Advertisement

Abstract

From comparative analyses of the nucleotide sequences of genes encoding ribosomal RNAs and several proteins, molecular phylogeneticists have constructed a “universal tree of life,” taking it as the basis for a “natural” hierarchical classification of all living things. Although confidence in some of the tree's early branches has recently been shaken, new approaches could still resolve many methodological uncertainties. More challenging is evidence that most archaeal and bacterial genomes (and the inferred ancestral eukaryotic nuclear genome) contain genes from multiple sources. If “chimerism” or “lateral gene transfer” cannot be dismissed as trivial in extent or limited to special categories of genes, then no hierarchical universal classification can be taken as natural. Molecular phylogeneticists will have failed to find the “true tree,” not because their methods are inadequate or because they have chosen the wrong genes, but because the history of life cannot properly be represented as a tree. However, taxonomies based on molecular sequences will remain indispensable, and understanding of the evolutionary process will ultimately be enriched, not impoverished.

Get full access to this article

View all available purchase options and get full access to this article.

REFERENCES AND NOTES

1
E. Mayr, The Growth of Biological Thought (Belknap Press, Cambridge, MA, 1982).
2
A. L. Panchen, Classification, Evolution and the Nature of Biology (Cambridge Univ. Press, Cambridge, 1992); M. T. Ghiselin, Metaphysics and the Origin of Species (State Univ. of New York Press, Albany, NY, 1997).
3
C. Darwin, The Origin of Species by Means of Natural Selection (Murray, London, 1859).
4
E. Zuckerkandl and L. Pauling, in Evolving Genes and Proteins, V. Bryson and H. J. Vogel, Eds. (Academic Press, New York, 1965), pp. 97–166; J. Theor. Biol. 8, 357 (1965).
5
Woese C. R., Kandler O., Wheelis M. L., Proc. Natl. Acad. Sci. U.S.A. 87, 4576 (1990);
Doolittle W. F., Brown J. R., ibid. 91, 6721 (1994);
; R. F. Doolittle, ibid.92, 2421 (1995);
Pace N. R., Science 276, 734 (1997).
6
Schwartz R. M., Dayhoff M. O., Science 199, 395 (1978).
7
Woese C. R., Microbiol. Rev. 51, 221 (1987).
8
Green R., Noller H. F., Annu. Rev. Biochem. 66, 679 (1997).
9
Gogarten P. J., et al., Proc. Natl. Acad. Sci. U.S.A. 86, 6661 (1989);
; N. Iwabe, K. Kuma, M. Hasegawa, S. Osawa, T. Miyata, ibid., p. 9355; J. R. Brown and W. F. Doolittle, ibid. 92, 2441 (1995); S. L. Baldauf, J. D. Palmer, W. F. Doolittle, ibid. 93, 7749 (1996);
Lawson F. S., Charlebois R. L., Dillon J. A., Mol. Biol. Evol. 13, 970 (1996);
. Organisms in all major groups bear genes encoding elongation factors EF-1α (EF-Tu) and EF-2 (bacterial EF-G). These homologous (more precisely, paralogous) genes thus must be products of a gene duplication that had already occurred before the time of the last common ancestor of all organisms alive today. A tree made of EF-1α and EF-2 sequences should comprise two subtrees (one for each of these paralogs), each of which (barring LGT or artifacts) should have the topology of the true universal organismal tree. The point at which each subtree attaches to the other will be its root and will correspond to the last common organismal ancestor. Neither subtree is rootable without the other. Because rRNA genes all seem to be orthologous (derived from a single ancestral gene in the last common ancestor), such a rooting is not possible with rRNA sequences alone.
10
M. J. Kates, D. J. Kushner, A. T. Matheson, Eds., The Biochemistry of Archaea (Archaeobacteria) (Elsevier Science, Amsterdam, 1993); W. F. Doolittle, in Evolution of Microbial Life, D. M. Roberts, P. Sharp, G. Alderson, M. Collins, Eds. (Cambridge Univ. Press, Cambridge, 1996), pp. 1–21.
11
Olsen G. J., Woese C. R., Cell 89, 991 (1997);
; D. E. Edgell and W. F. Doolittle, ibid., p. 995; J. N. Reeve, K. Sandman, C. J. Daniels, ibid., p. 999; P. P. Dennis, ibid., p. 1007;
Soppa J., Mol. Microbiol. 31, 1295 (1997).
12
Philippe H., Curr. Opin. Genet. Dev. 8, 616 (1998);
; H. Phillippe and A. Adoutte, in Evolutionary Relationships Among Protozoa, G. H. Coombs, K. Vickerman, M. A. Sleigh, A. Warren, Eds. (Systematics Association, London, 1998), pp. 25–26;
