesses in meteoritic amino acids. Science, 275, 951–955
, C. Cunchillos and , G. Lecointre (2002). Early steps of metabolism evolution inferred by cladistic analysis of amino acid catabolic pathways. C. R. Biol., 325, 119–129
, C. Cunchillos and , G. Lecointre (2005). Integrating the universal metabolism into a phylogenetic analysis. Mol. Biol. Evol., 22, 1–11
D. W. Deamer (1998). Membrane compartments in prebiotic evolution. In The Molecular Origins of Life (, A. Brack, ed.), 189–205. Cambridge: Cambridge University Press
C. de Duve (1963). The lysosome concept. In Ciba Foundation Symposium on Lysosomes (, A. V. S. de Reuck and , M. P. Cameron, eds.), 1–31. London: Churchill
, C. de Duve (1969). Evolution of the peroxisome. Ann. N.Y. Acad. Sci., 168, 369–381
, C. de Duve (1984). A Guided Tour of the Living Cell. New York: Scientific American Books
, C. de Duve (1988). The second genetic code. Nature, 333, 117–118
, C. de Duve (1991). Blueprint for a Cell. Burlington, NC: Neil Patterson Publishers, Carolina Biological Supply Company
, C. de Duve (1993). The RNA world: Before and after?Gene, 135, 29–31
, C. de Duve (1995). Vital Dust. New York: BasicBooks
, C. de Duve (1996). The birth of complex cells. Sci. Am., 274 (No. 4), 38–45
C. de Duve (1998). Clues from present-day biology: The thioester world. In The Molecular Origins of Life (, A. Brack, ed.), 219–236. Cambridge: Cambridge University Press
C. de Duve (2001). The origin of life: Energy. In Frontiers of Life. (, D. Baltimore, , R. Dulbecco, , F. Jacob, and , R. Levi-Montalcini, eds.), Vol. I, 153–168. San Diego, CA: Academic Press
, C. de Duve (2002). Life Evolving. New York: Oxford University Press
, C. de Duve (2003). A research proposal on the origin of life. Orig. Life Evol. Biosph., 33, 1–16
, C. de Duve (2005). The onset of selection. Nature, 433, 581–582
, C. de Duve and , R. Wattiaux (1966). Functions of lysosomes. Annu. Rev. Physiol., 28, 435–492
, F. M. Devienne, , C. Barnabé, , M. Couderc, and , G. Ourisson (1998). Synthesis of biological compounds in quasi-interstellar conditions. C. R. Acad. Sci. Paris, Sér. IIc, 1, 435–439
, F. M. Devienne, , C. Barnabé, and , G. Ourisson (2002). Synthesis of further biological compounds in interstellar-like conditions. C. R. Acad. Sci. Paris, Chimie/Chemistry, 5, 651–653
, R. E. Dickerson and , I. Geis (1969). The Structure and Action of Proteins. Menlo Park, CA: Benjamin/Cummings Publishing Company
, M. Di Giulio (2003). The early phases of genetic code origin: Conjectures on the evolution of coded catalysis. Orig. Life Evol. Biosph., 33, 479–489
, W. F. Doolittle (1999). Phylogenetic classification and the universal tree. Science, 284, 2124–2128
, W. F. Doolittle (2000). The nature of the universal ancestor and the evolution of the proteome. Curr. Opin. Struct. Biol., 10, 355–358
, S. D. Dyall, , M. T. Brown, and , P. J. Johnson (2004a). Ancient invasions: From endosymbionts to organelles. Science, 304, 253–257
, S. D. Dyall, , W. Yan, , M. G. Delgadillo-Correa, , A. Lunceford, , J. A. Loo, , C. F. Clarke, and , P. J. Johnson (2004b). Non-mitochondrial complex I proteins in a Trichomonas hydrogenosomal oxidoreductase complex. Nature, 431, 1103–1107
