Skip to main content

Exercise and Chronic Obstructive Pulmonary Disease (COPD)

  • Chapter
  • First Online:
Book cover Physical Exercise for Human Health

Abstract

Systemic effects of COPD lead to cardiovascular co-morbidities, muscle wasting and osteoporosis that, in turn, lead to inactivity and physical deconditioning. This evolution has a direct influence on the health-related quality of life (HRQoL) of patients suffering from this respiratory disease. Pharmacological therapy leads to improvement in shortness of breath, but it has a limited effect on the physical deconditioning. Pulmonary rehabilitation relieves dyspnoea and fatigue, improves emotional function and enhances the sense of control that individuals have over their condition. These improvements are moderately substantial and clinically significant. Rehabilitation serves as an essential component of the management of COPD and is beneficial in improving health-related quality of life and exercise capacity.

Keywords

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

6-MWD:

6 minute walking test

AECOPD:

Acute exacerbations of chronic obstructive pulmonary disease

COPD:

Chronic obstructive pulmonary disease,

CPAP:

Continuous positive airway pressure

DW:

Downhill walking

HRQOL:

Health-related quality of life

HX:

Heliox

IMT:

Inspiratory muscle training

LFF:

Low-frequency fatigue

MTL:

Mechanical threshold loading

NIV:

Non-invasive ventilation

NMES:

Neuromuscular electrical stimulation

PImax:

Maximal inspiratory pressure

PR:

Pulmonary rehabilitation

QoL:

Quality of life

RT:

Resistance training

TFRL-IMT:

Dynamically controlled tapered flow resistive load

WBVT:

Whole-body vibration training

References

  1. GOLD (2018) Global strategy for the diagnosis, management and prevention of COPD, Global Initiative for Chronic Obstructive Lung Disease (GOLD). https://goldcoped.org/

  2. Gea J, Agusti A, Roca J (2013) Pathophysiology of muscle dysfunction in COPD. J Appl Physiol 114(9):1222–1234

    Article  CAS  PubMed  Google Scholar 

  3. Barreiro E, Rabinovich R, Marin-Corral J, Barberà JA, Gea J, Roca J (2009) Chronic endurance exercise induces quadriceps nitrosative stress in patients with severe COPD. Thorax 64:13–19

    Article  CAS  PubMed  Google Scholar 

  4. Saey D, Michaud A, Couillard A, Cote CH, Mador MJ, LeBlanc P, Jobin J, Maltais F (2005) Contractile fatigue, muscle morphometry, and blood lactate in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 171(10):1109–1115

    Article  PubMed  Google Scholar 

  5. Nolan CM, Longworth L, Lord J, Canavan JL, Jones SE, Kon SS, Man WD (2016) The EQ-5D-5L health status questionnaire in COPD: validity, responsiveness and minimum important difference. Thorax 71:493–500

    Article  PubMed  Google Scholar 

  6. Jobin J, Maltais F, Doyon JF, eBlanc P, Simard PM, Simard AA, Simard C (1998) Chronic obstructive pulmonary disease: capillarity and fiber type characteristics of skeletal muscle. J Cardiopulm Rehabil 18(6):432–437

    Article  CAS  PubMed  Google Scholar 

  7. Faisal A, Alghamdi BJ, Ciavaglia CE, Elbehairy AF, Webb KA, Ora J, Neder JA, O’Donnell DE (2016) Common Mechanisms of Dyspnea in Chronic Interstitial and Obstructive Lung Disorders. Am J Respir Crit Care Med 193(3):299–309

    Article  CAS  PubMed  Google Scholar 

  8. Marquis K, Debigaré R, Lacasse Y, LeBlanc P, Jobin J, Carrier G, Maltais F (2002) Midthigh muscle cross-sectional area is a better predictor of mortality than body mass index in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 166(6):809–813

    Article  PubMed  Google Scholar 

  9. Gosker HR, Zeegers MP, Wouters EF, Schols AM (2007) Muscle fibre type shifting in the vastus lateralis of patients with COPD is associated with disease severity: a systematic review and meta-analysis. Thorax 62(11):944–949

    Article  PubMed  PubMed Central  Google Scholar 

  10. Seymour JM, Ward K, Sidhu PS, Puthucheary Z, Steier J, Jolley CJ, Rafferty G, Polkey MI, Moxham J (2009) Ultrasound measurement of rectus femoris cross-sectional area and the relationship with quadriceps strength in COPD. Thorax 64:418–423

