Philosophical Transactions of the Royal Society B: Biological Sciences
Restricted access Review article

The energetics of organic synthesis inside and outside the cell

Jan P. Amend

Jan P. Amend

Department of Earth Sciences, University of Southern California, Los Angeles, CA 90089, USA

Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA

[email protected]

Google Scholar

Find this author on PubMed

,
Douglas E. LaRowe

Douglas E. LaRowe

Department of Earth Sciences, University of Southern California, Los Angeles, CA 90089, USA

Google Scholar

Find this author on PubMed

,
Thomas M. McCollom

Thomas M. McCollom

Laboratory of Atmospheric and Space Physics, University of Colorado, Boulder, CO 80309, USA

Google Scholar

Find this author on PubMed

and
Everett L. Shock

Everett L. Shock

School of Earth and Space Exploration, Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287, USA

Google Scholar

Find this author on PubMed

    Thermodynamic modelling of organic synthesis has largely been focused on deep-sea hydrothermal systems. When seawater mixes with hydrothermal fluids, redox gradients are established that serve as potential energy sources for the formation of organic compounds and biomolecules from inorganic starting materials. This energetic drive, which varies substantially depending on the type of host rock, is present and available both for abiotic (outside the cell) and biotic (inside the cell) processes. Here, we review and interpret a library of theoretical studies that target organic synthesis energetics. The biogeochemical scenarios evaluated include those in present-day hydrothermal systems and in putative early Earth environments. It is consistently and repeatedly shown in these studies that the formation of relatively simple organic compounds and biomolecules can be energy-yielding (exergonic) at conditions that occur in hydrothermal systems. Expanding on our ability to calculate biomass synthesis energetics, we also present here a new approach for estimating the energetics of polymerization reactions, specifically those associated with polypeptide formation from the requisite amino acids.

    Footnotes

    One contribution of 14 to a Discussion Meeting Issue ‘Energy transduction and genome function: an evolutionary synthesis’.