Moreira D., LeGuyader H., Philippe H., Mol. Biol. Evol. 16, 234 (1999).
13
Prominent among sources of error or uncertainty in establishing branching patterns are mutational saturation, “long-branch attraction,” and “among-site rate variation.” Mutationally saturated sequences are maximally diverged, so that further changes are as likely to make them more similar as they are to make them more different, and tree topology is based on noise. Long-branch attraction [
Felsenstein J., Syst. Zool. 27, 401 (1978);
] occurs when rates of sequence change differ substantially between taxa (even without saturation). Lineages with higher rates of sequence change artifactually associate with each other and with out-groups, except with maximum likelihood methods. Even with these methods [
Yang Z., J. Mol. Evol. 42, 294 (1996);
; Trends Ecol. Evol. 11, 367 (1996)], long-branch attraction occurs when there is a substantial rate variation among different sites in a gene.
14
Hirt R. P., et al., Proc. Natl. Acad. Sci. U.S.A. 96, 580 (1999);
Stiller J. W., Duffield E. C., Hall B. D., ibid. 95, 11769 (1998).
15
P. J. Gogarten, E. Hilario, L. Olenzenski, in Evolution of Microbial Life, D. M. Roberts, P. Sharp, G. Alderson, M. Collins, Eds. (Cambridge Univ. Press, Cambridge, 1996), pp. 267–292.
16
Martin W., BioEssays 21, 99 (1999).
17
Cavalier-Smith T., Nature 326, 332 (1987);
; Biol. Rev. Camb. Philos. Soc. 73, 203 (1998).
18
Vossbrinck C. R., et al., Nature 326, 411 (1987);
Sogin M. L., Gunderson J. H., Elwood H. J., Alonso R. A., Peattie D. A., Science 243, 75 (1989);
Leipe D. D., Gunderson J. H., Nerad T. A., Sogin M. L., Mol. Biochem. Parasitol. 59, 41 (1993).
19
Embley T. M., Hirt R. P., Curr. Opin. Genet. Dev. 8, 629 (1998);
Roger A. J., Sandblom O., Doolittle W. F., Philippe H., Mol. Biol. Evol. 16, 218 (1999);
Keeling P. J., McFadden G. I., Trends Microbiol. 6, 19 (1998).
20
Miyamoto M. M., Fitch W. M., Mol. Biol. Evol. 12, 513 (1995).
21
Gray M. W., Burger G., Lang B. F., Science 283, 1476 (1999).
22
Brown J. R., Doolittle W. F., Microbiol. Mol. Biol. Rev. 61, 456 (1997);
Feng D.-F., Cho G., Doolittle R. F., Proc. Natl. Acad. Sci. U.S.A. 94, 13028 (1997) ;
Ragan M., Gaasterland T., J. Microb. Comp. Genomics 3, 219 (1998);
Rivera M. C., Jain R., Moore F. F., Lake J. A., Proc. Natl. Acad. Sci. U.S.A. 95, 6239 (1998).
23
Doolittle W. F., Trends Genet. 14, 307 (1998);
Martin W., Muller M., Nature 392, 37 (1998).
24
Lawrence J. G., Ochman H., Proc. Natl. Acad. Sci. U.S.A. 95, 9413 (1998).
25
Klenk H.-P., et al., Nature 390, 364 (1997).
26
Doolittle W. F., Logsdon J. M., Curr. Biol. 8, R209 (1998);
Ibba M., Bono J. L., Rosa P. A., Soll D., Proc. Natl. Acad. Sci. U.S.A. 94, 14383 (1997).
27
Jain R., Rivera M. C., Lake J. A., Proc. Natl. Acad. Sci. U.S.A. 96, 3801 (1999).
28
Hilario E., Gogarten J. P., Biosystems 31, 111 (1993).
29
Sonea S., Paniset M., Rev. Can. Biol. 35, 103 (1976);
; D. C. Reanney, in Aspects of Genetic Action and Evolution, suppl. 8 of International Review of Cytology, G. H. Bourne, J. F. Danielli, K. W. Jeon, Eds. (Academic Press, New York, 1978), pp. 1–67.
30
Cermakian N., et al., J. Mol. Evol. 46, 671 (1997).
31
S. A. Baldauf and W. F. Doolittle, in preparation.
32
D. M. O'Neil,
Baron L., Sypherd P., J. Bacteriol. 99, 242 (1969).
33
Doolittle R. F., Handy J. F., Curr. Opin. Genet. Dev. 8, 630 (1998).
34
Nomura M., Proc. Natl. Acad. Sci. U.S.A. 96, 1820 (1999).
35
___, Traub P., Bechmann H., Nature 219, 793 (1968).
36
Noller H. F., Woese C. R., Science 212, 403 (1981).
37
Asai T., Zaprojets D., Squires C., Squires C. L., Proc. Natl. Acad. Sci. U.S.A. 96, 1971 (1999).
38
Gupta R. S., Microbiol. Mol. Biol. Rev. 62, 1435 (1998).
39
Brown J. R., Zhang J., Hodgson J. E., Curr. Biol. 8, R365 (1998).
40
Ueda K., Kido Y., Yoshida T., Kataoka M., J. Bacteriol. 181, 78 (1999).
41
Woese C. R., Proc. Natl. Acad. Sci. U.S.A. 95, 6854 (1998).
42
J. Xiong, K. Inoue, C. C. Bauer, ibid., p. 14851.
43
Aravind L., et al., Trends Genet. 14, 442 (1998).
44
I thank J. Logsdon, A. Roger, D. Faguy, O. Feeley, and Y. Inagaki for critical discussions and the Medical Research Council of Canada and the Canadian Institute for Advanced Research for support. I am indebted to J. P. Gogarten and W. Martin for persuading me of the importance of LGT.