, P. Ehrenfreund, , W. Irvine, , L. Becker, , J. Blank, , J. R. Brucato, , L. Colangeli, , S. Derenne, , D. Despois, , A. Dutrey, , H. Fraaije, , A. Lazcano, , T. Owen, and , F. Robert, an International Space Science Institute ISSI Team (2002). Astrophysical and astrochemical insights into the origin of life. Rep. Prog. Phys., 65, 1427–1487
, M. Eigen and , P. Schuster (1977). The hypercycle: A principle of self-organization. Part A: Emergence of the hypercycle. Naturwissenschaften, 64, 541–565
, M. Eigen and , R. Winkler-Oswatitsch (1981). Transfer-RNA, an early gene. Naturwissenschaften, 68, 282–292
, A. Eschenmoser (1999). Chemical etiology of nucleic acid structure. Science, 284, 2118–2124
, P. Forterre (1995). Thermoreduction, a hypothesis for the origin of prokaryotes. C. R. Acad. Sci. III, 318, 415–422
, P. Forterre (1999). Where is the root of the universal tree of life?BioEssays, 21, 871–879
, P. Forterre, , C. Bouthier de la Tour, , H. Philippe, and , M. Duguet (2000). Reverse gyrase from hyperthermophiles: Probable transfer of a thermoadaptation trait from Archaea to Bacteria. Trends Genet., 16, 152–154
, S. W. Fox (1988). The Emergence of Life. New York: BasicBooks
, S. J. Freeland, , T. Wu, and , N. Keulmann (2003). The case for an error minimizing standard genetic code. Orig. Life Evol. Biosph., 33, 457–477
, N. Fujii (2002). d-Amino acids in living higher organisms. Orig. Life Evol. Biosph., 32, 103–127
, H. Furnes, , N. R. Banerjee, , K. Muehlenbachs, , H. Staudigel, and , M. de Wit (2004). Early life recorded in archean pillow lavas. Science, 304, 578–581
, N. Galtier, , N. Tourasse, and , M. Gouy (1999). A nonhyperthermophilic common ancestor to extant life forms. Science, 283, 220–221
, J. M. Garcia-Ruiz, , S. T. Hyde, , A. M. Carnerup, , A. G. Christy, , M. J. Van Kranendonk, and , N. J. Welham (2003). Self-assembled silica–carbonate structures and detection of ancient microfossils. Science, 302, 1194–1197
B. Gedulin and G. Arrhenius (1994). Sources and geochemical evolution of RNA precursor molecules – the role of phosphate. In Early Life on Earth, Nobel Symposium 84 (, S. Bengtson, ed.), 91–110. New York: Columbia University Press
, W. Gilbert (1986). The RNA world. Nature, 319, 618
, W. Gilbert, , M. Marchionni, and , G. Mcknight (1986). On the antiquity of introns. Cell, 46, 151–154
, N. Glansdorff (2000). About the last common ancestor, the universal life-tree, and lateral gene transfer: A reappraisal. Mol. Microbiol., 38 (No. 2), 177–185
, M. Gogarten-Boekels, , E. Hilario, and , J. P. Gogarten (1995). The effects of heavy meteorite bombardment on the early evolution – the emergence of the three domains of life. Orig. Life Evol. Biosph., 25, 251–264
, S. Gribaldo and , H. Philippe (2002). Ancient phylogenetic relationships. Theor. Pop. Biol., 61, 391–408
, R. S. Gupta, , K. Aitken, , M. Falah, and , B. Singh (1994). Cloning of Giardia lamblia heat shock protein HSP70 homologs: Implications regarding origin of eukaryotic cells and endoplasmic reticulum. Proc. Nat. Acad. Sci. U.S.A., 91, 2895–2899
, J. H. P. Hackstein, , A. Akhmanova, , F. Voncken, , A. van Hoek, , T. van Alen, , B. Boxma, , S. Y. Moon-van der Staay, , G. van der Staay, , J. Leunissen, , M. Huynen, , J. Rosenberg, and , M. Veenhuis (2001). Hydrogenosomes: Convergent adaptations of mitochondria to anaerobic environments. Zoology, 104, 290–302