    Article  CAS  PubMed  Google Scholar 

  11. Barreiro E, Jaitovich A (2018) Muscle atrophy in chronic obstructive pulmonary disease: molecular basis and potential therapeutic targets. J Thorac Dis 10(12):S1415–S1424

    Article  PubMed  PubMed Central  Google Scholar 

  12. Maltais F, Decramer M, Casaburi R, Barreiro E, Burelle Y, Debigaré R, Dekhuijzen PN, Franssen F, Gayan-Ramirez G, Gea J, Gosker HR, Gosselink R, Hayot M, Hussain SN, Janssens W, Polkey MI, Roca J, Saey D, Schols AM, Spruit MA, Steiner M, Taivassalo T, Troosters T, Vogiatzis I, Wagner PD, ATS/ERS Ad Hoc Committee on Limb Muscle Dysfunction in COPD (2014) An official American Thoracic Society/European Respiratory Society statement: update on limb muscle dysfunction in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 189(9):e15–e62

    Article  PubMed  PubMed Central  Google Scholar 

  13. Shavlakadze T, Chai J, Maley K, Cozens G, Grounds G, Winn N, Rosenthal N, Grounds MD (2010) A growth stimulus is needed for IGF-1 to induce skeletal muscle hypertrophy in vivo. J Cell Sci 123(Pt 6):960–971

    Article  CAS  PubMed  Google Scholar 

  14. Wang J, Guo S, Zeng M, Yu P, Mo W (2019) Observation of the curative effect of device-guided rehabilitation on respiratory function in stable patients with chronic obstructive pulmonary disease. Medicine (Baltimore) 98(8):e14034

    Article  Google Scholar 

  15. Tieland M, Trouwborst I, Clark BC (2018) Skeletal muscle performance and ageing. J Cachexia Sarcopenia Muscle 9(1):3–19

    Article  PubMed  Google Scholar 

  16. Jones SE, Maddocks M, Kon SS, Canavan JL, Nolan CM, Clark AL, Polkey MI, Man WD (2015) Sarcopenia in COPD: prevalence, clinical correlates and response to pulmonary rehabilitation. Thorax 70(3):213–218

    Article  PubMed  Google Scholar 

  17. Hottenrott K, Ludyga S, Schulze S (2012) Effects of high intensity training and continuous endurance training on aerobic capacity and body composition in recreationally active runners. J Sports Sci Med 11(3):483–488

    PubMed  PubMed Central  Google Scholar 

  18. Mangine GT, Hoffman JR, Gonzalez AM, Townsend JR, Wells AJ, Jajtner AR, Beyer KS, Boone CH, Miramonti AA, Wang R, LaMonica MB, Fukuda DH, Ratamess NA, Stout JR (2015) The effect of training volume and intensity on improvements in muscular strength and size in resistance-trained men. Physiol Rep 3(8):pii: e12472

    Article  CAS  Google Scholar 

  19. Garber CE, Blissmer B, Deschenes MR, Franklin BA, Lamonte MJ, Lee IM, Nieman DC, Swain DP (2011) American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc 43(7):1334–1359

    Article  PubMed  Google Scholar 

  20. Blackstock FC, Lareau SC, Nici L, ZuWallack R, Bourbeau J, Buckley M, Durning SJ, Effing TW, Egbert E, Goldstein RS, Kelly W, Lee A, Meek PM, Singh S, American Thoracic Society, Thoracic Society of Australia and New Zealand, Canadian Thoracic Society, and British Thoracic Society (2018) Chronic obstructive pulmonary disease education in pulmonary rehabilitation. Ann Am Thorac Soc 15:769

    Article  PubMed  Google Scholar 

  21. Iepsen UW, Jørgensen KJ, Ringbæk T, Hansen H, Skrubbeltrang C, Lange P (2015) A combination of resistance and endurance training increases leg muscle strength in COPD: an evidence-based recommendation based on systematic review with meta-analyses. Chron Respir Dis 12:132–145

    Article  PubMed  Google Scholar 

  22. Hortobagyi T, DeVita P (2000) Favorable neuromuscular and cardiovascular responses to 7 days of exercise with an eccentric overload in elderly women. J Gerontol Ser A Biol Sci Med Sci 55(8):B401–B410

    Article  CAS  Google Scholar 

  23. Osadnik CR, Rodrigues FM, Camillo CA, Loeckx M, Janssens W, Dooms C, Troosters T (2015) Principles of rehabilitation and reactivation. Respiration 89(1):2–11