    References

    • 1
      Martin W, Baross JA, Kelley DS& Russell MJ . 2008 Hydrothermal vents and the origin of life. Nat. Rev. Microbiol. 6, 805–814.doi: 10.1038/nrmicro1991 (doi:10.1038/nrmicro1991). Crossref, PubMed, ISIGoogle Scholar
    • 2
      Schwartzman DW& Lineweaver CH . 2004 The hyperthermophilic origin of life revisited. Biochem. Soc. Trans. 32, 168–171.doi: 10.1042/BST0320168 (doi:10.1042/BST0320168). Crossref, PubMed, ISIGoogle Scholar
    • 3
      Pace NR . 1991 Origin of life: facing up to the physical setting. Cell 65, 531–533.doi: 10.1016/0092-8674(91)90082-A (doi:10.1016/0092-8674(91)90082-A). Crossref, PubMed, ISIGoogle Scholar
    • 4
      Cody GD, Boctor NZ, Filley TR, Hazen RM, Scott JH, Sharma A& Yoder HS . 2000 Primordial carbonylated iron–sulfur compounds and the synthesis of pyruvate. Science 289, 1337–1340.doi: 10.1126/science.289.5483.1337 (doi:10.1126/science.289.5483.1337). Crossref, PubMed, ISIGoogle Scholar
    • 5
      McCollom TM& Seewald JS . 2007 Abiotic synthesis of organic compounds in deep-sea hydrothermal environments. Chem. Rev. 107, 382–401.doi: 10.1021/cr0503660 (doi:10.1021/cr0503660). Crossref, PubMed, ISIGoogle Scholar
    • 6
      McCollom TM, Ritter G& Simoneit BRT . 1999 Lipid synthesis under hydrothermal conditions by Fischer–Tropsch-type reactions. Orig. Life Evol. Biosph. 29, 153–166.doi: 10.1023/A:1006592502746 (doi:10.1023/A:1006592502746). Crossref, PubMed, ISIGoogle Scholar
    • 7
      Jakschitz TAE& Rode BM . 2012 Chemical evolution from simple inorganic compounds to chiral peptides. Chem. Soc. Rev. 41, 5484–5489.doi: 10.1039/c2cs35073d (doi:10.1039/c2cs35073d). Crossref, PubMed, ISIGoogle Scholar
    • 8
      Baross JA& Hoffman SE . 1985 Submarine hydrothermal vents and associated gradient environments as sites for the origin and evolution of life. Orig. Life 15, 327–345.doi: 10.1007/BF01808177 (doi:10.1007/BF01808177). CrossrefGoogle Scholar
    • 9
      Amend JP& Shock EL . 2001 Energetics of overall metabolic reactions of thermophilic and hyperthermophilic Archaea and Bacteria. FEMS Microbiol. Rev. 25, 175–243.doi: 10.1111/j.1574-6976.2001.tb00576.x (doi:10.1111/j.1574-6976.2001.tb00576.x). Crossref, PubMed, ISIGoogle Scholar
    • 10
      Pace NR . 1997 A molecular view of microbial diversity and the biosphere. Science 276, 734–740.doi: 10.1126/science.276.5313.734 (doi:10.1126/science.276.5313.734). Crossref, PubMed, ISIGoogle Scholar
    • 11
      Stetter KO . 1996 Hyperthermophilic procaryotes. FEMS Microbiol. Rev. 18, 149–158.doi: 10.1111/j.1574-6976.1996.tb00233.x (doi:10.1111/j.1574-6976.1996.tb00233.x). Crossref, ISIGoogle Scholar
    • 12
      Wagner ID& Wiegel J . 2008 Diversity of thermophilic anaerobes. Ann. NY Acad. Sci. 1125, 1–43.doi: 10.1196/annals.1419.029 (doi:10.1196/annals.1419.029). Crossref, PubMed, ISIGoogle Scholar
    • 13
      Stetter KO . 2006 Hyperthermophiles in the history of life. Phil. Trans. R. Soc. B 361, 1837–1842.doi: 10.1098/rstb.2006.1907 (doi:10.1098/rstb.2006.1907). Link, ISIGoogle Scholar
    • 14
      Huber R, Eder W, Heldwein S, Wanner G, Huber H, Rachel R& Stetter KO . 1998 Thermocrinis ruber gen. nov., sp. nov., a pink-filament-forming hyperthermophilic bacterium isolated from Yellowstone National Park. Appl. Environ. Microbiol. 64, 3576–3583. Crossref, PubMed, ISIGoogle Scholar
    • 15
      Huber R, Kristjansson JK& Stetter KO . 1987 Pyrobaculum gen. nov., a new genus group of neutrophilic, rod-shaped archaebacteria from continental solfataras growing optimally at 100°C. Arch. Microbiol. 149, 95–101.doi: 10.1007/BF00425072 (doi:10.1007/BF00425072). Crossref, ISIGoogle Scholar
    • 16
      Huber R, Langworthy TA, König H, Thomm M, Woese CR, Sleytr UB& Stetter KO . 1986 Thermotoga maritima sp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90°C. Arch. Microbiol. 144, 324–333.doi: 10.1007/BF00409880 (doi:10.1007/BF00409880). Crossref, ISIGoogle Scholar
    • 17
      Huber R, et al. 1992 Aquifex pyrophilus gen. nov. sp. nov., represents a novel group of marine hyperthermophilic hydrogen-oxidizing bacteria. Syst. Appl. Microbiol. 15, 340–351.doi: 10.1016/S0723-2020(11)80206-7 (doi:10.1016/S0723-2020(11)80206-7). Crossref, ISIGoogle Scholar
    • 18
      Kurr M, Huber R, König H, Jannasch HW, Fricke H, Trincone A, Kristjansson JK& Stetter KO . 1991 Methanopyrus kandleri, gen. and sp. nov. represents a novel group of hyperthermophilic methanogens, growing to 110°C. Arch. Microbiol. 156, 239–247.doi: 10.1007/BF00262992 (doi:10.1007/BF00262992). Crossref, ISIGoogle Scholar
    • 19
      Stetter KO . 1982 Ultrathin mycelia-forming organisms from submarine volcanic areas having an optimum growth temperature of 105°C. Nature 300, 258–260.doi: 10.1038/300258a0 (doi:10.1038/300258a0). Crossref, ISIGoogle Scholar
    • 20
      Stetter KO . 1988 Archaeoglobus fulgidus gen. . nov., sp. nov.: a new taxon of extremely thermophilic arachaebacteria. Syst. Appl. Microbiol. 10, 172–173.doi: 10.1016/S0723-2020(88)80032-8 (doi:10.1016/S0723-2020(88)80032-8). Crossref, ISIGoogle Scholar
    • 21
      Takai K, et al. 2008 Cell proliferation at 122°C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. Proc. Natl Acad. Sci. USA 105, 10 949–10 954.doi: 10.1073/pnas.0707900105 (doi:10.1073/pnas.0707900105). Crossref, ISIGoogle Scholar
    • 22
      Cox A, Shock EL& Havig JR . 2011 The transition to microbial photosynthesis in hot spring ecosystems. Chem. Geol. 280, 344–351.doi: 10.1016/j.chemgeo.2010.11.022 (doi:10.1016/j.chemgeo.2010.11.022). Crossref, ISIGoogle Scholar
    • 23
      Amend JP& McCollom TM . 2009 Energetics of biomolecule synthesis on early Earth. Chemical evolution II: from the origins of life to modern society (eds , Zaikowski L, Friedrich JM& Seidel SR ), pp. 63–94. ACS Symposium Series. Washington, DC: American Chemical Society. Google Scholar
    • 24
      Amend JP, McCollom TM, Hentscher M& Bach W . 2011 Catabolic and anabolic energy for chemolithoautotrophs in deep-sea hydrothermal systems hosted in different rock types. Geochim. Cosmochim. Acta 75, 5736–5748.doi: 10.1016/j.gca.2011.07.041 (doi:10.1016/j.gca.2011.07.041). Crossref, ISIGoogle Scholar