, M. M. Hanczyc, , S. M. Fujikawa, and , J. W. Szostak (2003). Experimental models of primitive cellular compartments: Encapsulation, growth, and division. Science, 302, 618–622
, H. Hartman (1984). The origin of the eukaryotic cell. Speculations Sci. Technol., 7 (No. 2), 77–81
, H. Hartman and , A. Fedorov (2002). The origin of the eukaryotic cell: A genomic investigation. Proc. Nat. Acad. Sci. U.S.A., 99, 1420–1425
, T. Horiike, , K. Hamada, , S. Kanaya, and , T. Shinozawa (2001). Origin of eukaryotic cell nuclei by symbiosis of Archaea in Bacteria is revealed by homology-hit analysis. Nature Cell Biol., 3, 210–214
, D. S. Horner, , P. G. Foster, and , T. M. Embley (2000). Iron hydrogenases and the evolution of anaerobic eukaryotes. Mol. Biol. Evol., 17 (No. 11), 1695–1709
, C. Huber and , G. Wächtershäuser (1998). Peptides by activation of amino acids by CO on (Ni, Fe)S surfaces: Implications for the origin of life. Science, 281, 670–672
, E. Imai, , H. Honda, , K. Hatori, , A. Brack, and , K. Matsuno (1999). Elongation of oligopeptides in a simulated submarine hydrothermal system. Science, 283, 831–833
, W. K. Johnston, , P. J. Unrau, , M. S. Lawrence, , M. E. Glasner, and , D. P. Bartel (2001). RNA-catalyzed RNA polymerization: Accurate and general RNA-templated primer extension. Science, 292, 1319–1325
, A. Jorissen and , C. Cerf (2002). Asymmetric photoreactions as the origin of biomolecular homochirality: A critical review. Orig. Life Evol. Biosph., 32, 129–142
, G. F. Joyce (2002). The antiquity of RNA-based evolution. Nature, 418, 214–221
G. F. Joyce and L. E. Orgel (1993). Prospects for the understanding of the origin of the RNA world. In The RNA World (, R. F. Gesteland and , J. F. Atkins, eds.), 1–25. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press
, O. Kandler (1994a). Cell wall biochemistry in Archaea and its phylogenetic implications. J. Biol. Phys., 20, 165–169
O. Kandler (1994b). The early diversification of life. In Early Life on Earth, Nobel Symposium 84 (, S. Bengtson, ed.), 152–160. New York: Columbia University Press
, K. Kashefi and , D. R. Lovley (2003). Extending the upper temperature limit for life. Science, 301, 934
M. Kates (1992). Archaebacterial lipids: Structure, biosynthesis and function. In The Archaebacteria: Biochemistry and Biotechnology (, M. J. Danson, , D. W. Hough, and , G. G. Lunt, eds.), 51–72. Biochem. Soc. Symp. 58. London: Portland Press
, A. D. Keefe and , S. L. Miller (1995). Are polyphosphates or phosphate esters prebiotic reagents?J. Mol. Evol., 41, 693–702
, A. D. Keefe, , G. L. Newton, and , S. L. Miller (1995). A possible prebiotic synthesis of pantetheine, a precursor of coenzyme A. Nature, 373, 683–685
, A. H. Knoll (2003). Life on a Young Planet. Princeton, NJ: Princeton University Press
, V. Kolb, , S. Zhang, , Y. Xu, and , G. Arrhenius (1997). Mineral-induced phosphorylation of glycolate ion – a metaphor in chemical evolution. Orig. Life Evol. Biosph., 27, 485–503
, E. V. Koonin (2003). Comparative genomics, minimal gene-sets and the last universal common ancestor. Nature Rev. Microbiol., 1, 127–136
, A. Kornberg, , N. N. Rao, and , D. Ault-Riché (1999). Inorganic polyphosphate: A molecule of many functions. Annu. Rev. Biochem., 68, 89–125
, I. S. Kulaev (1979). The Biochemistry of Inorganic Polyphosphates. New York: Wiley