(0)eLetters

eLetters is a forum for ongoing peer review. eLetters are not edited, proofread, or indexed, but they are screened. eLetters should provide substantive and scholarly commentary on the article. Embedded figures cannot be submitted, and we discourage the use of figures within eLetters in general. If a figure is essential, please include a link to the figure within the text of the eLetter. Please read our Terms of Service before submitting an eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

Information & Authors

Information

Published In

Science
Volume 284 | Issue 5423
25 June 1999

Submission history

Published in print: 25 June 1999

Permissions

Request permissions for this article.

Authors

Affiliations

W. Ford Doolittle
Canadian Institute for Advanced Research, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4H7, Canada. E-mail: [email protected]

Metrics & Citations

Metrics

Article Usage

Altmetrics

Citations

Cite as

Export citation

Select the format you want to export the citation of this publication.

Cited by

  1. Illuminating the first bacteria, Science, 372, 6542, (574-575), (2021)./doi/10.1126/science.abh2814
    Abstract
  2. A rooted phylogeny resolves early bacterial evolution, Science, 372, 6542, (2021)./doi/10.1126/science.abe0511
    Abstract
  3. Microbiomes in light of traits: A phylogenetic perspective, Science, 350, 6261, (2021)./doi/10.1126/science.aac9323
    Abstract
  4. Conundrum of jumbled mosquito genomes, Science, 347, 6217, (27-28), (2021)./doi/10.1126/science.aaa3600
    Abstract
  5. A Kingdom-Level Phylogeny of Eukaryotes Based on Combined Protein Data, Science, 290, 5493, (972-977), (2021)./doi/10.1126/science.290.5493.972
    Abstract
  6. Bacterial Rhodopsin: Evidence for a New Type of Phototrophy in the Sea, Science, 289, 5486, (1902-1906), (2021)./doi/10.1126/science.289.5486.1902
    Abstract
  7. Molecular Evidence for the Early Evolution of Photosynthesis, Science, 289, 5485, (1724-1730), (2021)./doi/10.1126/science.289.5485.1724
    Abstract
  8. Lateral Gene Transfer, Genome Surveys, and the Phylogeny of Prokaryotes, Science, 286, 5444, (1443-1443), (2021)./doi/10.1126/science.286.5444.1443a
    Abstract
  9. Paradigm for Life, Science, 318, 5855, (1390-1391), (2021)./doi/10.1126/science.1151657
    Abstract
  10. Genome-Wide Experimental Determination of Barriers to Horizontal Gene Transfer, Science, 318, 5855, (1449-1452), (2021)./doi/10.1126/science.1147112
    Abstract
  11. See more
Loading...

View Options

Check Access

Log in to view the full text

AAAS ID LOGIN

AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.

More options

Purchase digital access to this article

Download and print this article for your personal scholarly, research, and educational use.

Purchase this issue in print

Buy a single issue of Science for just $15 USD.

View options

PDF format

Download this article as a PDF file

Download PDF

Full Text

FULL TEXT

Media

Figures

Multimedia

Tables

Share

Share

Share article link

Share on social media