    • 25
      McCollom TM& Amend JP . 2005 A thermodynamic assessment of energy requirements for biomass synthesis by chemolithoautotrophic micro-organisms in oxic and anoxic environments. Geobiology 3, 135–144.doi: 10.1111/j.1472-4669.2005.00045.x (doi:10.1111/j.1472-4669.2005.00045.x). Crossref, ISIGoogle Scholar
    • 26
      Shock EL& Helgeson HC . 1990 Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: standard partial molal properties of organic species. Geochim. Cosmochim. Acta 54, 915–945.doi: 10.1016/0016-7037(90)90429-O (doi:10.1016/0016-7037(90)90429-O). Crossref, ISIGoogle Scholar
    • 27
      Shock EL& Helgeson HC . 1988 Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: correlation algorithms for ionic species and equation of state predictions to 5 kb and 1000°C. Geochim. Cosmochim. Acta 52, 2009–2036.doi: 10.1016/0016-7037(88)90181-0 (doi:10.1016/0016-7037(88)90181-0). Crossref, ISIGoogle Scholar
    • 28
      Shock EL, Helgeson HC& Sverjensky DA . 1989 Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: standard partial molal properties of inorganic neutral species. Geochim. Cosmochim. Acta 53, 2157–2183.doi: 10.1016/0016-7037(89)90341-4 (doi:10.1016/0016-7037(89)90341-4). Crossref, ISIGoogle Scholar
    • 29
      Helgeson HC, Delany JM, Nesbitt WH& Bird DK . 1978 Summary and critique of the thermodynamic properties of rock-forming minerals. Am. J. Sci. 278A, 1–229. Google Scholar
    • 30
      Haas JR, Shock EL& Sassani DC . 1995 Rare earth elements in hydrothermal systems: estimates of standard partial molal thermodynamic properties of aqueous complexes of the REE at high pressures and temperatures. Geochim. Cosmochim. Acta 59, 4329–4350.doi: 10.1016/0016-7037(95)00314-P (doi:10.1016/0016-7037(95)00314-P). Crossref, ISIGoogle Scholar
    • 31
      Shock EL, Sassani DC, Willis M& Sverjensky DA . 1997 Inorganic species in geologic fluids: correlations among standard molal thermodynamic properties of aqueous ions and hydroxide complexes. Geochim. Cosmochim. Acta 61, 907–950.doi: 10.1016/S0016-7037(96)00339-0 (doi:10.1016/S0016-7037(96)00339-0). Crossref, PubMed, ISIGoogle Scholar
    • 32
      Shock EL, Sassani DC& Betz H . 1997 Uranium in geologic fluids: estimates of standard partial molal properties, oxidation potentials, and hydrolysis constants at high temperatures and pressures. Geochim. Cosmochim. Acta 61, 4245–4266.doi: 10.1016/S0016-7037(97)00240-8 (doi:10.1016/S0016-7037(97)00240-8). Crossref, ISIGoogle Scholar
    • 33
      Sverjensky DA, Shock EL& Helgeson HC . 1997 Prediction of the thermodynamic and transport properties of aqueous metal complexes to 1000°C and 5 kb. Geochim. Cosmochim. Acta 61, 1359–1412.doi: 10.1016/S0016-7037(97)00009-4 (doi:10.1016/S0016-7037(97)00009-4). Crossref, PubMed, ISIGoogle Scholar
    • 34
      Sassani DC& Shock EL . 1998 Solubility and transport of platinum-group elements in supercritical fluids: summary and estimates of thermodynamic properties for Ru, Rh, Pd, and Pt solids, aqueous ions and aqueous complexes. Geochim. Cosmochim. Acta 62, 2643–2671.doi: 10.1016/S0016-7037(98)00049-0 (doi:10.1016/S0016-7037(98)00049-0). Crossref, ISIGoogle Scholar
    • 35
      Murphy WM& Shock EL . 1999 Environmental aqueous geochemistry of actinides. Rev Mineral 38, 221–253. Google Scholar
    • 36
      Shock EL, Oelkers EH, Johnson JW, Sverjensky DA& Helgeson HC . 1992 Calculation of the thermodynamic properties of aqueous species at high pressures and temperatures: effective electrostatic radii, dissociation constants and standard partial molal properties to 1000 °C and 5 kbar. J. Chem. Soc. Faraday Trans. 88, 803–826.doi: 10.1039/ft9928800803 (doi:10.1039/ft9928800803). CrossrefGoogle Scholar
    • 37
      Tanger JC& Helgeson HC . 1988 Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: revised equations of state for the standard partial molal properties of ions and electrolytes. Am. J. Sci. 288, 19–98.doi: 10.2475/ajs.288.1.19 (doi:10.2475/ajs.288.1.19). Crossref, ISIGoogle Scholar
    • 38
      Shock EL . 1988 Organic acid metastability in sedimentary basins. Geology 16, 886–890.doi: 10.1130/0091-7613(1988)016<0886:OAMISB>2.3.CO;2 (doi:10.1130/0091-7613(1988)016<0886:OAMISB>2.3.CO;2). Crossref, ISIGoogle Scholar
    • 39
      Shock EL . 1989 Corrections to ‘Organic acid metastability in sedimentary basins.’. Geology 17, 572–573.doi: 10.1130/0091-7613(1989)017<0572:CTOAMI>2.3.CO;2 (doi:10.1130/0091-7613(1989)017<0572:CTOAMI>2.3.CO;2). Crossref, ISIGoogle Scholar
    • 40
      Shock EL . 1994 Application of thermodynamic calculations to geochemical processes involving organic acids. The role of organic acids in geological processes (eds , Lewan M& Pittman E ), pp. 270–318. Berlin, Germany: Springer. Google Scholar
    • 41
      Helgeson HC, Knox AM, Owens CE& Shock EL . 1993 Petroleum, oil field waters, and authigenic mineral assemblages: are they in metastable equilibrium in hydrocarbon reservoirs? Geochim. Cosmochim. Acta 57, 3295–3339.doi: 10.1016/0016-7037(93)90541-4 (doi:10.1016/0016-7037(93)90541-4). Crossref, ISIGoogle Scholar
    • 42
      Amend JP& Shock EL . 1998 Energetics of amino acid synthesis in hydrothermal ecosystems. Science 281, 1659–1662.doi: 10.1126/science.281.5383.1659 (doi:10.1126/science.281.5383.1659). Crossref, PubMed, ISIGoogle Scholar
    • 43
      Shock E& Canovas P . 2010 The potential for abiotic organic synthesis and biosynthesis at seafloor hydrothermal systems. Geofluids 10, 161–192.doi: 10.1111/j.1468-8123.2010.00277.x (doi:10.1111/j.1468-8123.2010.00277.x). Crossref, ISIGoogle Scholar
    • 44
      Shock EL . 1990 Geochemical constraints on the origin of organic compounds in hydrothermal systems. Orig. Life Evol. Biosph. 20, 331–367.doi: 10.1007/BF01808115 (doi:10.1007/BF01808115). Crossref, ISIGoogle Scholar
    • 45
      Shock EL . 1992 Chemical environments of submarine hydrothermal systems. Orig. Life Evol. Biosph. 22, 67–107.doi: 10.1007/BF01808019 (doi:10.1007/BF01808019). Crossref, PubMed, ISIGoogle Scholar
    • 46