, J. A. Lake, , R. Jain, and , M. C. Rivera (1999). Mix and match in the tree of life. Science, 283, 2027–2028
, N. Lane (2002). Oxygen. Oxford: Oxford University Press
, A. Lazcano (2003). Just how pregnant is the universe?Science, 299, 347–348
, L. Leman, , L. Orgel, and , M. Reza Ghadiri (2004). Carbonyl sulfide-mediated prebiotic formation of peptides. Science, 306, 283–286
, R. Lewin (1996). Patterns in Evolution. New York: Scientific American Books
, M. R. Lindsay, , R. I. Webb, , M. Strous, , M. S. Jetten, , M. K. Butler, , R. J. Forde, and , J. A. Fuerst (2001). Cell compartmentalisation in planctomycetes: Novel types of structural organisation for the bacterial cell. Arch. Microbiol., 175 (No. 6), 413–429
P. L. Luisi (2002). Some open questions about the origin of life. In Fundamentals of Life (, G. Palyi, , C. Zucchi, and , L. Caglioti, eds.), 289–301. Paris: Elsevier
, D. A. Mac Donaill (2003). Why nature chose A, C, G, and U/T: An error-coding perspective of nucleotide alphabet composition. Orig. Life Evol. Biosph., 33, 433–455
, L. Margulis (1981). Symbiosis in Cell Evolution. San Francisco: W. H. Freeman & Co
, L. Margulis (1996). Archaeal–eubacterial mergers in the origin of Eukarya: Phylogenetic classification of life. Proc. Nat. Acad. Sci. U.S.A., 93, 1071–1076
, L. Margulis and , D. Sagan (1986). Micro-cosmos. New York: Summit Books
, W. Martin (1999). Mosaic bacterial chromosomes: A challenge en route to a tree of genomes. BioEssays, 21, 99–104
, W. Martin and , M. Müller (1998). The hydrogen hypothesis for the first eukaryote. Nature, 392, 37–41
, W. Martin, , C. Rotte, , M. Hoffmeister, , U. Theissen, , G. Gelius-Dietrich, , S. Ahr, and , K. Henze (2003). Early cell evolution, eukaryotes, anoxia, sulfide, oxygen, fungi first (?), and a tree of genomes revisited. Life, 55 (No. 4–5), 193–204
, W. Martin and , M. J. Russell (2003). On the origins of cells: A hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells. Phil. Trans. R. Soc. London B, 358, 59–85
, S. L. Miller (1953). A production of amino acids under possible primitive earth conditions. Science, 117, 528–529
, K. Miller (1999). Finding Darwin's God. New York: HarperCollins
, M. Mirazon Lahr and , R. Foley (2004). Human evolution writ small. Nature, 431, 1043–1044
, P. A. Monnard, , C. L. Apel, , A. Kanavarioti, and , D. W. Deamer (2004). Influence of ionic inorganic solutes on self-assembly and polymerization processes related to early forms of life: Implications for a prebiotic aqueous medium. Astrobiology, 2 (No. 2), 139–152
, D. Moreira and , P. Lopez-Garcia (1998). Symbiosis between methanogenic archaea and δ-proteobacteria as the origin of eukaryotes: The syntrophic hypothesis. J. Mol. Evol., 47, 517–530
, H. J. Morowitz (1999). A theory of biochemical organization, metabolic pathways, and evolution. Complexity, 4 (No. 6), 39–53
, M. J. Morwood, , R. P. Soejono, , R. G. Roberts, , T. Sutikna, , C. S. M. Turney, , K. E. Westaway, , W. J. Rink, , J.-x. Zhao, , G. D. van den Bergh, , R. Awe Due, , D. R. Hobbs, , M. W. Moore, , M. I. Bird, and , L. K. Fifield (2004). Archaeology and age of a new hominin from Flores in eastern Indonesia. Nature, 431, 1087–1091
, M. Müller (1993). The hydrogenosome. J. Gen. Microbiol., 139, 2879–2889
