Philosophical Transactions of the Royal Society B: Biological Sciences
Published:https://doi.org/10.1098/rstb.2006.1907

    Today, hyperthermophilic (‘superheat-loving’) bacteria and archaea are found within high-temperature environments, representing the upper temperature border of life. They grow optimally above 80°C and exhibit an upper temperature border of growth up to 113°C. Members of the genera, Pyrodictium and Pyrolobus, survive at least 1 h of autoclaving. In their basically anaerobic environments, hyperthermophiles (HT) gain energy by inorganic redox reactions employing compounds like molecular hydrogen, carbon dioxide, sulphur and ferric and ferrous iron. Based on their growth requirements, HT could have existed already on the early Earth about 3.9 Gyr ago. In agreement, within the phylogenetic tree of life, they occupy all the short deep branches closest to the root. The earliest archaeal phylogenetic lineage is represented by the extremely tiny members of the novel kingdom of Nanoarchaeota, which thrive in submarine hot vents. HT are very tough survivors, even in deep-freezing at −140°C. Therefore, during impact ejecta, they could have been successfully transferred to other planets and moons through the coldness of space.

    References

    • Blöchl E, Rachel R, Burggraf S, Hafenbradl D, Jannasch H.W& Stetter K.O . 1997 Pyrolobus fumarii, gen. and sp. nov., represents a novel group of archaea, extending the upper temperature limit for life to 113°C. Extremophiles. 1, 14–21.doi:10.1007/s007920050010. . Crossref, PubMed, ISIGoogle Scholar
    • Brasier M.D, Green O.R, Jephcoat A.P, Kleppe A.K, Van Kranendonk M.J, Lindsay J.F, Steele A& Grassineau N.V . 2002 Questioning the evidence for Earth's oldest fossils. Nature. 416, 76–81.doi:10.1038/416076a. . Crossref, PubMed, ISIGoogle Scholar
    • Brock T.D vol. xi 1978 New York, NY:Springer 465 pp. Google Scholar
    • Castenholz R.W Evolution and ecology of thermophilic microorganisms. Strategies of microbial life in extreme environments & Shilo M . 1979pp. 373–392. Eds. Weinheim, Germany:Verlag Chemie. Google Scholar
    • Cowan D.A . 2004 The upper limit of life: how far can we go. Trends Microbiol. 12, 58–60.doi:10.1016/j.tim.2003.12.002. . Crossref, PubMed, ISIGoogle Scholar
    • DiRuggiero J, Santangelo N, Nackerdeen Z, Ravel J& Robb F.T . 1997 Repair of extensive ionizing-radiation DNA damage at 95°C in the hyperthermophilic archaeon Pyrococcus furiosus. J. Bacteriol. 179, 4643–4645. Crossref, PubMed, ISIGoogle Scholar
    • Doolittle W.F . 1999 Phylogenetic classification and the universal tree. Science. 284, 2124–2129.doi:10.1126/science.284.5423.2124. . Crossref, PubMed, ISIGoogle Scholar
    • Drobner E, Huber H, Wächtershäuser G, Rose D& Stetter K.O . 1990 Pyrite formation linked with hydrogen evolution under anaerobic conditions. Nature. 346, 742–744.doi:10.1038/346742a0. . Crossref, ISIGoogle Scholar
    • Hohn M.J, Hedlund B.P& Huber H . 2002 Detection of 16S rDNA sequences representing the novel phylum “Nanoarchaeota”: indication for a broad distribution in high temperature. Syst. Appl. Microbiol. 25, 551–554.doi:10.1078/07232020260517698. . Crossref, PubMed, ISIGoogle Scholar
    • Huber R, Stoffers P, Cheminee J.L, Richnow H.H& Stetter K.O . 1990 Hyperthermophilic archaebacteria within the crater and open-sea plume of erupting Macdonald Seamount. Nature. 345, 179–181.doi:10.1038/345179a0. . Crossref, ISIGoogle Scholar