      Shock EL& Schulte MD . 1998 Organic synthesis during fluid mixing in hydrothermal systems. J. Geophys. Res. 103, 28 513–28 527.doi: 10.1029/98JE02142 (doi:10.1029/98JE02142). Crossref, ISIGoogle Scholar
    • 47
      Schulte MD& Shock EL . 1993 Aldehydes in hydrothermal solution: standard partial molal thermodynamic properties and relative stabilities at high temperatures and pressures. Geochim. Cosmochim. Acta 57, 3835–3846.doi: 10.1016/0016-7037(93)90337-V (doi:10.1016/0016-7037(93)90337-V). Crossref, PubMed, ISIGoogle Scholar
    • 48
      Shock EL . 1992 Stability of peptides in high-temperature aqueous solutions. Geochim. Cosmochim. Acta 56, 3481–3491.doi: 10.1016/0016-7037(92)90392-V (doi:10.1016/0016-7037(92)90392-V). Crossref, ISIGoogle Scholar
    • 49
      Dale JD, Shock EL, Macleod G, Aplin AC& Larter SR . 1997 Standard partial molal properties of aqueous alkylphenols at high pressures and temperatures. Geochim. Cosmochim. Acta 61, 4017–4024.doi: 10.1016/S0016-7037(97)00212-3 (doi:10.1016/S0016-7037(97)00212-3). Crossref, ISIGoogle Scholar
    • 50
      Shock EL . 1995 Organic acids in hydrothermal solutions: standard molal thermodynamic properties of carboxylic acids, and estimates of dissociation constants at high temperatures and pressures. Am. J. Sci. 295, 496–580.doi: 10.2475/ajs.295.5.496 (doi:10.2475/ajs.295.5.496). Crossref, PubMed, ISIGoogle Scholar
    • 51
      Prapaipong P, Shock EL& Koretsky CM . 1999 Metal-organic complexes in geochemical processes: temperature dependence of the standard thermodynamic properties of aqueous complexes between metal cations and dicarboxylate ligands. Geochim. Cosmochim. Acta 63, 2547–2577.doi: 10.1016/S0016-7037(99)00146-5 (doi:10.1016/S0016-7037(99)00146-5). Crossref, ISIGoogle Scholar
    • 52
      Shock EL& Koretsky CM . 1993 Metal-organic complexes in geochemical processes—calculation of standard partial molal thermodynamic properties of aqueous acetate complexes at high pressures and temperatures. Geochim. Cosmochim. Acta 57, 4899–4922.doi: 10.1016/0016-7037(93)90128-J (doi:10.1016/0016-7037(93)90128-J). Crossref, ISIGoogle Scholar
    • 53
      Shock EL& Koretsky CM . 1995 Metal-organic complexes in geochemical processes: estimation of standard partial molal thermodynamic properties of aqueous complexes between metal cations and monovalent organic acid ligands at high pressures and temperatures. Geochim. Cosmochim. Acta 59, 1497–1532.doi: 10.1016/0016-7037(95)00058-8 (doi:10.1016/0016-7037(95)00058-8). Crossref, ISIGoogle Scholar
    • 54
      Haas JR& Shock EL . 1999 Halocarbons in the environment: estimates of thermodynamic properties for aqueous chloroethylene species and their stabilities in natural settings. Geochim. Cosmochim. Acta 63, 3429–3441.doi: 10.1016/S0016-7037(99)00276-8 (doi:10.1016/S0016-7037(99)00276-8). Crossref, ISIGoogle Scholar
    • 55
      Amend JP& Plyasunov AV . 2001 Carbohydrates in thermophile metabolism: calculation of the standard molal thermodynamic properties of aqueous pentoses and hexoses at elevated temperatures and pressures. Geochim. Cosmochim. Acta 65, 3901–3917.doi: 10.1016/S0016-7037(01)00707-4 (doi:10.1016/S0016-7037(01)00707-4). Crossref, ISIGoogle Scholar
    • 56
      Schulte MD& Rogers KL . 2004 Thiols in hydrothermal solution: standard partial molal properties and their role in the organic geochemistry of hydrothermal environments. Geochim. Cosmochim. Acta 68, 1087–1097.doi: 10.1016/j.gca.2003.06.001 (doi:10.1016/j.gca.2003.06.001). Crossref, ISIGoogle Scholar
    • 57
      Schulte M . 2010 Organic sulfides in hydrothermal solution: standard partial molal properties and role in organic geochemistry of hydrothermal environments. Aquat. Geochem. 16, 621–637.doi: 10.1007/s10498-010-9102-3 (doi:10.1007/s10498-010-9102-3). Crossref, ISIGoogle Scholar
    • 58
      Plyasunov AV& Shock EL . 2001 A correlation strategy for determining the parameters of the revised-HKF model for aqueous nonelectrolytes. Geochim. Cosmochim. Acta 65, 3879–3900.doi: 10.1016/S0016-7037(01)00678-0 (doi:10.1016/S0016-7037(01)00678-0). Crossref, ISIGoogle Scholar
    • 59
      Amend JP& Helgeson HC . 1997 Group additivity equations of state for calculating the standard molal thermodynamic properties of aqueous organic molecules at elevated temperatures and pressures. Geochim. Cosmochim. Acta 61, 11–46.doi: 10.1016/S0016-7037(96)00306-7 (doi:10.1016/S0016-7037(96)00306-7). Crossref, ISIGoogle Scholar
    • 60
      Amend JP& Helgeson HC . 1997 Calculation of the standard molal thermodynamic properties of aqueous biomolecules at elevated temperatures and pressures. I. L-α-amino acids. J. Chem. Soc. Faraday Trans. 93, 1927–1941.doi: 10.1039/A608126F (doi:10.1039/A608126F). CrossrefGoogle Scholar
    • 61
      Amend JP& Helgeson HC . 2000 Calculation of the standard molal thermodynamic properties of aqueous biomolecules at elevated temperatures and pressures. II. Unfolded proteins. Biophys. Chem. 84, 105–136.doi: 10.1016/S0301-4622(00)00116-2 (doi:10.1016/S0301-4622(00)00116-2). Crossref, PubMed, ISIGoogle Scholar
    • 62
      Helgeson HC, Owens CE, Knox AM& Richard L . 1998 Calculation of the standard molal thermodynamic properties of crystalline, liquid, and gas organic molecules at high temperatures and pressures. Geochim. Cosmochim. Acta 62, 985–1081.doi: 10.1016/S0016-7037(97)00219-6 (doi:10.1016/S0016-7037(97)00219-6). Crossref, ISIGoogle Scholar
    • 63
      Amend JP& Helgeson HC . 1997 Solubilities of the common L-α-amino acids as a function of temperature and solution pH. Pure Appl. Chem. 69, 935–942.doi: 10.1351/pac199769050935 (doi:10.1351/pac199769050935). Crossref, ISIGoogle Scholar
    • 64
      Richard L . 2001 Calculation of the standard molal thermodynamic properties as a function of temperature and pressure of some geochemically important organic sulfur compounds. Geochim. Cosmochim. Acta 65, 3827–3877.doi: 10.1016/S0016-7037(01)00761-X (doi:10.1016/S0016-7037(01)00761-X). Crossref, ISIGoogle Scholar
    • 65
      Richard L& Helgeson HC . 1998 Calculation of the thermodynamic properties at elevated temperatures and pressures of saturated and aromatic high molecular weight solid and liquid hydrocarbons in kerogen, bitumen, petroleum, and other organic matter of biogeochemical interest. Geochim. Cosmochim. Acta 62, 3591–3636.doi: 10.1016/S0016-7037(97)00345-1 (doi:10.1016/S0016-7037(97)00345-1). Crossref, ISIGoogle Scholar