, M. Müller and , W. Martin (1999). The genome of Rickettsia prowazekii and some thoughts on the origin of mitochondria and hydrogenosomes. BioEssays, 21, 377–381
, G. M. Munoz Caro, , U. J. Meierhenrich, , W. A. Schutte, , B. Barbier, , A. Arcones Segovia, , H. Rosenbauer, , W. H.-P. Thiemann, , A. Brack, and , J. M. Greenberg (2002). Amino acids from ultraviolet irradiation of interstellar ice analogues. Nature, 416, 403–406
, K. E. Nelson, , R. A. Clayton, , S. R. Gill, , M. L. Gwinn, , R. J. Dodson, , D. H. Haft, , E. K. Hickey, , J. D. Peterson, , W. C. Nelson, , K. A. Ketchum, , L. McDonald, , T. R. Utterback, , J. A. Malek, , K. D. Linher, , M. M. Garrett, , A. M. Stewart, , M. D. Cotton, , M. S. Pratt, , C. A. Phillips, , D. Richardson, , J. Heidelberg, , G. G. Sutton, , R. D. Fleischmann, , J. A. Eisen, , O. White, , S. L. Salzberg, , H. O. Smith, , J. C. Venter, and , C. M. Fraser (1999). Evidence for lateral gene transfer between Archaea and Bacteria from genome sequence of Thermotoga maritima. Nature, 399, 323–329
, E. Nevo (1999). Mosaic Evolution of Subterranean Mammals. Oxford: Oxford University Press
, E. Nogales, , K. H. Downing, , L. A. Amos, and , J. Löwe (1998). Tubulin and FtsZ form a distinct family of GTPases. Nature Struct. Biol., 5, 451–458
, H. Ochman, , J. G. Lawrence, and , E. A. Groisman (2000). Lateral gene transfer and the nature of bacterial evolution. Nature, 405, 299–304
, H. Ogasawara, , A. Yoshida, , E. Imai, , H. Honda, , K. Hatori, and , K. Matsuno (2000). Synthesizing oligomers from monomeric nucleotides in simulated hydrothermal environments. Orig. Life Evol. Biosph., 30, 519–526
, Y. Ogata, , E. Imai, , H. Honda, , K. Hatori, and , K. Matsuno (2000). Hydrothermal circulation of sea water through hot vents and contribution of interface chemistry to prebiotic synthesis. Orig. Life Evol. Biosph., 30, 527–537
, L. E. Orgel (2003). Some consequences of the RNA world hypothesis. Orig. Life Evol. Biosph., 33, 211–218
S. Osawa (1995). Evolution of the Genetic Code. Oxford University Press
, G. Ourisson and , T. Nakatani (1994). The terpenoid theory of the origin of cellular life: The evolution of terpenoids to cholesterol. Chemistry and Biology, 1, 11–23
, K. Ozawa, , A. Nemoto, , E. Imai, , H. Honda, , K. Hatori, and , K. Matsuno (2004). Phosphorylation of nucleotide molecules in hydrothermal environments. Orig. Life Evol. Biosph., 34, 465–471
, J. D. Palmer (2003). The symbiotic birth and spread of plastids: How many times and whodunit?J. Phycol., 39, 4–11
, S. Pitsch, , A. Eschenmoser, , B. Gedulin, , S. Hui, and , G. Arrhenius (1995). Mineral induced formation of sugar phosphates. Orig. Life Evol. Biosph., 25, 294–334
, S. Pizzarello and , A. L. Weber (2004). Prebiotic amino acids as asymmetric catalysts. Science, 303, 1151
, A. Poole, , D. Jeffares, and , D. Penny (1999). Early evolution: prokaryotes, the new kids on the block. Bioessays, 21, 880–889
, D. Prangishvili (2003). Evolutionary insights from studies on viruses of hyperthermophilic archaea. Res. Microbiol., 154, 289–294
, B. P. Prieur (2001). Étude de l'activité prébiotique potentielle de l'acide borique. C. R. Acad. Sci. Paris, Chimie/Chemistry, 4, 1–4
, A. Ricardo, , M. A. Carrigan, , A. N. Olcott, and , S. A. Benner (2004). Borate minerals stabilize ribose. Science, 303, 196
