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1. PCA of oligonucleotides’ stability 

A technique to reduce dimensionality was necessary to visualize how the oligonucleotides’ 

stability determinants (temperature, mono- and bi-valent ions, pH) synergistically interact. Data 

points have been generated using an oligonucleotide hybridization model based on the van ‘t Hoff 

equation1.  It has been used to calculate the fraction of double stranded oligonucleotides as a 

function of every combination of temperature, salts and pH in the following ranges (as indicated 

in Figure 3a-d): 0 < T (°C) < 90, 0 < [Na+] (mM) < 300, 0 < [Mg2+] (mM) < 3,  3 < pH < 7. Results 

are shown in the next Table 1.1.  

T (°C) pH Na+ (mM) Mg2+ (mM) Duplex fraction 

36.0 4.6 0 2.7 1.00 

85.5 5.2 165 0.6 0.00 

63.0 6.0 135 0.0 0.48 

58.5 4.8 210 1.2 0.49 

… … … … … 
Table 1: Features used for the kPCA analysis. The last feature (duplex fraction) has been used as a label of the 

duplex fraction in the plot of Figure 3e. 
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Prior to further processing, the features have been scaled between 0 and 1. At this point, we 

applied a kernel Principal Component Analysis (kPCA) on the first 4 features. We used a linear 

kernel and reduced the dimensionality of the dataset down to 2 principal components. The last 

feature (the duplex fraction) has been used as a colorbar to label the features according to their 

duplex fraction in the plot at reduced-dimensionality (Figure 3e). For this analysis, we have used 

the Kernel PCA machine learning package offered by the scikit-learn Python library2. 

 

2. Sequence dependence of the UV damage3  

We determined the sequence-dependent damage rates necessary for calculating the influence of 

UV radiation on oligonucleotide pools from available literature4–8 . This gives approximately for 

the cyclobutane pyrimidine (CPD) lesions TT: 20e-3 dmg/photon, for TC/CT: 10e-3 dmg/photon 

and for AA: 2e-3 dmg/photon. To calculate the damage rate per photon and strand as a function 

of their melting temperature shown in Figure 3d, we considered all possible 7-mer sequences and 

summed the damage rates of the contained dimers in each respective strands. We then grouped 

all sequences with the same GC content corresponding to a common melting temperature9,10 and 

averaged the damage rates for each of these groups. The dose of 10 photons per base used 

corresponds approximately to that on the surface of the early Earth after about 12h11. This 

suggests that superficial oligonucleotides would suffer greatly from UV light, so sequence-

dependent selection pressure should be considered. 
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