    • 66
      Plyasunov AV& Shock EL . 2000 Thermodynamic functions of hydration of hydrocarbons at 298.15 K and 0.1 MPa. Geochim. Cosmochim. Acta 64, 439–468.doi: 10.1016/S0016-7037(99)00330-0 (doi:10.1016/S0016-7037(99)00330-0). Crossref, ISIGoogle Scholar
    • 67
      Plyasunov AV& Shock EL . 2000 Standard state Gibbs energies of hydration of hydrocarbons at elevated temperatures as evaluated from experimental phase equilibria studies. Geochim. Cosmochim. Acta 64, 2811–2833.doi: 10.1016/S0016-7037(00)00401-4 (doi:10.1016/S0016-7037(00)00401-4). Crossref, ISIGoogle Scholar
    • 68
      Plyasunov AV& Shock EL . 2001 Group contribution values of the infinite dilution thermodynamic functions of hydration for aliphatic noncyclic hydrocarbons, alcohols, and ketones at 298.15 K and 0.1 MPa. J. Chem. Eng. Data 46, 1016–1019.doi: 10.1021/je0002282 (doi:10.1021/je0002282). Crossref, ISIGoogle Scholar
    • 69
      Plyasunov AV, Plyasunova NV& Shock EL . 2004 Group contribution values for the thermodynamic functions of hydration of aliphatic esters at 298.15 K, 0.1 MPa. J. Chem. Eng. Data 49, 1152–1167.doi: 10.1021/je049850a (doi:10.1021/je049850a). Crossref, ISIGoogle Scholar
    • 70
      Plyasunova NV, Plyasunov AV& Shock EL . 2005 Group contribution values for the thermodynamic functions of hydration at 298.15 K, 0.1 MPa. 2. Aliphatic thiols, alkyl sulfides, and polysulfides. J. Chem. Eng. Data 50, 246–253.doi: 10.1021/je0497045 (doi:10.1021/je0497045). Crossref, ISIGoogle Scholar
    • 71
      Plyasunov AV, Plyasunova NV& Shock EL . 2006 Group contribution values for the thermodynamic functions of hydration at 298.15 K, 0.1 MPa. 3. Aliphatic monoethers, diethers, and polyethers. J. Chem. Eng. Data 51, 276–290.doi: 10.1021/je050390a (doi:10.1021/je050390a). Crossref, ISIGoogle Scholar
    • 72
      Plyasunov AV, Plyasunova NV& Shock EL . 2006 Group contribution values for the thermodynamic functions of hydration at 298.15 K, 0.1 MPa. 4. Aliphatic nitriles and dinitriles. J. Chem. Eng Data 51, 1481–1490.doi: 10.1021/je060129+ (doi:10.1021/je060129+). Crossref, ISIGoogle Scholar
    • 73
      Plyasunova NV, Plyasunov AV& Shock EL . 2004 Database of thermodynamic properties for aqueous organic compounds. Int. J. Thermophys. 25, 351–360.doi: 10.1023/B:IJOT.0000028472.63853.2d (doi:10.1023/B:IJOT.0000028472.63853.2d). Crossref, ISIGoogle Scholar
    • 74
      Dick JM, LaRowe DE& Helgeson HC . 2006 Temperature, pressure, and electrochemical constraints on protein speciation: group additivity calculation of the standard molal thermodynamic properties of ionized unfolded proteins. Biogeosciences 3, 311–336.doi: 10.5194/bg-3-311-2006 (doi:10.5194/bg-3-311-2006). Crossref, ISIGoogle Scholar
    • 75
      LaRowe DE& Helgeson HC . 2006 Biomolecules in hydrothermal systems: calculation of the standard molal thermodynamic properties of nucleic-acid bases, nucleosides, and nucleotides at elevated temperatures and pressures. Geochim. Cosmochim. Acta 70, 4680–4724.doi: 10.1016/j.gca.2006.04.010 (doi:10.1016/j.gca.2006.04.010). Crossref, ISIGoogle Scholar
    • 76
      LaRowe DE& Helgeson HC . 2006 The energetics of metabolism in hydrothermal systems: calculation of the standard molal thermodynamic properties of magnesium-complexed adenosine nucleotides and NAD and NADP at elevated temperatures and pressures. Thermochim. Acta 448, 82–106.doi: 10.1016/j.tca.2006.06.008 (doi:10.1016/j.tca.2006.06.008). Crossref, ISIGoogle Scholar
    • 77
      LaRowe DE& Dick JM . 2012 Calculation of the standard molal thermodynamic properties of crystalline peptides. Geochim. Cosmochim. Acta 80, 70–91.doi: 10.1016/j.gca.2011.11.041 (doi:10.1016/j.gca.2011.11.041). Crossref, ISIGoogle Scholar
    • 78
      LaRowe DE& Van Cappellen P . 2011 Degradation of natural organic matter: a thermodynamic analysis. Geochim. Cosmochim. Acta 75, 2030–2042.doi: 10.1016/j.gca.2011.01.020 (doi:10.1016/j.gca.2011.01.020). Crossref, ISIGoogle Scholar
    • 79
      LaRowe DE, Dale AW, Amend JP& Van Cappellen P . 2012 Thermodynamic limitations on microbially catalyzed reaction rates. Geochim. Cosmochim. Acta 90, 96–109.doi: 10.1016/j.gca.2012.05.011 (doi:10.1016/j.gca.2012.05.011). Crossref, ISIGoogle Scholar
    • 80
      Dick JM& Shock EL . 2011 Calculation of the relative chemical stabilities of proteins as a function of temperature and redox chemistry in a hot spring. PLoS ONE 6, e22782.doi: 10.1371/journal.pone.0022782 (doi:10.1371/journal.pone.0022782). Crossref, PubMed, ISIGoogle Scholar
    • 81
      Berndt ME, Allen DE& Seyfried WEJ . 1996 Reduction of CO2 during serpentinization of olivine at 300°C and 500 bar. Geology 24, 351–354.doi: 10.1130/0091-7613(1996)024<0351:ROCDSO>2.3.CO;2 (doi:10.1130/0091-7613(1996)024<0351:ROCDSO>2.3.CO;2). Crossref, ISIGoogle Scholar
    • 82
      Foustoukos DI& Seyfried WE . 2004 Hydrocarbons in hydrothermal vent fluids: the role of chromium-bearing catalysts. Science 304, 1002–1005.doi: 10.1126/science.1096033 (doi:10.1126/science.1096033). Crossref, PubMed, ISIGoogle Scholar
    • 83
      Fu Q, Lollar BS, Horita J, Lacrampe-Couloume G& Seyfried WE . 2007 Abiotic formation of hydrocarbons under hydrothermal conditions: constraints from chemical and isotope data. Geochim. Cosmochim. Acta 71, 1982–1998.doi: 10.1016/j.gca.2007.01.022 (doi:10.1016/j.gca.2007.01.022). Crossref, ISIGoogle Scholar
    • 84
      Horita J& Berndt ME . 1999 Abiogenic methane formation and isotopic fractionation under hydrothermal conditions. Science 285, 1055–1057.doi: 10.1126/science.285.5430.1055 (doi:10.1126/science.285.5430.1055). Crossref, PubMed, ISIGoogle Scholar
    • 85
      McCollom TM& Seewald JS . 2001 A reassessment of the potential for reduction of dissolved CO2 to hydrocarbons during serpentinization of olivine. Geochim. Cosmochim. Acta 65, 3769–3778.doi: 10.1016/S0016-7037(01)00655-X (doi:10.1016/S0016-7037(01)00655-X). Crossref, ISIGoogle Scholar
    • 86