    Article  PubMed  Google Scholar 

  24. Roseguini MH, Roseguini B (2018) Mechanisms for exercise training-induced increases in skeletal muscle blood flow capacity: differences with interval sprint training versus aerobic endurance training. J Physiol Pharmacol 59(Suppl 7):71–88

    Google Scholar 

  25. Guiraud T, Nigam A, Gremeaux V, Meyer P (2012) High-intensity interval training in cardiac rehabilitation. Sports Med 42(7):587–605

    Article  PubMed  Google Scholar 

  26. Bisca GW, Camillo CA, Cavalheri V, Pitta F, Osadnik CR (2017) Peripheral muscle training in patients with chronic obstructive pulmonary disease: novel approaches and recent advances. Expert Rev Respir Med 11(5):413–423

    CAS  PubMed  Google Scholar 

  27. Strohacker K, Fazzino D, Breslin WL, Xu X (2015) The use of periodization in exercise prescriptions for inactive adults: a systematic review. Prev Med Rep 2:385–396

    Article  PubMed  PubMed Central  Google Scholar 

  28. Alansare A, Alford K, Lee S, Church T, Jung HC (2018) The effects of high intensity interval training vs. moderate intensity continuous training on heart rate variability in physically inactive adults. Int J Environ Res Public Health 15(7):1508

    Article  PubMed Central  Google Scholar 

  29. Nyberg A, Lindström B, Wadell K (2012) Assessing the effect of high-repetitive single limb exercises (HRSLE) on exercise capacity and quality of life in patients with chronic obstructive pulmonary disease (COPD): study protocol for randomized controlled trial. Trials 13:114

    Article  PubMed  PubMed Central  Google Scholar 

  30. Barreiro E, Gea J (2016) Molecular and biological pathways of skeletal muscle dysfunction in chronic obstructive pulmonary disease. Chron Respir Dis 13(3):297–311

    Article  PubMed  PubMed Central  Google Scholar 

  31. Beaumont M, Forget P, Couturaud F, Reychler G (2018) Effects of inspiratory muscle training in COPD patients: a systematic review and meta-analysis. Clin Respir J 12(7):2178–2188

    Article  PubMed  Google Scholar 

  32. Ambrosino N (2011) The case for inspiratory muscle training in COPD. Eur Respir J 37(2):233–235

    Article  CAS  PubMed  Google Scholar 

  33. Langer D, Charususin N, Jacome C, Hoffman M, McConnell A, Decramer M, Gosselink R (2015) Efficacy of a novel method for inspiratory muscle training in people with chronic obstructive pulmonary disease. J Phys Ther Sci 95(9):1264–1273

    Article  Google Scholar 

  34. Charususin N, Gosselink R, McConnell A, Demeyer H, Topalovic M, Decramer M, Langer D (2016) Inspiratory muscle training improves breathing pattern during exercise in COPD patients. Eur Respir J 47(4):1261–1264

    Article  PubMed  Google Scholar 

  35. Gosselink R, De Vos J, van den Heuvel SP, Segers J, Decramer M, Kwakkel G (2011) Impact of inspiratory muscle training in patients with COPD: what is the evidence? Eur Respir J 37(2):416–425

    Article  CAS  PubMed  Google Scholar 

  36. Petrovic M, Reiter M, Zipko H, Pohl W, Wanke T (2012) Effects of inspiratory muscle training on dynamic hyperinflation in patients with COPD. Int J Chron Obstruct Pulmon Dis 7:797–805

    Article  PubMed  PubMed Central  Google Scholar 

  37. Moezy A, Erfani A, Mazaherinezhad A, Mousavi SAJ (2018) Downhill walking influence on physical condition and quality of life in patients with COPD: a randomized controlled trial. Med J Islam Repub Iran 14:32–49

    Google Scholar 

  38. Camillo CA, Burtin C, Hornikx M, Demeyer H, De Bent K, van Remoortel H, Osadnik CR, Janssens W, Troosters T (2015) Physiological responses during downhill walking: a new exercise modality for subjects with chronic obstructive pulmonary disease? Chron Respir Dis 12(2):155–164

    Article  PubMed  Google Scholar 

  39. Maeo S, Yamamoto M, Kanehisa H (2015) Muscular adaptations to short-term low-frequency downhill walking training. Int J Sports Med 36(2):150–156