    • Huber H, Hohn M.J, Rachel R, Fuchs T, Wimmer V.C& Stetter K.O . 2002 A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont. Nature. 417, 63–67.doi:10.1038/417063a. . Crossref, PubMed, ISIGoogle Scholar
    • Kandler O The early diversification of life. Early life on earth. & Bengtson S Nobel Symposium No. 84 1994pp. 152–160. Eds. New York, NY:Columbia University Press. Google Scholar
    • Kashefi K& Lovley D.R . 2003 Extending the upper temperature limit of life. Science. 301, 934 doi:10.1126/science.1086823. . Crossref, PubMed, ISIGoogle Scholar
    • Kopylov V.M, Bonch-Osmolovskaya E.A, Svetlichnyi V.A, Miroshnichenko M.L& Skobkin V.S . 1993 γ-Irridation resistance and UV sensitivity of extremely thermophilic archaebacteria and eubacteria. Mikrobiologiya. 62, 90–95. ISIGoogle Scholar
    • Randau L, Münch R, Hohn M.J, Jahn D& Söll D . 2005 Nanoarchaeum equitans creates functional t-RNAs from separate genes for their 5′- and 3′- halves. Nature. 433, 537–541.doi:10.1038/nature03233. . Crossref, PubMed, ISIGoogle Scholar
    • Schopf J.W& Packer B.M . 1987 Early Archean (3.3 billion to 3.5 billion-year-old) microfossils from Warrawoona Group, Australia. Science. 237, 70–73. Crossref, PubMed, ISIGoogle Scholar
    • Stetter K.O . 1982 Ultrathin mycelia-forming organisms from submarine volcanic areas having an optimum growth temperature of 105°C. Nature. 300, 258–260.doi:10.1038/300258a0. . Crossref, ISIGoogle Scholar
    • Stetter K.O Life at the upper temperature border. Frontiers of life , Tran Thanh Van J, Tran Thanh Van K, Mounolou J.C, Schneider J& McKay C . 1992pp. 195–219. Eds. Gif-sur-Yvette, France:Editions Frontieres. Google Scholar
    • Stetter K.O, Thomm M, Winter J, Wildgruber G, Huber H, Zillig W, Janecovic D, König H, Palm P& Wunderl S . 1981 Methanothermus fervidus, sp. nov., a novel extremely thermophilic methanogen isolated from an Icelandic hot spring. Zbl. Bakt. Hyg., I. Abt. Orig. C2, 166–178. Google Scholar
    • Stetter K.O, Huber R, Blöchl E, Kurr M, Eden R.D, Fielder M, Cash H& Vance I . 1993 Hyperthermophilic archaea are thriving in deep North Sea and Alaskan oil reservoirs. Nature. 365, 743–745.doi:10.1038/365743a0. . Crossref, ISIGoogle Scholar
    • van Zullen M.A, Lepland A& Arrhenius G . 2002 Reassessing the evidence for the earliest traces of life. Nature. 418, 627–630.doi:10.1038/nature00934. . Crossref, PubMed, ISIGoogle Scholar
    • Waters E, et al. 2003 The genome of Nanoarchaeum equitans: insights into early archaeal evolution and derived parasitism. Proc. Natl Acad. Sci. USA. 100, 12 984–12 988.doi:10.1073/pnas.1735403100. . Crossref, ISIGoogle Scholar
    • Woese C.R& Fox G.E . 1977 Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc. Natl Acad. Sci. USA. 74, 5088–5090.doi:10.1073/pnas.74.11.5088. . Crossref, PubMed, ISIGoogle Scholar
    • Woese C.R, Kandler O, M L& Wheelis M.L . 1990 Towards a natural system of organisms: proposal for the domains Archaea, Bacteria and Eucarya. Proc. Natl Acad. Sci. USA. 87, 4576–4579.doi:10.1073/pnas.87.12.4576. . Crossref, PubMed, ISIGoogle Scholar
    • Zillig W, Stetter K.O, Schäfer W, Janekovic D, Wunderl S, Holz I& Palm P . 1981 Thermoproteales: a novel type of extremely thermoacidophilic anaerobic archaebacteria isolated from Icelandic solfataras. Zbl. Bakt. Hyg., I. Abt. Orig. C2, 205–227. Google Scholar