      McCollom TM& Seewald JS . 2006 Carbon isotope composition of organic compounds produced by abiotic synthesis under hydrothermal conditions. Earth Planet Sci. Lett. 243, 74–84.doi: 10.1016/j.epsl.2006.01.027 (doi:10.1016/j.epsl.2006.01.027). Crossref, ISIGoogle Scholar
    • 87
      Charlou J-L, Donval JP, Konn C, Ondreas H& Fouquet Y . 2010 High production and fluxes of H2 and CH4 and evidence of abiotic hydrocarbons synthesis by serpentinization in ultramafic-hosted hydrothermal systems on the Mid-Atlantic Ridge. Diversity of hydrothermal systems on slow spreading ocean ridges (eds , Rona PA, Devey C, Dyment J& Murton BJ ), pp. 265–296. Washington, DC: American Geophysical Union. Google Scholar
    • 88
      Lang SQ, Butterfield D, Schulte M, Kelley DS& Lilley MD . 2010 Elevated concentrations of formate, acetate and dissolved organic carbon found at the Lost City hydrothermal field. Geochim. Cosmochim. Acta 74, 941–952.doi: 10.1016/j.gca.2009.10.045 (doi:10.1016/j.gca.2009.10.045). Crossref, ISIGoogle Scholar
    • 89
      Proskurowski G, Lilley MD, Seewald JS, Früh-Green GL, Olson EJ, Lupton JE, Sylva SP& Kelley DS . 2008 Abiogenic hydrocarbon production at Lost City hydrothermal field. Science 319, 604–607.doi: 10.1126/science.1151194 (doi:10.1126/science.1151194). Crossref, PubMed, ISIGoogle Scholar
    • 90
      Fox SW& Windsor CR . 1970 Synthesis of amino acids by the heating of formaldehyde and ammonia. Science 170, 984–986.doi: 10.1126/science.170.3961.984 (doi:10.1126/science.170.3961.984). Crossref, PubMed, ISIGoogle Scholar
    • 91
      Hennet RJ-C, Holm NG& Engel MH . 1992 Abiotic synthesis of amino acids under hydrothermal conditions and the origin of life: a perpetual phenomenon? Naturwissenschaften 79, 361–365.doi: 10.1007/BF01140180 (doi:10.1007/BF01140180). Crossref, PubMed, ISIGoogle Scholar
    • 92
      Huber C& Wachterschauser G . 2006 α-Hydroxy and α-amino acids under possible Hadean, volcanic origin-of-life conditions. Science 314, 630–632.doi: 10.1126/science.1130895 (doi:10.1126/science.1130895). Crossref, PubMed, ISIGoogle Scholar
    • 93
      Keefe AD, Miller SL, Mcdonald G& Bada J . 1995 Investigation of the prebiotic synthesis of amino-acids and RNA bases from CO2 using FeS/H2S as a reducing agent. Proc. Natl Acad. Sci. USA 92, 11 904–11 906.doi: 10.1073/pnas.92.25.11904 (doi:10.1073/pnas.92.25.11904). Crossref, ISIGoogle Scholar
    • 94
      Lowe CU, Markham R& Rees MW . 1963 Synthesis of complex organic compounds from simple precursors—formation of amino-acids, amino-acid polymers, fatty acids and purines from ammonium cyanide. Nature 199, 219–222.doi: 10.1038/199219a0 (doi:10.1038/199219a0). Crossref, PubMed, ISIGoogle Scholar
    • 95
      Marshall WL . 1994 Hydrothermal synthesis of amino acids. Geochim. Cosmochim. Acta 58, 2099–2106.doi: 10.1016/0016-7037(94)90288-7 (doi:10.1016/0016-7037(94)90288-7). Crossref, ISIGoogle Scholar
    • 96
      Oro J& Kamat SS . 1961 Amino-acid synthesis from hydrogen cyanide under possible primitive earth conditions. Nature 190, 442–444.doi: 10.1038/190442a0 (doi:10.1038/190442a0). Crossref, PubMed, ISIGoogle Scholar
    • 97
      Oro J, Kimball A, Fritz R& Master F . 1959 Amino acid synthesis from formaldehyde and hydroxylamine. Arch. Biochem. Biophys. 85, 115–130.doi: 10.1016/0003-9861(59)90455-2 (doi:10.1016/0003-9861(59)90455-2). Crossref, PubMed, ISIGoogle Scholar
    • 98
      Butlerov A . 1861 Formation synthétique d'une substance sucrée. Compt. Rend. Acad. Sci. 53, 145–147. Google Scholar
    • 99
      Breslow R . 1959 On the mechanism of the formose reaction. Tetrahedron Lett. 1, 22–26.doi: 10.1016/S0040-4039(01)99487-0 (doi:10.1016/S0040-4039(01)99487-0). CrossrefGoogle Scholar
    • 100
      Oro J . 1960 Synthesis of adenine from ammonium cyanide. Biochem. Biophys. Res. Commun. 2, 407–412.doi: 10.1016/0006-291X(60)90138-8 (doi:10.1016/0006-291X(60)90138-8). Crossref, ISIGoogle Scholar
    • 101
      Sanchez RA, Ferris JP& Orgel LE . 1967 Studies in prebiotic synthesis 0.2. Synthesis of purine precursors and amino acids from aqueous hydrogen cyanide. J. Mol. Biol. 30, 223–253. PubMed, ISIGoogle Scholar
    • 102
      Fox SW& Harada K . 1961 Synthesis of uracil under conditions of a thermal model of prebiological chemistry. Science 133, 1923–1924.doi: 10.1126/science.133.3468.1923 (doi:10.1126/science.133.3468.1923). Crossref, PubMed, ISIGoogle Scholar
    • 103
      Sanchez RA, Ferris JP& Orgel LE . 1966 Cyanoacetylene in prebiotic synthesis. Science 154, 784–785.doi: 10.1126/science.154.3750.784 (doi:10.1126/science.154.3750.784). Crossref, PubMed, ISIGoogle Scholar
    • 104
      Saladino R, Ciambecchini U, Crestini C, Costanzo G, Negri R& Di Mauro E . 2003 One-pot TiO2-catalyzed synthesis of nucleic bases and acyclonucleosides from formamide: implications for the origin of life. Chembiochem 4, 514–521.doi: 10.1002/cbic.200300567 (doi:10.1002/cbic.200300567). Crossref, PubMed, ISIGoogle Scholar
    • 105
      Saladino R, Crestini C, Ciambecchini U, Ciciriello F, Costanzo G& Di Mauro E . 2004 Synthesis and degradation of nucleobases and nucleic acids by formamide in the presence of montmorillonites. Chembiochem 5, 1558–1566.doi: 10.1002/cbic.200400119 (doi:10.1002/cbic.200400119). Crossref, PubMed, ISIGoogle Scholar
    • 106
      Aubrey AD, Cleaves HJ& Bada JL . 2009 The role of submarine hydrothermal systems in the synthesis of amino acids. Orig. Life Evol. B 39, 91–108.doi: 10.1007/s11084-008-9153-2 (doi:10.1007/s11084-008-9153-2). Crossref, PubMed, ISIGoogle Scholar
    • 107
      Shapiro R . 1988 Prebiotic ribose synthesis: a critical analysis. Orig. Life Evol. Biosph. 18, 71–85.doi: 10.1007/BF01808782 (doi:10.1007/BF01808782). Crossref, PubMed, ISIGoogle Scholar
    • 108
      Shapiro R . 1995 The prebiotic role of adenine: a critical analysis. Orig. Life Evol. Biosph. 25, 83–98.doi: 10.1007/BF01581575 (doi:10.1007/BF01581575). Crossref, PubMed, ISIGoogle Scholar
    • 109
      Shapiro R . 1999 Prebiotic cytosine synthesis: a critical analysis and implications for the origin of life. Proc. Natl Acad. Sci. USA 96, 4396–4401.doi: 10.1073/pnas.96.8.4396 (doi:10.1073/pnas.96.8.4396). Crossref, PubMed, ISIGoogle Scholar