    CAS  PubMed  Google Scholar 

  40. Burtin C, Saey D, Saglam M, Langer D, Gosselink R, Janssens W, Decramer M, Maltais F, Troosters T (2012) Effectiveness of exercise training in patients with COPD: the role of muscle fatigue. Eur Respir J 40:338–344

    Article  PubMed  Google Scholar 

  41. Erfani A, Moezy A, Mazaherinezhad A, Mousavi SA (2015) Does downhill walking on treadmill improve physical status and quality of life of a patient with COPD? Asian J Sport Med 6(4):e 25821

    Article  Google Scholar 

  42. Pleguezuelos E, Esquinas C, Moreno E, Guirao L, Ortiz J, Garcia-Alsina J, Merí A, Miravitlles M (2016) Muscular dysfunction in COPD: systemic effect or deconditioning? Lung 194(2):249–257

    Article  CAS  PubMed  Google Scholar 

  43. Hoppeler H (2016) Moderate load eccentric exercise; a distinct novel training modality. Front Physiol 7:483

    Article  PubMed  PubMed Central  Google Scholar 

  44. Lee AL, Holland AE (2014) Time to adapt exercise training regimens in pulmonary rehabilitation—a review of the literature. Int J Chron Obstruct Pulmon Dis 9:1275–1288

    Article  PubMed  PubMed Central  Google Scholar 

  45. Richardson RS, Frank LR, Haseler LJ (1988) Dynamic knee-extensor and cycle exercise: functional MRI of muscular activity. Int J Sports Med 19(3):182–1877

    Article  Google Scholar 

  46. Nyberg A, Saey D, Martin M (2016) Acute effects of low-load/high-repetition single-limb resistance training in COPD. Med Sci Sports Exerc 48(12):2353–2361

    Article  PubMed  Google Scholar 

  47. Rocha Vieira DS, Baril J, Richard R, Perrault H, Bourbeau J, Taivassalo T (2011) Eccentric cycle exercise in severe COPD: feasibility of application. COPD 8(4):270–274

    Article  PubMed  Google Scholar 

  48. Abbiss CR, Karagounis LG, Laursen PB, Peiffer JJ, Martin DT, Hawley JA, Fatehee NN, Martin JC (2011) Single-leg cycle training is superior to double-leg cycling in improving the oxidative potential and metabolic profile of trained skeletal muscle. J Appl Physiol 110:1248–1255

    Article  CAS  PubMed  Google Scholar 

  49. Abbiss CR, Levin G, McGuigan MR, Laursen PB (2008) Reliability of power output during dynamic cycling. Int J Sports Med 29:574–578

    Article  CAS  PubMed  Google Scholar 

  50. Lindenthaler JR, Rice AJ, Versey NG, McKune AJ, Welvaert M (2018) Differences in physiological responses during rowing and cycle ergometry in elite male rowers. Front Physiol 9:1010

    Article  PubMed  PubMed Central  Google Scholar 

  51. Jones S, Man WD, Gao W, Higginson IJ, Wilcock A, Maddocks M (2016) Neuromuscular electrical stimulation for muscle weakness in adults with advanced disease. Cochrane Database Syst Rev 10:CD009419

    PubMed  Google Scholar 

  52. MacMillan NJ, Kapchinsky S, Konokhova Y, Gouspillou G, de Sousa SR, Jagoe RT, Baril J, Carver TE, Andersen RE, Richard R, Perrault H, Bourbeau J, Hepple RT, Taivassalo T (2017) Eccentric ergometer training promotes locomotor muscle strength but not mitochondrial adaptation in patients with severe chronic obstructive pulmonary disease. Front Physiol 8:114

    Article  PubMed  PubMed Central  Google Scholar 

  53. Maddocks M, Nolan CM, Man WD, Polkey MI, Hart N, Gao W, Rafferty GF, Moxham J, Higginson IJ (2016) Neuromuscular electrical stimulation to improve exercise capacity in patients with severe COPD: a randomised double-blind, placebo-controlled trial. Lancet Respir Med 4:27

    Article  PubMed  Google Scholar 

  54. Abdellaoui A, Préfaut C, Gouzi F, Couillard A, Coisy-Quivy M, Hugon G, Molinari N, Lafontaine T, Jonquet O, Laoudj-Chenivesse D, Hayot M (2011) Skeletal muscle effects of electro stimulation after COPD exacerbation: a pilot study. Eur Respir J 38(4):781–788