, M. C. Rivera and , J. A. Lake (2004). The ring of life provides evidence for a genome fusion origin of eukaryotes. Nature, 431, 152–155
, M. Rohmer (1999). The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae, and higher plants. Nat. Prod. Rep., 16, 565–574
, M. Rohmer, , C. Grosdemange-Billiard, , M. Seemann, and , D. Tritsch (2004). Isoprenoid biosynthesis as a novel target for antibacterial and antiparasitic drugs. Curr. Opin. Investig. Drugs, 5 (No. 2), 154–162
, L. Sagan (1967). On the origin of mitosing cells. J. Theor. Biol., 14, 225–274
, J. G. Schmidt, , P. E. Nielsen, and , L. E. Orgel (1997). Enantiomeric cross-inhibition in the synthesis of oligonucleotides on a nonchiral template. J. Am. Chem. Soc., 119, 1494–1495
, J. W. Schopf (1999). Cradle of Life. Princeton, NJ: Princeton University Press
A. W. Schwartz (1998). Origins of the RNA world. In The Molecular Origins of Life (, A. Brack, ed.), 237–254. Cambridge: Cambridge University Press
, M. Shimizu (1982). Molecular basis for the genetic code. J. Mol. Evol., 18, 297–303
, A. Shimoyama and , R. Ogasawara (2002). Peptides and diketopiperazines in the Yamato-791198 and Murchison carbonaceous chondrites. Orig. Life Evol. Biosph., 32, 165–179
, N. H. Sleep, , K. J. Zahnle, , J. F. Kasting, and , H. J. Morowitz (1989). Annihilation of ecosystems by large asteroid impacts on the early Earth. Nature, 342, 139–142
M. L. Sogin, J. D. Silberman, G. Hinkle, and H. G. Morrison (1996). Problems with molecular diversity in the Eukarya. In Evolution of Microbial Life (, D. McL. Roberts, , P. Sharp, , G. Alderson, and , M. A. Collins, eds.), 167–184. Cambridge: Cambridge University Press
, S. Spiegelman (1967). An in vitro analysis of a replicating molecule. Am. Sci., 55, 221–264
, R. Y. Stanier (1970). Some aspects of the biology of cells and their possible evolutionary significance. Symp. Soc. Gen. Microbiol., 20, 1–38
, R. Sutak, , P. Dolezal, , H. L. Fiumera, , I. Hrdy, , A. Dancys, , M. Delgadillo-Correa, , P. J. Johnson, , M. Müller, and , J. Tachezy (2004). Mitochondrial-type assembly of Fe–S centers in the hydrogenosomes of the amitochondriate eukaryote Trichomonas vaginalis. Proc. Nat. Acad. Sci. U.S.A., 101, 10368–10373
, E. Szathmary (2002). The gospel of inevitability. Nature, 419, 779–780
, J. W. Szostak, , D. P. Bartel, and , P. L. Luisi (2001). Synthesizing life. Nature, 409, 387–390
, K. Tamura and , P. Schimmel (2004). Chiral-selective aminoacylation of an RNA minihelix. Science, 305, 1253
, J. Tovar, , G. Leon-Avila, , L. B. Sanchez, , R. Sutak, , J. Tachezy, , M. van der Giezen, , M. Hernandez, , M. Müller, and , J. M. Lucocq (2003). Mitochondrial remnant organelles of Giardia function in iron–sulphur protein maturation. Nature, 426, 172–176
, F. van den Ent, , L. A. Amos, and , J. Löwe (2001). Prokaryotic origin of the actin cytoskeleton. Nature, 413, 39–44
, M. A. van Zullen, , A. Lepland, and , G. Arrhenius (2002). Reassessing the evidence for the earliest traces of life. Nature, 418, 627–630
, T. Vellai and , G. Vida (1999). The origin of eukaryotes: The difference between prokaryotic and eukaryotic cells. Proc. R. Soc. London B, 266, 1571–1577