    • 110
      Abrajano TA, Sturchio NC, Kennedy BM, Lyon GL, Muehlenbachs K& Bohlke JK . 1990 Geochemistry of reduced gas related to serpentinization of the zambales ophiolite. Philippines Appl. Geochem. 5, 625–630.doi: 10.1016/0883-2927(90)90060-I (doi:10.1016/0883-2927(90)90060-I). Crossref, ISIGoogle Scholar
    • 111
      Sherwood Lollar B, Lacrampe-Couloume G, Slater GF, Ward J, Moser DP, Gihring TM, Lin L.-H.& Onstott TC . 2006 Unravelling abiogenic and biogenic sources of methane in the Earth's deep subsurface. Chem. Geol. 226, 328–339.doi: 10.1016/j.chemgeo.2005.09.027 (doi:10.1016/j.chemgeo.2005.09.027). Crossref, ISIGoogle Scholar
    • 112
      Sherwood Lollar B, Lacrampe-Couloume G, Voglesonger K, Onstott TC, Pratt LM& Slater GF . 2008 Isotopic signatures of CH4 and higher hydrocarbon gases from Precambrian Shield sites: a model for abiogenic polymerization of hydrocarbons. Geochim. Cosmochim. Acta 72, 4778–4795.doi: 10.1016/j.gca.2008.07.004 (doi:10.1016/j.gca.2008.07.004). Crossref, ISIGoogle Scholar
    • 113
      Taran YA, Varley NR, Inguaggiato S& Cienfuegos E . 2010 Geochemistry of H2 and CH4-enriched hydrothermal fluids of Socorro Island, Revillagigedo Archipelago, Mexico. Evidence for serpentinization and abiogenic methane. Geofluids 10, 542–555.doi: 10.1111/j.1468-8123.2010.00314.x (doi:10.1111/j.1468-8123.2010.00314.x). Crossref, ISIGoogle Scholar
    • 114
      Holm NG& Charlou JL . 2001 Initial indications of abiotic formation of hydrocarbons in the Rainbow ultramafic hydrothermal system. Earth Planet Sci. Lett. 191, 1–8.doi: 10.1016/S0012-821X(01)00397-1 (doi:10.1016/S0012-821X(01)00397-1). Crossref, ISIGoogle Scholar
    • 115
      Konn C, Charlou JL, Donval JP, Holm NG, Dehairs F& Bouillon S . 2009 Hydrocarbons and oxidized organic compounds in hydrothermal fluids from Rainbow and Lost City ultramafic hosted vents. Chem. Geol. 258, 299–314.doi: 10.1016/j.chemgeo.2008.10.034 (doi:10.1016/j.chemgeo.2008.10.034). Crossref, ISIGoogle Scholar
    • 116
      McCollom TM . 2007 Geochemical constraints on sources of metabolic energy for chemolithoautotrophy in ultramafic-hosted deep-sea hydrothermal systems. Astrobiology 7, 933–950.doi: 10.1089/ast.2006.0119 (doi:10.1089/ast.2006.0119). Crossref, PubMed, ISIGoogle Scholar
    • 117
      Cronin J, Pizzarello S& Cruikshank DP . 1988 Organic matter in carbonaceous chondrites, planetary satellites, asteroids, and comets. Meteorites and the early Solar System (eds , Kerridge JF& Mathews MS ), pp. 819–857. Tucson, AZ: University of Arizona Press. Google Scholar
    • 118
      Pizzarello S . 2007 The chemistry that preceded life's origin: a study guide from meteorites. Chem. Biodivers. 4, 680–693.doi: 10.1002/cbdv.200790058 (doi:10.1002/cbdv.200790058). Crossref, PubMed, ISIGoogle Scholar
    • 119
      Pizzarello S& Shock E . 2010 The organic composition of carbonaceous meteorites: the evolutionary story ahead of biochemistry. Cold Spring Harb. Perspect. Biol. 2, a002105.doi: 10.1101/cshperspect.a002105 (doi:10.1101/cshperspect.a002105). Crossref, PubMed, ISIGoogle Scholar
    • 120
      McCollom TM& Shock EL . 1997 Geochemical constraints on chemolithoautotrophic metabolism by microorganisms in seafloor hydrothermal systems. Geochim. Cosmochim. Acta 61, 4375–4391.doi: 10.1016/S0016-7037(97)00241-X (doi:10.1016/S0016-7037(97)00241-X). Crossref, PubMed, ISIGoogle Scholar
    • 121
      Von Damm KL . 1990 Seafloor hydrothermal activity: black smoker chemistry and chimneys. Ann. Rev. Earth Planet Sci. 18, 173–204.doi: 10.1146/annurev.ea.18.050190.001133 (doi:10.1146/annurev.ea.18.050190.001133). Crossref, ISIGoogle Scholar
    • 122
      Von Damm KL, Edmond JM, Grant B, Measures CI, Walden B& Weiss RF . 1985 Chemistry of submarine hydrothermal solutions at 21°N, East Pacific Rise. Geochim. Cosmochim. Acta 49, 2197–2220.doi: 10.1016/0016-7037(85)90222-4 (doi:10.1016/0016-7037(85)90222-4). Crossref, ISIGoogle Scholar
    • 123
      Amend JP& Shock EL . 2000 Thermodynamics of amino acid synthesis in hydrothermal systems on early Earth. Perspectives in amino acid and protein geochemistry (eds , Goodfriend G, Collins MJ, Fogel ML, Macko SA& Wehmiller JF ), pp. 23–40. New York, NY: Oxford University Press. Google Scholar
    • 124
      Haymon RM& Kastner M . 1981 Hot-spring deposits on the East Pacific Rise at 21°N: preliminary description of mineralogy and genesis. Earth Planet Sci. Lett. 53, 363–381.doi: 10.1016/0012-821X(81)90041-8 (doi:10.1016/0012-821X(81)90041-8). Crossref, ISIGoogle Scholar
    • 125
      Janecky DR& Seyfried WE . 1984 Formation of massive sulfide deposits on oceanic ridge crests - incremental reaction models for mixing between hydrothermal solutions and seawater. Geochim. Cosmochim. Acta 48, 2723–2738.doi: 10.1016/0016-7037(84)90319-3 (doi:10.1016/0016-7037(84)90319-3). Crossref, ISIGoogle Scholar
    • 126
      Hannington MD, de Ronde CEJ& Petersen S . 2005 Sea-floor tectonics and submarine hydrothermal systems. Econ. Geol. 100, 111–143. Google Scholar
    • 127
      Ohmoto H . 1997 When did the Earth's atmosphere become oxic? Geochem. News 93, 26–27. Google Scholar
    • 128
      Ohmoto H, Kakegawa T& Lowe DR . 1993 3.4-Billion-year-old biogenic pyrites from Barberton, South Africa: sulfur isotope evidence. Science 262, 555–557.doi: 10.1126/science.11539502 (doi:10.1126/science.11539502). Crossref, PubMed, ISIGoogle Scholar
    • 129
      Walker JCG . 1985 Carbon dioxide on the early Earth. Orig. Life 16, 117–127.doi: 10.1007/BF01809466 (doi:10.1007/BF01809466). CrossrefGoogle Scholar
    • 130
      Kasting JF . 1993 Earth's early atmosphere. Science 259, 920–926.doi: 10.1126/science.11536547 (doi:10.1126/science.11536547). Crossref, PubMed, ISIGoogle Scholar
    • 131
      Kasting JF . 1993 Early evolution of the atmosphere and ocean. The chemistry of life's origins (eds , Greenberg JM, Mendoza-Gomez CX& Pirronello V ), pp. 149–176. Dordrecht, The Netherlands: Kluwer Academic Publishers. Google Scholar
    • 132