    Article  CAS  PubMed  Google Scholar 

  55. Shen J, Nie X, Huang SY, Qin YQ, Pan LL, Wang XT (2019) Neuromuscular electrical stimulation improves muscle atrophy induced by chronic hypoxia-hypercapnia through the MicroRNA-486/PTEN/FoxO1 pathway. Biochem Biophys Res Commun 509(4):1021–1027

    Article  CAS  PubMed  Google Scholar 

  56. Hill K, Cavalheri V, Mathur S, Roig M, Janaudis-Ferreira T, Robles P, Dolmage TE, Goldstein R (2018) Neuromuscular electrostimulation for adults with chronic obstructive pulmonary disease. Cochrane Database Syst Rev 5:CD010821

    PubMed  Google Scholar 

  57. Giavedoni S, Deans A, McCaughey P, Drost E, MacNee W, Rabinovich RA (2012) Neuromuscular electrical stimulation prevents muscle function deterioration in exacerbated COPD: a pilot study. Respir Med 106(10):1429–1434

    Article  PubMed  Google Scholar 

  58. Pleguezuelos E, Casarramona P, Guirao L, Samitier B, Ortega P, Vila X, Carmen AD, Ovejero L, Moreno E, Serra N, Gomís M, Garnacho-Castaño MV, Miravitlles M (2018) How whole-body vibration can help our COPD patients. Physiological changes at different vibration frequencies. Int J Chron Obstruct Pulmon Dis 13:3373–3380

    Article  PubMed  PubMed Central  Google Scholar 

  59. Lage VKS, Lacerda ACR, Neves CDC, Chaves MGA, Soares AA, Lima LP, Matos MA, Leite HR, Fernandes JSC, Oliveira VC, Mendonça VA (2019) Cardiorespiratory responses in different types of squats and frequencies of whole body vibration in patients with chronic obstructive pulmonary disease. J Appl Physiol 126(1):23–29

    Article  CAS  PubMed  Google Scholar 

  60. Zhou J, Pang L, Chen N, Wang Z, Wang C, Hai Y, Lyu M, Lai H, Lin F (2018) Whole-body vibration training—better care for COPD patients: a systematic review and meta-analysis. Int J Chron Obstruct Pulmon Dis 13:3243–3254

    Article  PubMed  PubMed Central  Google Scholar 

  61. Neves CDC, Lacerda ACR, Lage VKS, Soares AA, Chaves MGA, Lima LP, Silva TJ, Vieira ÉLM, Teixeira AL, Leite HR, Matos MA, Mendonça VA (2018) Whole body vibration training increases physical measures and quality of life without altering inflammatory-oxidative biomarkers in patients with moderate COPD. J Appl Physiol 125(2):520–522

    Article  CAS  PubMed  Google Scholar 

  62. Spielmanns M, Gloeckl R, Gropp JM, Nell C, Koczulla AR, Boeselt T, Storre JH, Windisch W (2017) Whole-body vibration training during a low frequency outpatient exercise training program in chronic obstructive pulmonary disease patients: a randomized, controlled trial. J Clin Med Res 9(5):396–402

    Article  PubMed  PubMed Central  Google Scholar 

  63. Rauch F, Sievanen H (2010) International Society of Musculoskeletal and Neuronal Interactions. Reporting whole-body vibration intervention studies: recommendations of the International Society of Musculoskeletal and Neuronal Interactions. J Musculoskelet Neuronal Interact 10(3):193–198

    CAS  PubMed  Google Scholar 

  64. Cardim AB, Marinho PE, Nascimento JF Jr, Fuzari HK, Dornelas de Andrade A (2016) Does whole-body vibration improve the functional exercise capacity of subjects with COPD? A meta-analysis. Respir Care 61(11):1552–1559

    Article  PubMed  Google Scholar 

  65. Cristi-Montero C, Cuevas MJ, Collado PS (2013) Whole-body vibration training as complement to programs aimed at weight loss. Nutr Hosp 28(5):1365–1371

    PubMed  Google Scholar 

  66. Cristi C, Collado PS, Marquez S, Garatachea N, Cuevas MJ (2014) Whole-body vibration training increases physical fitness measures without alteration of inflammatory markers in older adults. Eur J Sport Sci 14:611–619