, F. Voncken, , B. Boxma, , J. Tjaden, , A. Akhmanova, , M. Huynen, , F. Verbeek, , A. G. M. Tielens, , I. Haferkamp, , H. E. Neuhaus, , G. Vogels, , M. Veenhuis, and , J. H. P. Hackstein (2002). Multiple origins of hydrogenosomes: Functional and phylogenetic evidence from the ADP/ATP carrier of the anaerobic chytrid Neocallimastix sp. Mol. Microbiol., 44 (No. 6), 1441–1454
, C. D. von Dohlen, , S. Kohler, , S. T. Alsop, and , W. R. McManus (2001). Mealybug beta-proteobacterial endosymbionts contain gamma-proteobacterial symbionts. Nature, 412, 433–436
G. Wächtershäuser (1998). Origin of life in an iron–sulfur world. In The Molecular Origins of Life (, A. Brack, ed.), 206–218. Cambridge: Cambridge University Press
, G. Wächtershäuser (2003). From pre-cells to Eukarya – a tale of two lipids. Mol. Microbiol., 47 (No. 1), 13–22
, C. T. Walsh (2004). Polyketide and nonribosomal peptide antibiotics: Modularity and versatility. Science, 303, 1805–1810
, J. Washington (2000). The possible role of volcanic aquifers in prebiologic genesis of organic compounds and RNA. Orig. Life Evol. Biosph., 30, 53–79
, A. L. Weber (2001). The sugar model: Catalysis by amines and amino acid products. Orig. Life Evol. Biosph., 31, 71–86
, F. H. Westheimer (1987). Why nature chose phosphates. Science, 235, 1173–1178
, T. D. White, , B. Asfaw, , D. DeGusta, , H. Gilbert, , G. D. Richards, , G. Suwa, and , F. C. Howell (2003). Pleistocene Homo sapiens from Middle Awash, Ethiopea. Nature, 423, 742–747
, J. Whitfield (2004). Born in a watery commune. Nature, 427, 674–676
, C. R. Woese (1987). Bacterial evolution. Microbiol. Rev., 51, 221–271
, C. R. Woese (1998). The universal ancestor. Proc. Nat. Acad. Sci. U.S.A., 95, 6854–6859
, C. R. Woese (2000). Interpreting the universal phylogenetic tree. Proc. Nat. Acad. Sci. U.S.A., 97, 8392–8396
, C. R. Woese (2002). On the evolution of cells. Proc. Nat. Acad. Sci. U.S.A., 99, 8742–8747
, C. R. Woese (2004). A new biology for a new century. Microbiol. Mol. Biol. Rev., 68, 173–186
, C. R. Woese and , G. E. Fox (1977). Phylogenetic structure of the prokaryotic domain. Proc. Nat. Acad. Sci. U.S.A., 74, 5088–5090
, J. T.-F. Wong (1975). A co-evolution theory of the genetic code. Proc. Nat. Acad. Sci. U.S.A., 72, 1909–1912
, J. T.-F. Wong (1991). Origin of genetically encoded protein synthesis: A model based on selection for RNA peptidation. Orig. Life Evol. Biosph., 21, 165–176
J. T.-F. Wong and H. Xue (2002). Self-perfecting evolution of heteropolymer building blocks and sequences as the basis of life. In Fundamentals of Life (, G. Palyi, , C. Zucchi, and , L. Caglioti, eds.), 473–494. Paris: Elsevier
, Y. Xu and , N. Glansdorff (2002). Was our ancestor a hyperthermophilic procaryote?Comp. Biochem. Physiol. Part A, 133, 677–688
, Y. Yamagata, , H. Watanabe, , M. Saitoh, and , T. Namba (1991). Volcanic production of polyphosphates and its relevance to prebiotic evolution. Nature, 352, 516–519
, M. Yarus (2000). RNA–ligand chemistry: A testable source for the genetic code. RNA, 6, 475–484
, S. Yokoyama, , A. Koyama, , A. Nemoto, , H. Honda, , E. Imai, , K. Hatori, and , K. Matsuno (2003). Amplification of diverse catalytic properties of evolving molecules in a simulated hydrothermal environment. Orig. Life Evol. Biosph., 33, 589–595
, W. Zillig (1991). Comparative biochemistry of Archaea and Bacteria. Curr. Opin. Genet. Dev., 1, 544–551

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.