      Kasting JF . 1993 Evolution of the Earth's atmosphere and hydrosphere. Organic geochemistry: principles and applications (eds , Engel MH& Macko SA ), ch. 29, pp. 611–624. New York, NY: Plenum Press. Google Scholar
    • 133
      Haqq-Misra J, Kasting JF& Lee S . 2011 Availability of O2 and H2O2 on pre-photosynthetic earth. Astrobiology 11, 293–302.doi: 10.1089/ast.2010.0572 (doi:10.1089/ast.2010.0572). Crossref, PubMed, ISIGoogle Scholar
    • 134
      Kharecha P, Kasting J& Siefert J . 2005 A coupled atmosphere–ecosystem model of the early Archean Earth. Geobiology 3, 53–76.doi: 10.1111/j.1472-4669.2005.00049.x (doi:10.1111/j.1472-4669.2005.00049.x). Crossref, ISIGoogle Scholar
    • 135
      LaRowe DE& Regnier P . 2008 Thermodynamic potential for the abiotic synthesis of adenine, cytosine, guanine, thymine, uracil, ribose, and deoxyribose in hydrothermal systems. Orig. Life Evol. Biosph. 38, 383–397.doi: 10.1007/s11084-008-9137-2 (doi:10.1007/s11084-008-9137-2). Crossref, PubMed, ISIGoogle Scholar
    • 136
      Huber C& Wächtershäuser G . 1997 Activated acetic acid by carbon fixation on (Fe,Ni)S under primordial conditions. Science 276, 245–247.doi: 10.1126/science.276.5310.245 (doi:10.1126/science.276.5310.245). Crossref, PubMed, ISIGoogle Scholar
    • 137
      Huber C& Wächtershäuser G . 1998 Peptides by activation of amino acids with CO on (Ni,Fe)S surfaces: implications for the origin of life. Science 281, 670–672.doi: 10.1126/science.281.5377.670 (doi:10.1126/science.281.5377.670). Crossref, PubMed, ISIGoogle Scholar
    • 138
      Morowitz HJ . 1968 Energy flow in biology. New York, NY: Academic Press. Google Scholar
    • 139
      Battley EH . 1991 An alternate method of calculating the heat of growth of Escherichia coli K-12 on succinic acid. Biotech. Bioeng. 38, 480–492.doi: 10.1002/bit.260380506 (doi:10.1002/bit.260380506). Crossref, PubMed, ISIGoogle Scholar
    • 140
      Stouthamer AH& Bettenhaussen C . 1973 Utilization of energy for growth and maintenance in continuous and batch cultures of microorganisms. A reevaluation of the method for the determination of ATP production by measuring molar growth yields. Biochim. Biophys. Acta 301, 53–70.doi: 10.1016/0304-4173(73)90012-8 (doi:10.1016/0304-4173(73)90012-8). Crossref, PubMed, ISIGoogle Scholar
    • 141
      Battley EH . 1992 Calculation of the thermodynamic properties of protein in Escherichia coli K-12 grown on succinic acid, energy changes accompanying protein anabolism, and energetic role of ATP in protein synthesis. Biotech. Bioeng. 40, 280–288.doi: 10.1002/bit.260400212 (doi:10.1002/bit.260400212). Crossref, PubMed, ISIGoogle Scholar
    • 142
      Heijnen JJ& van Dijken JP . 1992 In search of a thermodynamic description of biomass yield for the chemotrophic growth of microorganisms. Biotech. Bioeng. 39, 833–858.doi: 10.1002/bit.260390806 (doi:10.1002/bit.260390806). Crossref, PubMed, ISIGoogle Scholar
    • 143
      Neidhardt FC& Umbarger HE . 1996 Chemical composition of Escherichia coli. Escherichia coli and Salmonella typhimurium: cellular and molecular biology (eds , Neidhardt FC, et al. ), pp. 13–16, 2nd edn. Washington, DC: ASM Press. Google Scholar
    • 144
      Neidhardt FC . 1987 Chemical composition of Escherichia coli. Escherichia coli and Salmonella typhimurium: cellular and molecular biology (ed. & Neidhardt FC ), pp. 3–6. Washington, DC: American Society for Microbiology. Google Scholar
    • 145
      Bennett BD, Kimball EH, Gao M, Osterhout R, Van Dien SJ& Rabinowitz JD . 2009 Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli. Nat. Chem. Biol. 5, 593–599.doi: 10.1038/nchembio.186 (doi:10.1038/nchembio.186). Crossref, PubMed, ISIGoogle Scholar
    • 146
      Kubitschek HE . 1986 Increase in cell mass during the division cycle of Escherichia-coli B/Ra. J. Bacteriol. 168, 613–618. Crossref, PubMed, ISIGoogle Scholar
    • 147
      Brocchieri L& Karlin S . 2005 Protein length in eukaryotic and prokaryotic proteomes. Nucleic Acids Res. 33, 3390–3400.doi: 10.1093/nar/gki615 (doi:10.1093/nar/gki615). Crossref, PubMed, ISIGoogle Scholar
    • 148
      Ishihama Y, Schmidt T, Rappsilber J, Mann M, Hartl FU, Kerner MJ& Frishman D . 2008 Protein abundance profiling of the Escherichia coli cytosol. BMC Genomics 9, 102.doi: 10.1186/1471-2164-9-102 (doi:10.1186/1471-2164-9-102). Crossref, PubMed, ISIGoogle Scholar
    • 149
      Stouthamer AH . 1973 A theoretical study on the amount of ATP required for synthesis of microbial cell material. Antonie van Leeuwenhoek 39, 545–565.doi: 10.1007/BF02578899 (doi:10.1007/BF02578899). Crossref, PubMed, ISIGoogle Scholar
    • 150
      Privalov PL& Gill SJ . 1988 Stability of protein structure and hydrophobic interaction. Adv. Protein Chem. 39, 191–234.doi: 10.1016/S0065-3233(08)60377-0 (doi:10.1016/S0065-3233(08)60377-0). Crossref, PubMedGoogle Scholar
    • 151
      McCollom TM& Seewald JS . 2003 Experimental constraints on the hydrothermal reactivity of organic acids and acid anions. I. Formic acid and formate. Geochim. Cosmochim. Acta 67, 3625–3644.doi: 10.1016/S0016-7037(03)00136-4 (doi:10.1016/S0016-7037(03)00136-4). Crossref, ISIGoogle Scholar
    • 152
      McCollom TM, Seewald JS& Simoneit BRT . 2001 Reactivity of monocyclic aromatic compounds under hydrothermal conditions. Geochim. Cosmochim. Acta 65, 455–468.doi: 10.1016/S0016-7037(00)00533-0 (doi:10.1016/S0016-7037(00)00533-0). Crossref, ISIGoogle Scholar
    • 153
      Seewald JS . 1994 Evidence for metastable equilibrium between hydrocarbons under hydrothermal conditions. Nature 370, 285–287.doi: 10.1038/370285a0 (doi:10.1038/370285a0). Crossref, ISIGoogle Scholar
    • 154
      Seewald JS . 2001 Aqueous geochemistry of low molecular weight hydrocarbons at elevated temperatures and pressures: constraints from mineral buffered laboratory experiments. Geochim. Cosmochim. Acta 65, 1641–1664.doi: 10.1016/S0016-7037(01)00544-0 (doi:10.1016/S0016-7037(01)00544-0). Crossref, ISIGoogle Scholar
    • 155
      Seewald JS, Zolotov MY& McCollom T . 2006 Experimental investigation of single carbon compounds under hydrothermal conditions. Geochim. Cosmochim. Acta 70, 446–460.doi: 10.1016/j.gca.2005.09.002 (doi:10.1016/j.gca.2005.09.002). Crossref, ISIGoogle Scholar