    Article  PubMed  Google Scholar 

  67. Rodriguez-Miguelez P, Fernandez-Gonzalo R, Collado PS, Almar M, Martinez-Florez S, de Paz JA, Gonzalez-Gallego J, Cuevas MJ (2015) Whole-body vibration improves the anti-inflammatory status in elderly subjects through toll-like receptor 2 and 4 signaling pathways. Mech Ageing Dev 150:12–19

    Article  CAS  PubMed  Google Scholar 

  68. Borghi-Silva A, Oliveira CC, Carrascosa C, Maia J, Berton DC, Queiroga F Jr, Ferreira EM, Almeida DR, Nery LE, Neder JA (2008) Respiratory muscle unloading improves leg muscle oxygenation during exercise in patients with COPD. Thorax 63(10):910–915

    Article  CAS  PubMed  Google Scholar 

  69. Troosters T, Probst VS, Crul T, Pitta F, Gayan-Ramirez G, Decramer M, Gosselink R (2010) Resistance training prevents deterioration in quadriceps muscle function during acute exacerbations of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 181(10):1072–1077

    Article  PubMed  Google Scholar 

  70. Man WD, Hopkinson NS, Harraf F, Nikoletou D, Polkey MI, Moxham J (2005) Abdominal muscle and quadriceps strength in chronic obstructive pulmonary disease. Thorax 60(9):718–722

    Article  PubMed  PubMed Central  Google Scholar 

  71. Ferreira IM, Brooks D, Lacasse Y, Goldstein RS (2000) Nutritional support for individuals with COPD: a meta-analysis. Chest 117(3):672–678

    Article  CAS  PubMed  Google Scholar 

  72. Lakhdar R, Rabinovich RA (2018) Can muscle protein metabolism be specifically targeted by nutritional support and exercise training in chronic obstructive pulmonary disease? J Thorac Dis 10(12):S1377–S1389

    Article  PubMed  PubMed Central  Google Scholar 

  73. Alison JA, McKeough ZJ, Jenkins SC, Holland AE, Hill K, Morris NR, Leung RW, Williamson KA, Spencer LM, Hill CJ, Lee AL, Seale H, Cecins N, McDonald CF (2016) A randomised controlled trial of supplemental oxygen versus medical air during exercise training in people with chronic obstructive pulmonary disease: supplemental oxygen in pulmonary rehabilitation trial (SuppORT) (Protocol). BMC Pulm Med 16:25

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Sadaka AS, Montgomery AJ, Mourad SM, Polkey MI, Hopkinson NS (2018) Exercise response to oxygen supplementation is not associated with survival in hypoxemic patients with obstructive lung disease. Int J Chron Obstruct Pulmon Dis 13:1607–1612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Camillo CA, Osadnik CR, van Remoortel H, Burtin C, Janssens W, Troosters T (2016) Effect of “add-on” interventions on exercise training in individuals with COPD: a systematic review. ERJ Open Res 2(1):pii: 00078-2015

    Article  Google Scholar 

  76. Ou YE, Lin ZM, Wu WL, Luo Q, Chen RC (2016) Efficacy of non-invasive ventilation as a rescue therapy for relieving dyspnea in patients with stable severe COPD. Respir Med 121:74–80

    Article  PubMed  Google Scholar 

  77. Menadue C, Piper AJ, van’t Hul AJ, Wong KK (2014) Non-invasive ventilation during exercise training for people with chronic obstructive pulmonary disease. Cochrane Database Syst Rev (5):CD007714

    Google Scholar 

  78. Palange P, Valli G, Onorati P, Antonucci R, Paoletti P, Rosato A, Manfredi F, Serra P (2004) Effect of heliox on lung dynamic hyperinflation, dyspnea, and exercise endurance capacity in COPD patients. J Appl Physiol 97(5):1637–1642

    Article  CAS  PubMed  Google Scholar 

  79. Laveneziana P, Valli G, Onorati P, Paoletti P, Ferrazza AM, Palange P (2011) Effect of heliox on heart rate kinetics and dynamic hyperinflation during high-intensity exercise in COPD. Eur J Appl Physiol 111(2):225–234

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Ethics declarations

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fiorentino, G., Esquinas, A.M., Annunziata, A. (2020). Exercise and Chronic Obstructive Pulmonary Disease (COPD). In: Xiao, J. (eds) Physical Exercise for Human Health. Advances in Experimental Medicine and Biology, vol 1228. Springer, Singapore. https://doi.org/10.1007/978-981-15-1792-1_24

Download citation

Publish with us

Policies and ethics